A Cosmic Explosion Brighter than the Core of the Milky Way

SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist's illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy.
SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA’s Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist’s illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy. Credits: NASA/ESA/Chandra/Lick/

Hypernova SN 2006gy was over a hundred times brighter than a typical supernova  

Space news (astrophysics: hypernovae; one of the brightest ever, SN 2006gy) – 240 million light-years toward the constellation Perseus in galaxy NGC 1260 –  

sn2006gy_anim_thm100
Watch this animation of SN 2006gy. Credits: NASA/ESA/Chandra.

It all started in September of 2006 when a fourth-year University of Texas graduate student astronomer working for the Palomar Transient Factory’s (PTF) luminous supernova program Robert Quimby discovered the brightest celestial event up to this date. An exploding star over 100 times brighter than a normal supernova and shining brighter than the core of its host galaxy NGC 1260. 

SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist's illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy.
SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA’s Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist’s illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy. Credits: NASA/ESA/Chandra/Lick/Keck.

“This was a truly monstrous explosion, a hundred times more energetic than a typical supernova,” said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas at Austin. “That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We’ve never seen that before.”  

nsmith
Nathan Smith of the University of California at Berkeley. Credit: University of California at Berkeley/NASA

Teams of astronomers working with the Katzman Automatic Imaging Telescope at the Lick Observatory on Mt. Hamilton in California and M.W. Keck Observatory near the summit of Mauna Kea on the island of Hawaii immediately began observing the event designated supernova SN 2006gy. Analysis of data showed it occurred over 240 million light-years away in galaxy NGC 1260 and took 70 days to reach maximum brightness. Staying brighter than any previously recorded event for over three months, SN 2006gy was still as bright as a normal supernova eight months later. 

SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist's illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy.
SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA’s Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist’s illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy. Credits: NASA/ESA/Chandra/Lick/Keck.

“Of all exploding stars ever observed, this was the king,” said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. “We were astonished to see how bright it got, and how long it lasted.”  

Alex-Filippenko-formal-Dec2012a-small-crop
Alex Filippenko, professor of astronomy for University of California, Berkeley. Credits: University of California, Berkeley.

Astronomers were reasonably sure at this point the progenitor of supernova SN 2006gy was one of the largest, most massive types of stars ever to exist. But they needed to rule out the most likely alternative explanation for the event. The possibility a white dwarf star with a mass slightly higher than Sol went supernova in a dense, hydrogen-rich environment.  

Another team of astronomers using the Chandra X-ray Observatory went to work at this point to rule this possibility out of their equations. If this was the case, they knew X-ray emission from the event should be at least 1,000 times more luminous than the readings they were getting.     

“This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star,” said Dave Pooley of the University of California at Berkeley, who led the Chandra observations. 

The progenitor star for SN 2006gy is thought to have ejected a large volume of mass before the hypernova event occurred. This is similar to events observed by astronomers in the case of Eta Carinae, a nearby supermassive star they’re watching closely for signs of an impending supernova. Only 7,500 light-years toward the constellation Carina, compared to 240 million for galaxy NGC 1260, this star going supernova would be the celestial event of the century on Earth. It would be bright enough to see in the daylight sky.

livio
Mario Livio is an internationally known astrophysicist, a bestselling author, and a popular lecturer. Credits: MarioLivio.com

“We don’t know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case,” said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. “Eta Carinae’s explosion could be the best star-show in the history of modern civilization.” 

The massive star Eta Carinae (almost hidden in the center) underwent a giant explosion some 150 years ago. The outburst spread the material that is visible today in this very sharp Hubble image. Even though Eta Carinae is more than 8,000 light-years away, structures only 15 thousand million kilometre across (about the diameter of our solar system) can be distinguished. Dust lanes, tiny condensations, and strange radial streaks al appear with unprecedented clarity. A huge, billowing pair of gas and dust clouds are captured in this stunning Hubble Space Telescope image of the supermassive star Eta Carinae. Credit: Jon Morse (University of Colorado), and NASA/ESA
The massive star Eta Carinae (almost hidden in the center) underwent a giant explosion some 150 years ago. The outburst spread the material that is visible today in this very sharp Hubble image. Even though Eta Carinae is more than 8,000 light-years away, structures only 15 thousand million kilometre across (about the diameter of our solar system) can be distinguished. Dust lanes, tiny condensations, and strange radial streaks al appear with unprecedented clarity.
A huge, billowing pair of gas and dust clouds are captured in this stunning Hubble Space Telescope image of the supermassive star Eta Carinae.
Credit:
Jon Morse (University of Colorado), and NASA/ESA

So many questions

Astronomers think in the case of hypernova SN 2006gy things might have taken a slightly different pathway than previously recorded supernovae. Some scientists think the massive star that exploded could be much more like the supermassive stars that existed during the early moments of the cosmos. Supermassive stars that exploded in supernovae and spread the elements of creation across the cosmos, rather than collapsing to a black hole as theorized.  

“In terms of the effect on the early universe, there’s a huge difference between these two possibilities,” said Smith. “One [sprinkles] the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole.” 

Why would these supermassive stars be different than other huge stars observed in the Milky Way? The human search for answers to these and other mysterious questions before us continues as we journey backward to the beginning of space and time. 

We’ll update you with any additional data astronomers come across as the journey continues. Until next time, keep dreaming of the possibilities. 

Warren Wong 

Editor and Chief 

The Human Journey to the beginning of space and time. 

Join and enjoy the space journey of NASA.  

Discover the things the ESA is planning here

Learn more about supernovae

Read more about supermassive stars here

Learn more about all of the programs of the Palomar Transient Factory

Learn more about astronomy at the University of California at Berkeley

Discover astronomy at the University of Texas in Austin here

Take the space voyage of the Lick Observatory

Discover the M.W. Keck Observatory here

Discover the things X-ray emissions are telling us aboard the Chandra X-ray Observatory

Read more about a star astronomers nicknamed Nasty 1.

Learn more about Kepler’s recent observation of the shockwave of a supernova in visible light.

Read about the next generation Eye-in-the-sky the Large Synoptic Survey Telescope (LSST).

 

Wolf-Rayet Star “Nasty 1” Transitional Stage in Evolution of Massive Stars

A very rapidly evolving, supermassive star with a newly formed nebula only a few thousand years old

hs-2015-21-a-large_web

Space news (supermassive stars: Wolf-Rayet stars; star NaSt1) – 3,000 light-years away on the edge of a pancake-shaped disk of gas moving at 22,000 mph – 

Astronomers using the Hubble Space Telescope have discovered new clues concerning a nearby supermassive, rapidly aging star they have nicknamed “Nasty 1”. Designated NaSt1 in astronomy catalogs, “Nasty 1” when first discovered decades ago was identified as a non-typical Wolf-Rayet star with an orbiting disk-like structure. A vast disk estimated to be almost 2 trillion miles wide astronomers now think formed due to a companion star snacking on its outer envelope. Putting NaSt1 in a class of Wolf-Rayet stars astronomers haven’t observed often during the human journey to the beginning of space and time. A star type possibly representing a transition stage in the evolution of supermassive stars. 

hs-2015-21-b-large_web

“We were excited to see this disk-like structure because it may be evidence for a Wolf-Rayet star-forming from a binary interaction,” said study leader Jon Mauerhan of the University of California, Berkeley. “There are very few examples in the galaxy of this process in action because this phase is short-lived, perhaps lasting only a hundred thousand years, while the timescale over which a resulting disk is visible could be only ten thousand years or less.” 

me2
Study leader Jon Mauerhan of the University of California, Berkley. Credit: University of California, Berkley.

In the case of NaSt1, computer simulations show a supermassive star evolving really fast and swelling as it begins to run out of hydrogen. Its outer hydrogen envelope is loosely bound and is gravitationally stripped from the star- astronomers call this process stellar cannibalism – by a more compact, nearby companion star. In the process the more compact star gains mass, while the more massive star loses its hydrogen envelope, exposing its helium core and eventually becoming a Wolf-Rayet star. 

The mass-transfer model is the favored process for how Wolf-Rayet stars evolve at the moment and considering at least 70 percent of supermassive stars detected, so far, are members of binary star system, this seems logical. Astronomers used to think this type of star could also form when a massive sun ejects its hydrogen envelope. But the direct mass loss model by itself can’t account for the number of Wolf-Rayet stars observed relative to less-evolved supermassive suns in the Milky Way.  

hs-2015-21-c-web_print

“We’re finding that it is hard to form all the Wolf-Rayet stars we observe by the traditional wind mechanism because the mass loss isn’t as strong as we used to think,” said Nathan Smith of the University of Arizona in Tucson, who is a co-author on the new NaSt1 paper. “Mass exchange in binary systems seems to be vital to account for Wolf-Rayet stars and the supernovae they make, and catching binary stars in this short-lived phase will help us understand this process.” 

nsmith
Co-author of study Nathan Smith of the University of Arizona in Tucson. Credit: The University of Arizona.

Astronomers computer models show that the mass-transfer process isn’t always perfectly efficient. Matter can only transfer from NaSt1 at a certain rate, left over material begins orbiting, creating a disk-like structure. 

“That’s what we think is happening in Nasty 1,” Mauerhan said. “We think there is a Wolf-Rayet star buried inside the nebula, and we think the nebula is being created by this mass-transfer process. So this type of sloppy stellar cannibalism actually makes Nasty 1 a rather fitting nickname.” 

Observing Nasty 1 (star NaSt1) through the clock of gas and dust surrounding this star system hasn’t been easy. The intervening disk-like structure even blocks the view of the Hubble Space Telescope. Scientists haven’t been able to measure the distance between the stars, their mass, or the volume of material transferring to the smaller companion star.  

Astronomers have been able to discover a few items concerning the disk-like structure surrounding Nasty 1. Measurements indicate it’s traveling at around 22,000 mph in the outer nebula, a slower speed than recorded in other stars of this type. Scientists think this indicates a much less energetic supernova than was recorded for other events, like Era Carinae. In this case and other similar stars, the gas in the outer nebula has been recorded in the hundreds of thousands of miles per hour. Nasty 1 could be different supernova animal altogether.  

GMT-1-640x425
High atop the Cerro Manqui peak at the Las Campanas Observatory in Chile the twin the Walter Baade Telescope is the first of the twin 6.5-meter Magellan telescopes to be completed. Credit: Ico.cl

Nasty 1 could also lose its outer envelope of hydrogen intermittently. Previous studies in the infrared light provided clues indicating the existence of a dense pocket of hot gas and dust close to the central stars in the region. More recent observations using the Magellan Telescope located at the Las Campanas Observatory in Chile has also detected a bigger pocket of cooler gas and dust possibly indirectly blocking light from these stars. Astronomers think the existence of warm dust in the region implies it formed just recently, perhaps intermittently, as elementally enriched matter from the stellar winds of massive stars collides, mixes, flows away, and cools. Irregular stellar wind strength, the rate at which star NaSt1 loses its outer envelope, could also help explain the observed clumpy structure and gaps noted in the outer regions of the disk.  

Astrophysicists used NASA’s Chandra X-ray Observatory to measure the hypersonic winds screaming from each star. Readings showed a scorching hot plasma, indicating colliding stellar winds producing high-energy shockwaves that glow in X-rays. This is consistent with previous data collected on other evolving Wolf-Rayet star systems. We’ll get a better view once the outer hydrogen of Nasty 1’s (star NaSt1) depleted, and the mass-transfer process completes. Eventually, the gas and dust in the lumpy, disk-like structure will dissipate, giving us a clearer view of this mysterious binary star system.   

 

704250main_chandra-telescope_full
NASA’s Chandra X-ray Observatory has shown the cosmos is full of objects and events far beyond anything we imagined when we first started the human journey to the beginning of space and time. Credit: NASA/Chandra

Nasty 1’s still evolving!

“What evolutionary path the star will take is uncertain, but it will definitely not be boring,” said Mauerhan. “Nasty 1 could evolve into another Eta Carinae-type system. To make that transformation, the mass-gaining companion star could experience a giant eruption because of some instability related to the acquiring of matter from the newly formed Wolf-Rayet. Or, the Wolf-Rayet could explode as a supernova. A stellar merger is another potential outcome, depending on the orbital evolution of the system. The future could be full of all kinds of exotic possibilities depending on whether it blows up or how long the mass transfer occurs, and how long it lives after the mass transfer ceases.” 

Astronomers continue to study Nasty 1 and its peculiar, unusual disk-like structure looking for clues to explain the mysteries surrounding its origin. 

Join the conversation and learn more about NASA here

Take the space voyage of the ESA

Learn more about the things the Chandra X-ray Observatory has taught us about the universe we live in here

Learn more about Wolf-Rayet stars

Discover the universe through the eyes of the Hubble Space Telescope

Discover what the astronomy department at the University of California, Berkeley is up to here. 

Learn more about supernovae

Discover astronomy at the University of Arizona in Tucson

Discover the Magellan Telescope

Learn more about the Las Campanas Observatory in Chile

Watch a Kepler animation of a supernova shockwave in visible light.

Read about the things astronomers are finding out about a type of galaxy called lenticular galaxies.

Read about the plans to construct the next-generation planet-hunter The Magellan Giant Telescope.

Kepler Captures Supernova Shockwave in Visible Light

Mining of Kepler space mission data reveals “supernova’s shockwave” in visible light

kepler-snburp-point1second-nograph-1280x720-shorter-10lossy

Space news (massive supernovae) – 1.2 billion light-years from Earth –

An international team of scientists at the University of Notre Dame in Indiana mining three years of Kepler Space Telescope data for massive supernovae discovered something never seen during the human journey to the beginning of space and time. Buried in the Kepler data Peter Garnavich and team observed for the first time the brilliant flash of a massive supernova’s shockwave in visible light as it reached the surface of the exploding star.

garnavich180
NASA scientists Peter Garnavich. Credit: NASA

“In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky,” said Garnavich. “You don’t know when a supernova is going to go off, and Kepler’s vigilance allowed us to be a witness as the explosion began.”

Garnavich’s the leader of the Kepler Extragalactic Survey (KEGS) research team, which is currently mining NASA’s Kepler K2 mission data looking for massive supernovae. NASA’s repurposed planet hunter is expected to detect around a dozen more events during its mission to capture the light from hundreds of distant galaxies and trillions of stars.

breakout_sim-ws_v6
The diagram illustrates the brightness of a supernova event relative to the sun as it unfolds. For the first time, a supernova shockwave has been observed in the optical wavelength or visible light as it reaches the surface of the star. This early flash of light is called a shock breakout. 

Astronomers call the brilliant flash of a supernova’s shockwave “a shock breakout”. This event only lasts around twenty minutes in the cases observed, so catching the flash as it happens is truly a milestone for astronomers studying supernovae. By piecing together individual moments of a supernova astronomers hope to learn more about the history of chemical complexity and the evolution of life.

“All heavy elements in the universe come from supernova explosions. For example, all the silver, nickel, and copper in the earth and even in our bodies came from the explosive death throes of stars,” said Steve Howell, project scientist for NASA’s Kepler and K2 missions at NASA’s Ames Research Center in California’s Silicon Valley. “Life exists because of supernovae.”

steve-howell-full_0
NASA scientist Steve Howell. Credit: NASA

Massive supernovae and their less energetic brothers are the seeds of chemical complexity in the cosmos, spreading the elements of creation across the breadth of the universe. Understanding the physics behind these titanic events can help tell us how these elements of creation were spread across the universe.

Kepler observes two massive supernovae

The Kepler Space Telescope observed a type II supernova shockwave in visible light as it broke the surface of the star for the first time in history as supermassive red giant KSN 2011d went supernova in 2011. Containing roughly 500 times the mass of Sol, this supermassive star at the moment the shockwave from the supernova reached its surface was 130,000,000 times brighter than the Sun. Continuing to explode and grow, the star eventually reached a maximum brightness over 1 billion times greater than Sol 14 days later.

kepler-k2_artistconcept
This artist’s conception of the repurposed Kepler K2 spacecraft. Credit. NASA/Kepler K2

The Kepler Space Telescope also observed a second type II supernova in 2011. Red super massive star KSN 2011a contains 300 times as much mass as Sol and occupies a volume of space that would easily engulf the orbit of Earth around the Sun. Only 700 million light-years from Earth, astronomers weren’t able to observe a shock breakout in the data for this supernova, but they think it might be due to gas masking the shockwave as it reached the surface of the star.

“That is the puzzle of these results,” said Garnavich. “You look at two supernovae and see two different things. That’s maximum diversity.”

“While Kepler cracked the door open on observing the development of these spectacular events, K2 will push it wide open observing dozens more supernovae,” said Tom Barclay, senior research scientist and director of the Kepler and K2 guest observer office at Ames. “These results are a tantalizing preamble to what’s to come from K2!”

paintingoftom
Drawing of Tom Barclay. Credit: Tom Barclay.com

Watch this YouTube video on this event here.

Learn more about K2.

Discover what the Kepler Extragalactic Survey has told us here.

Take the voyage of the Kepler Space Telescope.

Learn more about type II supernovas here.

Discover NASA.

Learn more about astronomy at the University of Notre Dame here.

Read about the giant bubble observed by the Hubble Space Telescope.

Learn more about the prominent emission lines in young stars.

Read about two merging black holes astronomers are watching.

Astronomers Witness First Cosmic-moments of Rare, Newborn Supernovae

Three Type Ia supernovae they study in order to measure cosmic distances and lift the veil of mystery surrounding dark energy

This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA's Kepler spacecraft. The light curve shows a star's brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected 'bump' in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast. Credits: NASA Ames/W. Stenzel
This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA’s Kepler spacecraft. The light curve shows a star’s brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected ‘bump’ in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast.
Credits: NASA Ames/W. Stenzel

Space news (astrophysics: supernovae; 3 new candidates) – billions of light-years from Earth –

A team of determined astronomers studying the largest explosions viewed during the human journey to the beginning of space and time recently found three new candidates. Three candidates, they found after viewing 400 galaxies for two years using NASA’s Kepler Space Telescope.

Kepler’s unprecedented pre-event supernova observations and Swift’s agility in responding to supernova events have both produced important discoveries at the same time but at very different wavelengths,” says Paul Hertz, Director of Astrophysics for NASA’s Science Mission Directorate. “Not only do we get insight into what triggers a Type Ia supernova, but these data allow us to better calibrate Type Ia supernovae as standard candles, and that has implications for our ability to eventually understand the mysteries of dark energy.”

In the data they collected over this two year period using NASA’s Kepler Space Telescope, this amazing team of explorers found three new and distant Type Ia supernovae, designated KSN 2011b, KSN 2011c, KSN 2012a. Due to the frequent observations of Kepler in the direction of the three distant supernovae, the data collected even contains the first moments of each tremendous blast. Measurements that will allow scientists to piece together the events leading to these events and the reasons for such a tremendous release of energy.

Astrophysicists believe Type Ia supernovae erupt with the same apparent brightness because in all cases the exploding body is a white dwarf star. It’s this property scientists use as a standard candle to more accurately measure the distance to objects around the cosmos than was previously possibly.

Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen
Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen

Astronomers also believe that every Type Ia supernovae are either the result of two white dwarf stars merging, or a white dwarf gathering so much material from a nearby companion star, it causes a thermonuclear reaction resulting in the white dwarf going supernova.

Our Kepler supernova discoveries strongly favor the white dwarf merger scenario, while the Swift study, led by Cao, proves that Type Ia supernovae can also arise from single white dwarfs,” said Robert Olling, a research associate at the University of Maryland and lead author of the study. “Just as many roads lead to Rome, nature may have several ways to explode white dwarf stars.”

In the case of KSN 2011b, KSN 2011c, and KSN 2012a, astronomers found no evidence to support the existence of material being taken from a companion star. This leads them to believe the cause in these cases is collision and merger between two closely orbiting white dwarf stars. 

Now, astronomers will use NASA’s Kepler Space Telescope and other Earth and space-based telescopes to search for Type Ia supernovae among thousands of galaxies included in the study. This will allow them to determine the distance of stellar objects across the cosmos more accurately. It will also help them delve deeper into the mystery surrounding dark energy and its true nature. 

The search for supernovae continues

The Kepler spacecraft has delivered yet another surprise, playing an unexpected role in supernova science by providing the first well-sampled early time light curves of Type Ia supernovae,” said Steve Howell, Kepler project scientist at NASA’s Ames Research Center in Moffett Field, California. “Now in its new mission as K2, the spacecraft will search for more supernovae among many thousands of galaxies.”

Learn more about supernovae here.

Take the journey of the Kepler Space Telescope here.

Learn more about the search for the identity of dark energy here.

Learn more about the things astronomers are learning about the formation of new stars.

Read about plans of private firm Planetary Resources Inc. to mine an asteroid in the near future.

Discover and learn about the things NASA’s New Horizons mission has told us about Pluto and its system of moons.

Hubble Finds Youngest, Nearby Black Hole Candidate

Characteristics of 30-year old supernova remnant SN 1979C are consistent with predicted theory on birth of black hole or possibly a rapidly spinning neutron star

•If SN 1979C does indeed contain a black hole, it will give astronomers a chance to learn more about which stars make black holes and which create neutron stars. Image: NASA/Chandra
Far away in galaxy M100 we search for black holes. If SN 1979C does indeed contain a black hole, it will give astronomers a chance to learn more about which stars make black holes and which create neutron stars.
Image: NASA/Chandra

Space news (December 11, 2015) – 50 million light-years from Earth, in galaxy M100 –

One of the most enigmatic cosmic objects discovered during the human journey to the beginning of space and time, black holes continue to entrance and mystify both astronomers studying them and common people trying to imagine the possibility of such monsters existing. Black holes are also one of the most difficult celestial objects to detect since not even light rays can escape from the strength of their gravitational-embrace, once they travel beyond the imaginary point-of-no-return astronomers call the “event horizon” of a black hole.

Astronomers working with NASA’s Chandra X-ray Observatory, after analysis of additional data provided by NASA’s Swift Gamma-ray Burst Explorer, the European Space Agency’s XMM-Newton spacecraft, and German’s ROSAT Observatory, believe they have evidence to suggest 30-year old supernova remnant SN 1979C could be a black hole.

NASA and German ROSAT Observatory scans the x-ray sky.
The ROSAT Observatory scans the x-ray sky looking for supernovas that could have given birth to a black hole. Image: NASA.

Supernova remnant SN 1979C shined X-rays steadily during constant observation from 1995 to 2007. This suggests to astronomers either a black hole eating material left over from the supernova or a hidden binary companion feeding hot material to the monster hidden within 

“If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed,” said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study.

Astronomers have detected new black holes that existed during the ancient past through gamma-ray bursts (GRBs) associated with them. SN 1979C is listed in a class of supernovae not expected to produce GRBs, which theory predicts could be the most common way to make a black hole.   

This may be the first time the common way of making a black hole has been observed,” said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. “However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case.

The idea SN 1979C is a young, recently-formed black hole made from the remnants of a star with 20 times the mass of Sol, that went supernova some thirty Earth-years ago, is consistent with present theory. In 2005, a theory was put forth claiming the bright source of X-rays detected steaming from the supernova remnant is powered by a jet emanating from the monster that’s unable to penetrate the thick hydrogen envelope surrounding it.

Astronomers think there could be one other possibility for the identity of SN 1979C. It could be a rapidly spinning neutron star, with an extremely powerful wind of high energy particles. Present theory predicts this would produce the bright X-ray emissions detected during 12 years of constant observation. 

If this is true, this would make this supernova remnant the youngest known example of a celestial object called a pulsar wind nebula. The Crab Nebula is the best-known example of a bright pulsar wind nebula, but we would have to go back over 900 years to view it as a 30-year old. SN 1979C is a lot younger, which is a great opportunity to study one of the most enigmatic, yet difficult to detect celestial objects viewed during the human journey to the beginning of space and time.

It’s very rewarding to see how the commitment of some of the most advanced telescopes in space, like Chandra, can help complete the story,” said Jon Morse, head of the Astrophysics Division at NASA’s Science Mission Directorate.

Jon Morse is a pioneer, leader and hero of the human journey to the beginning of space and time
Jon Morse is a pioneer, leader and hero of the human journey to the beginning of space and time. Image: Space.com.

Study continues

Astronomers will now continue to study SN 1979C, to see if they can determine its identity. No matter it’s true identity or nature, we can expect this celestial object to be one of the most studied examples of a young supernova remnant during recent times. 

You can learn more about black holes here.

Discover the journey of NASA’s Chandra X-ray Observatory here.

Learn more about NASA’s Marshall Space Flight Center here.

Learn about the mission of the Harvard-Smithsonian Center for Astrophysics here.

Take NASA’s journey through space history here.

Learn about NASA’s Swift Gamma-ray Burst Explorer here.

Take the journey of the European Space Agency’s XMM-Newton spacecraft here.

Discover German’s ROSAT Observatory here.

Learn about hydrocarbon dunes detected by NASA’s Cassini spacecraft on Saturn’s frozen moon Titan.

Read about the Monster of the Milky Way as it comes to life.

Learn how astronomers study a galactic nursery using the Hubble Space Telescope.

NASA astronomers believe a young black hole was created somewhere within W49B

The Birth of a Blackhole

NASA astronomers believe a young black hole was created somewhere within W49B
NASA astronomers believe a young black hole was created somewhere within W49B

Astronomers find unusual supernova

Astronomy News – Black holes are stellar objects of the most unusual nature and temperament. They’re also something we haven’t witnessed being born during the human journey to the beginning of space and time, until now. NASA astronomers using the Chandra X-ray Observatory to take a look at W49B, a 1,000-year-old supernova remnant, found it to be unlike any they have observed before. In fact, this supernova remnant could have left behind a black hole.

NASA astronomers use the Chandra X-ray Observatory to look at W49B
NASA astronomers use the Chandra X-ray Observatory to look at W49B

There should be some mass left over in the form of a neutron star

When the most massive suns reach the end of their lives, their central regions collapse and trigger a chain of events that ends in a supernova explosion. Astronomers studying W49B found this supernova remnant was formed when mass from the poles of a 25-solar mass star shot out at a much higher speed than mass shooting from the equator. This is the first supernova remnant with this characteristic they have found in the Milky Way.

Looking for the rabbit hole

Astronomers also couldn’t find the characteristic neutron star they expected to detect within the remnant, which leaves scientists wondering if there’s a black hole lurking somewhere within the cloud. Star scientists are currently studying data concerning W49B, trying to find the telltale evidence they need to indicate the presence of a black hole. Should they find the evidence they’re looking for this will be the first opportunity to study a supernova responsible for creating a young black hole.

Watch this YouTube video on W49B https://www.youtube.com/watch?v=6ssE7egUf8E.

Watch this YouTube video of the Birth of a Black Hole https://www.youtube.com/watch?v=0kgS0PeQN1M.

Read about the biggest black hole found so far by the Hubble Space Telescope

Are you looking for a moderately priced telescope?

Read about NASA’s mission to Mars

Star Dust to Star Dust

European Space Agency’s GAIA spacecraft
Stardust to star dust

Are we made of star dust?

Astronomy questions and answers – You have probably heard the expression, “We’re all just star dust” The truth is, depending on the age of the atoms in your body, you could have been stardust several times, by now. The average length of time astronomers estimate it takes atoms discharged during a supernova in the Milky Way to be recycled into a new star or solar system is several billion years.

Supernovae occur very infrequently
Supernovae occur very infrequently about once every century in our Milky Way

How old is the stardust in you?

Figuring out the true age of the atoms in your body is going to be the hard part. Astronomers can give you an estimate for the age of the solar system, the Milky Way, and the universe. The numbers are insignificant to the question since we have no way of knowing where your atoms have been during the estimated 13.798 + or – 0.037 billion years the universe has been in existence. Your atoms could have been part of any number of solar systems and stars, by now.

Star dust is old
Stardust is old

We could narrow the estimate a bit, for you, but we would need to make two assumptions. Firstly, that the Milky Way is the only galaxy your atoms have been a part of during the past. This is most likely the case since astronomers believe galaxies formed relatively soon after the Big Bang. Secondly, that the heavy atoms in your body have only been part of one supernova during their existence. This assumption could possibly be a bit of a stretch, but even being part of one supernova, and returning to be reconsolidated would take several billion years. Once we do this, it becomes easier to narrow the estimate a bit.

A grain of stardust ejected during a supernova can follow a few different roads. It could be flung right out of its host galaxy as part of the galactic wind. Astronomers estimate maybe half of the star dust in the Milky Way presently will eventually follow this road. A percentage of this star dust will certainly be destroyed by the Milky Way’s hot halo, while the remainder will fall back into the galaxy. All most all of the stardust ejected from the galaxy in this way will never become part of a new star or solar system. The whole process is estimated by astronomers to take at least 10 billion years. Since we assume the heavy atoms of your body have only been part of the Milky Way and a single supernova, 10 billion years is an upper limit of the age of the atoms in your body.

The star dust ejected during this supernovae event will probably never become part of a new star
The stardust ejected during this supernovae event will probably never become part of a new star

Dust grains that aren’t ejected from the galaxy during a supernova event will become part of the interstellar medium (ISM). This is the low-density stardust that makes up the space between the stars. The majority of this stardust will also never make it into a new star or solar system. The star dust that does make it back into a new star or solar system will take several billion years to complete the process, as we mentioned above. Several means more than one or two, but not much more, so we’ll say around five billion years it has taken the atoms in your body to become part of the solar system. Astronomers studying the solar system also believe the solar system is around 4.6 billion years old, give or take a few million, and this is close to our estimate of 5 billion years old.

A rough estimate of the age of the stardust in you

There you have a rough estimate of the age of the atoms in your body. From 5 to 10 billion years, given the two assumptions we made. The real point is we are all made of stardust, no matter the age of the atoms in our body.

Click this link to watch a documentary with Neal DeGrasse Tyson on whether we are made of stardust.

Neal DeGrasse Tyson on whether we are star dust

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion