Chance of 300 to 800 ft. Asteroid Impact on Sept 20, 2020 Estimated at 2 Percent

NASA and FEMA scientists tracking asteroid using ground and space-based telescopes to refine estimates

If this asteroid impacted on the Earth, it would be a dark, bad day for life on the planet. Image Credit: NASA
If this asteroid impacted on the Earth, it would be a dark, bad day for life on the planet. Image Credit: NASA

Space news Sept. 20, 2020 ( NASA Planetary Defense Office: joint NASA and FEMA operation; emergency response to future asteroid impact) – Jet Propulsion Laboratory in El Segundo, California; conducting emergency response exercise for possible future asteroid impact

NASA Planetary Defense Officer Lindley Johnson was among speakers at an Oct. 25, 2016, NASA/FEMA tabletop exercise in El Segundo, California, simulating emergency response to a hypothetical future asteroid impact. Regular exercises like this facilitate a strong working relationship between the asteroid science community and emergency managers. Credits: The Aerospace Corporation.
NASA Planetary Defense Officer Lindley Johnson was among speakers at Oct. 25, 2016, NASA/FEMA tabletop exercise in El Segundo, California, simulating an emergency response to a hypothetical future asteroid impact. Regular exercises like this facilitate a strong working relationship between the asteroid science community and emergency managers.
Credits: The Aerospace Corporation.

NASA Planetary Defense Officer Lindley Johnson spoke today at a simulated emergency response exercise to a possible future asteroid impact estimated for some time around Sept. 20, 2020. The exercise provided a forum for the planetary science community to prepare emergency managers by collecting, analyzing, and sharing data about such an event should it occur. It also provided the chance for emergency response personnel, the asteroid science community, and emergency managers across the country and the world to begin forming the strong working relationships required to protect humanity from an asteroid strike.

This particular exercise was the third in a series hosted jointly by NASA and the Federal Emergency Management Agency (FEMA). It was conducted to prepare emergency services in the event of an asteroid impact becomes more likely during the years ahead and strengthen bonds between their partnership. At this point, NASA and FEMA officials say an asteroid impact is very unlikely, but we need to be ready in case of an emergency. 

Representatives of NASA, FEMA, the Jet Propulsion Laboratory, the U.S. Department of Energy’s national laboratories, the U.S. Air Force, and the California Governor’s Office of Emergency Services gathered in El Segundo, California, on Oct. 25, 2016, for a tabletop exercise simulating a possible asteroid impact in 2020. The exercise provided a forum for the planetary science community to show emergency managers how it would collect, analyze and share data about such an event. Credits: The Aerospace Corporation
Representatives of NASA, FEMA, the Jet Propulsion Laboratory, the U.S. Department of Energy’s national laboratories, the U.S. Air Force, and the California Governor’s Office of Emergency Services gathered in El Segundo, California, on Oct. 25, 2016, for a tabletop exercise simulating a possible asteroid impact in 2020. The exercise provided a forum for the planetary science community to show emergency managers how it would collect, analyze and share data about such an event.
Credits: The Aerospace Corporation

“It’s not a matter of if — but when — we will deal with such a situation,” said Thomas Zurbuchen, Associate Administrator for NASA’s Science Mission Directorate in Washington. “But unlike any other time in our history, we now have the ability to respond to an impact threat through continued observations, predictions, response planning, and mitigation.”

During the emergency response exercise, planetary science community representatives showed how data concerning a possible future asteroid impact would be collected, analyzed, and shared. Emergency response managers talked about the way the information would be used to consider the challenges and options during an asteroid impact. They also talked about the way to prepare, respond, and tell the public about the crisis. 

Washington, DC, May 12, 2009 -- FEMA Administrator W. Craig Fugate in the FEMA Studio. FEMA/Bill Koplitz
Washington, DC, May 12, 2009 — FEMA Administrator W. Craig Fugate in the FEMA Studio. FEMA/Bill Koplitz Image Credits: Bill Koplitz/FEMA/NASA

“It is critical to exercise these kinds of low-probability but high-consequence disaster scenarios,” FEMA Administrator Craig Fugate said. “By working through our emergency response plans now, we will be better prepared if and when we need to respond to such an event.”

This possible asteroid impact in four years time was first discovered in the fall and was at that time estimated at 2 percent. NASA assets will continue to track the asteroid for the next three months, before updating the chances of a possible impact. But at this point, NASA and its partners are preparing to launch a possible mission to deflect or otherwise intercept the asteroid. Exercise attendees were left with the challenge of preparing for a mass evacuation of a major US metropolitan city and region in the worst case scenario. They went over possible impact scenarios, looked at possible population displacement estimates, discussed infrastructure that would be affected, and all data that could realistically be known concerning a possible asteroid impact in four years time. 

“The high degree of initial uncertainty coupled with the relatively long impact warning time made this scenario unique and especially challenging for emergency managers,” said FEMA National Response Coordination Branch Chief Leviticus A. Lewis. “It’s quite different from preparing for an event with a much shorter timeline, such as a hurricane.”

They also looked at ways to pass on accurate, timely, and useful information to the general public, while still addressing the possible issue of false rumors and information emerging during the years leading up to an impact. 

“These exercises are invaluable for those of us in the asteroid science community responsible for engaging with FEMA on this natural hazard,” said NASA Planetary Defense Officer Lindley Johnson. “We receive valuable feedback from emergency managers at these exercises about what information is critical for their decision making, and we take that into account when we exercise how we would provide information to FEMA about a predicted impact.”

Study and planning for a possible asteroid impact continues

NASA’s continuing to provide expert input to FEMA about the asteroid through the Planetary Coordination Office. The partners will continue to assess the asteroid and conduct asteroid impact exercises in preparation for a worst case scenario. They also intend to start reaching out to other representatives from local and state emergency management agencies and the private sector in future emergency exercises.

NASA’s looking for a few good firms and private individuals to form meaningful, useful business partnerships with, check it out here

Learn more about the ferocious wind nebula astronomers observed for the first time around the most powerful magnets discovered during the human journey to the beginning of space and time, a magnetar.

Learn how astronomers measure distances to objects on the other side of the Milky Way.

Learn more about FEMA.

Learn more about NASA’s contributions to the human journey to the beginning of space and time.

Discover the work of the Jet Propulsion Laboratory.

Check out NASA’s Planetary Defense Office plans and news here.

Advertisements

Rosetta Spacecraft Says Its Final Goodbye

An image of the surface of comet 67P/Churyumov-Gerasimenko worth a thousand words

The OSIRIS narrow-angle camera aboard the Space Agency's Rosetta spacecraft captured this image of comet 67P/Churyumov-Gerasimenko on September 30, 2016, from an altitude of about 10 miles (16 kilometers) above the surface during the spacecraft’s controlled descent. The image scale is about 12 inches (30 centimeters) per pixel and the image itself measures about 2,000 feet (614 meters) across. Credits: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The OSIRIS narrow-angle camera aboard the Space Agency’s Rosetta spacecraft captured this image of comet 67P/Churyumov-Gerasimenko on September 30, 2016, from an altitude of about 10 miles (16 kilometers) above the surface during the spacecraft’s controlled descent. The image scale is about 12 inches (30 centimeters) per pixel and the image itself measures about 2,000 feet (614 meters) across.
Credits: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Space news (solar system science: planetary science; cometary science) – 66 feet above the surface of comet 67P/Churyumov-Gerasimenko; in a controlled descent –

Rosetta's last image of Comet 67P/Churyumov-Gerasimenko, taken shortly before impact, at an estimated altitude of 66 feet (20 meters) above the surface. The image was taken with the OSIRIS wide-angle camera on 30 September. The image scale is about 5 mm/pixel and the image measures about 2.4 m across. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Rosetta’s last image of Comet 67P/Churyumov-Gerasimenko, taken shortly before impact, at an estimated altitude of 66 feet (20 meters) above the surface. The image was taken with the OSIRIS wide-angle camera on 30 September. The image scale is about 5 mm/pixel and the image measures about 2.4 m across.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The image above is the last thing the OSIRIS narrow-angle camera aboard the European Space Agency”s (ESA)Rosetta spacecraft captured before it hit the surface of comet 67P/Churyumov-Gerasimenko at 4:19 a.m. PDT (7:19 a.m. EDT/1:19 p.m. CEST) on September 30, 2016. During this controlled crash landing of the first spacecraft in history to rendezvous and escort a comet as it orbits the Sun. Astronomers were able to conduct an additional study of the gas, dust and plasma environment close to the surface of the comet and take these high-resolution images.

Comet from 5.7 km – narrow-angle camera Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet from 5.7 km – narrow-angle camera
Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The OSIRIS narrow-angle camera also captured the image shown at the top of the page from a height of around 10 miles (16 kilometers) from the surface of comet 67P/Churyumov-Gerasimenko. This image spans a distance of around 2,000 feet (614 meters) across the comet’s icy and volatile surface. Attempting to walk across such a surface as Bruce Willis and his drilling crew did in the movie Armageddon is going to be tricky at best.

OSIRIS narrow-angle camera image with Philae, 2 September Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
OSIRIS narrow-angle camera image with Philae, 2 September
Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It might seem like a waste to purposely crash the Rosetta spacecraft on comet 67P/Churyumov-Gerasimenko, but in the end, it’s probably the best solution. This comets headed out beyond the orbit of Jupiter, which is further from the Sun than the spacecraft has traveled before, and there wouldn’t be enough solar power to operate its systems. Communicating with the spacecraft’s also about to become difficult for a month, with the Sun being close to the line-of-sight between Earth and Rosetta during this time period.

Close-up of the Philae lander, imaged by Rosetta’s OSIRIS narrow-angle camera on 2 September 2016 from a distance of 2.7 km. The image scale is about 5 cm/pixel. Philae’s 1 m-wide body and two of its three legs can be seen extended from the body. The images also provide proof of Philae’s orientation. The image is a zoom from a wider-scene, and has been interpolated. More information: Philae found! Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Close-up of the Philae lander, imaged by Rosetta’s OSIRIS narrow-angle camera on 2 September 2016 from a distance of 2.7 km. The image scale is about 5 cm/pixel. Philae’s 1 m-wide body and two of its three legs can be seen extended from the body. The images also provide proof of Philae’s orientation.
The image is a zoom from a wider-scene, and has been interpolated.
More information: Philae found!
Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta mission complete

Feel happy for Rosetta and team, they both did the job, and then some in the end. It took a decade of careful planning and travel to rendezvous with comet 67P/Churyumov-Gerasimenko and write history. Just one month and two days later, a smaller lander named Philae touched down on the surface of the comet. It bounced on the surface a few times, before finally setting down. During the next few days, it took the first images ever of a comet’s surface up close and sent back important data planetary scientists will use to look for clues to the role comets played in the formation of the planets 4.5 billion years ago. Clues they hope to use to learn more about the origin and evolution of our solar system and possibly the formation of solar systems in general.

JPL/NASA Rosetta Team From left to right: Dongsuk (Don) Han- Outer Planet Navigation Bruce Tsurutani - Rpc-mag Essam Heggy - Consert Sam Gulkis - Miro Danny Tran - Aspen Josh Doubleday - Aspen Gregg Rabideau - Aspen Tim Koch - Miro Martina Troesch - Software Barbara Hesselgesser - Acquisitions Paul Von Allmen - Miro Belinda Arroyo - DSN Sophia Lee - Scheduling Paul Friz-Rosetta Shadow Project Liz Barrios - Illustrator Paul Springer - Miro Steve Chien - Aspen Cynthia Kahn-Former SE David Delgado - Public Engagement Claudia Alexander - Project Scientist Grant Faris - MA Shyam Bhaskaran - NAV Mark Hofstadter - Miro Seungwon Lee - Miro Lei Pan - Miro Jacky Bagumyan - Assistant Adans Ko - MA Sarah Marcotte - Mars consultant Charlene Barone - Rosetta Web Project Lead Dan Goods - Creative Director Virgil Adumitroale - Miro Richard Flores - Acquisitions Artur Chmielewski - Rosetta Project Manager Veronica McGregor - Social Media Credits: NASA/JPL
JPL/NASA Rosetta Team
From left to right:
Dongsuk (Don) Han- Outer Planet Navigation
Bruce Tsurutani – Rpc-mag
Essam Heggy – Consert
Sam Gulkis – Miro
Danny Tran – Aspen
Josh Doubleday – Aspen
Gregg Rabideau – Aspen
Tim Koch – Miro
Martina Troesch – Software
Barbara Hesselgesser – Acquisitions
Paul Von Allmen – Miro
Belinda Arroyo – DSN
Sophia Lee – Scheduling
Paul Friz-Rosetta Shadow Project
Liz Barrios – Illustrator
Paul Springer – Miro
Steve Chien – Aspen
Cynthia Kahn-Former SE
David Delgado – Public Engagement
Claudia Alexander – Project Scientist
Grant Faris – MA
Shyam Bhaskaran – NAV
Mark Hofstadter – Miro
Seungwon Lee – Miro
Lei Pan – Miro
Jacky Bagumyan – Assistant
Adans Ko – MA
Sarah Marcotte – Mars consultant
Charlene Barone – Rosetta Web Project Lead
Dan Goods – Creative Director
Virgil Adumitroale – Miro
Richard Flores – Acquisitions
Artur Chmielewski – Rosetta Project Manager
Veronica McGregor – Social Media
Credits: NASA/JPL

Watch this YouTube video of the last few hours of ESA’s Rosetta mission.

Read and learn more about planetary scientists anticipation of studying a sample of material from the surface of comet 67P/Churyumov-Gerasimenko, material left over from the early moments of the birth of the solar system.

Read about comet 67P/Churyumov-Gerasimenko.

Prepare to journey to comet 103P/Hartley.

Join the space journey of NASA.

Learn more about comet 67P/Churyumov-Gerasimenko here.

Read and learn more about the discoveries of the Rosetta spacecraft.

Learn more about the work of the ESA.

Read and learn more about comets here.

 

NASA’s OSIRIS-REx Launches Toward 2018 Rendezvous with Asteroid Bennu

Expected 2023 return to Earth with the largest sample returned from space since the era of the Apollo missions

NASA's OSIRIS-REx mission launches from NASA Cape Canaveral Air Force Station in Florida. Credits: NASA
NASA’s OSIRIS-REx mission launches from NASA Cape Canaveral Air Force Station in Florida. Credits: NASA

Space news (planetary science missions: sampling asteroid that was remnant of early solar system; OSIRIS-REx spacecraft’s seven-year mission to asteroid Bennu) – 7:05 p.m. EDT from Cape Canaveral Air Force Station in Florida – 

Post launch conference inside the KSCTV Auditorium after the successful launch of OSIRIS-REx. Credits: Photo credit: NASA/Kim Shiflett
Post launch conference inside the KSCTV Auditorium after the successful launch of OSIRIS-REx. Credits: Photo credit: NASA/Kim Shiflett

NASA launched its OSIRIS-REx mission to return a sample of a nearby asteroid that formed part of the early solar system more than 4.5 billion years ago at 7:05 on Thursday. The OSIRIS-REx spacecraft will be the agency’s first automated envoy to rendezvous with a nearby asteroid and return a sample for planetary scientists to study and discuss.  

NASA's OSIRIS-REx tests onboard thrusters during its journey to asteroid Bennu in this image. Credits: NASA
NASA’s OSIRIS-REx tests onboard thrusters during its journey to asteroid Bennu in this image. Credits: NASA

“Today, we celebrate a huge milestone for this remarkable mission, and for this mission team,” said NASA Administrator Charles Bolden. “We’re very excited about what this mission can tell us about the origin of our solar system, and we celebrate the bigger picture of science that is helping us make discoveries and accomplish milestones that might have been science fiction yesterday, but are science facts today.” 

How do you study the topography of an asteroid millions of miles away? Map it with a robotic cartographer! The OSIRIS-REx Laser Altimeter, or OLA, is provided by the Canadian Space Agency and will be used to create three-dimensional global topographic maps of Bennu and local maps of candidate sample sites. Credits: NASA
How do you study the topography of an asteroid millions of miles away? Map it with a robotic cartographer! The OSIRIS-REx Laser Altimeter, or OLA, is provided by the Canadian Space Agency and will be used to create three-dimensional global topographic maps of Bennu and local maps of candidate sample sites. Credits: NASA

Scientists suspect asteroids like Bennu could have been the source of much of the water and possibly organic molecules of the Genesis of Earth-based life. An uncontaminated asteroid sample to precisely analysis might provide results far beyond those achieved by spacecraft instruments or studying meteorites that have fallen to Earth.  

Dante Lauretta Professor, Principal Investigator, OSIRIS-REx. Credits: The University of Arizona
Dante Lauretta
Professor, Principal Investigator, OSIRIS-REx. Credits: The University of Arizona

“With today’s successful launch, the OSIRIS-REx spacecraft embarks on a journey of exploration to Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “I couldn’t be more proud of the team that made this mission a reality, and I can’t wait to see what we will discover at Bennu.” 

Doing a gravitational dance with asteroid Bennu

After rendezvousing with asteroid Bennu sometime in 2018, NASA’s OSIRIS-REx spacecraft will begin a delicate gravitational dance with the asteroid, mapping and studying its surface in preparation for collecting a sample. Around July 2020, the spacecraft will perform an intricate, daring maneuver designed to stir up surface material for collection. Plans are to scoop up at least two ounces (60 grams) of small rocks and dust in its onboard sample return container for planetary scientists at NASA’s Johnson Space Center in Houston, Texas to examine in depth.  

NASA's OSIRIS-REx mission will map the surface of asteroid Bennu and retrieve a sample of surface material for planetary scientists at NASA's Jet Propulsion Laboratory to examine in depth. Credits: NASA
NASA’s OSIRIS-REx mission will map the surface of asteroid Bennu and retrieve a sample of surface material for planetary scientists at NASA’s Jet Propulsion Laboratory to examine in depth. Credits: NASA

“It’s satisfying to see the culmination of years of effort from this outstanding team,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We were able to deliver OSIRIS-REx on time and under budget to the launch site, and will soon do something that no other NASA spacecraft has done – bring back a sample from an asteroid.” 

Learn about small, near-Earth asteroid 25143 Itokawa.

Learn about NASA’s NEOWISE and its one year mission to detect near-Earth asteroids.

Read about US Congress recognizing the right of Americans to own asteroid resources.

Watch this video of the liftoff of the OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida.  

Join the space mission of NASA here

Learn more about NASA’s Cape Canaveral Air Force Station. 

Read more about the OSIRIS-REx mission. 

Discover NASA’s Goddard Space Flight Center

Read and learn more about asteroid Bennu

Chandra Detects X-ray Emissions of Comets PanSTARRS and ISON

Produced when heavy atoms in solar wind strike lighter atoms in comets’ atmosphere 

Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements. Image credit: X-ray: NASA/CXC/Univ. of CT/B.Snios et al, Optical: DSS, Damian Peach (damianpeach.com)
Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.
Image credit: X-ray: NASA/CXC/Univ. of CT/B.Snios et al, Optical: DSS, Damian Peach (damianpeach.com)

Space news (planetary dynamics: Oort Cloud comets; PanSTARRS & ISON) – 90 & 130 million miles from Earth, respectively, observing x-ray emissions as solar wind particles strike comets’ atmosphere – 

Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun - the solar wind - strikes the comet's atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.
Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.

Thousands of years ago, ancient sky watchers observed terrible, fiery balls of fire that appeared suddenly in the sky. Hairy stars resembling fiery swords that appeared unpredictably, ancient astronomers and societies interpreted these terrifying, fear inducing travelers as harbingers of doom predicting impending disaster or even success in a future endeavor. Often connecting their appearance to famine, war, and plague, to the death of a beloved or fall of an empire or warlord, throughout history comets filled us with fear and even during modern times continue to entrance and fill us with awe. 

Comet ISON comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Image Credit: ESA/NASA/SOHO/SDO/GSFC
Comet ISON comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA’s Solar Dynamics Observatory.
Image Credit: ESA/NASA/SOHO/SDO/GSFC

Recently, astronomers working with NASA’s Chandra X-ray Observatory detected x-ray emissions produced as particles in the solar wind struck the atmospheres’ of Comets ISON and PanSTARRS. Two long-period comets originating in the Oort Cloud far beyond the orbit of the planets, solar scientists use them as laboratories to study the composition of the stream of exotic particles flowing from the Sun called the solar wind. Astrophysicists determined x-ray emissions were produced as heavy particles in the solar wind struck lighter particles in the atmospheres’ of Comets ISON and PanSTARRS. X-ray emissions with varying shapes indicating differences in the solar wind and atmospheres’ of these comets at the time of the observations.  

This image from NASA's Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. It is likely that the comet did not survive the trip. Credits: NASA/SDO
This image from NASA’s Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. It is likely that the comet did not survive the trip.
Credits: NASA/SDO

Observations of Comet ISON detected a greenish hue attributed to gasses like cyanogen, which contains oxygen and nitrogen, streaming from its nucleus. Chandra data obtained shows this comet has a well-developed, parabolic shape indicative of a dense atmosphere. In comparison, observations of Comet PanSTARRS show a more diffuse x-ray spectrum, indicating it has less gas and more dust in its atmosphere. Observations that agree with independent measurements made by NASA’s Advanced Composition Explorer and other instruments. Planetary scientists plan to use the detailed computer simulations they developed during these studies to help analyze the data obtained by Chandra of Comets ISON and PanSTARRS to investigate interactions between the solar wind and other comets, planets, and even interstellar gas.  

Twelve NASA spacecraft assets had an opportunity to observe Comet ISON, including the Heliophysics solar observatories; Solar Dynamic Observatory, STEREO and SOHO. Credits: NASA
Twelve NASA spacecraft assets had an opportunity to observe Comet ISON, including the Heliophysics solar observatories; Solar Dynamic Observatory, STEREO and SOHO.
Credits: NASA

Learn more about the role planetary scientists suspect comets and asteroids played during the opening moments of the birth of the solar system and planets.

Read and learn about viewing the ghostly glow of streaking Orionid meteorites.

Learn about what planetary scientists discovered during the recent visit of NASA’s Deep Impact spacecraft to comet Hartley 2.

After perihelion comet, ISON’s changed in ways planetary scientists are trying to determine at this time. Watch this NASA video on the ultimate fate of comet ISON.

Join NASA’s journey to the beginning of space and time here

Watch this NASA-sponsored tour of  Comet ISON

Discover more about comet PanSTARRS here

Learn more about NASA’s Chandra X-ray Observatory.

U.S. Congress Recognizes Right of U.S. Citizens to Own Asteroid Resources

By passing historic legislation H.R. 2262 into law

A complex asteroid mining module is required to build possible future space settlements. This mining module is fully automated and can mine and process materials ranging from metal to fiberglass to volatiles
A complex asteroid mining module is required to build possible future space settlements. This mining module is fully automated and can mine and process materials ranging from metal to fiberglass to volatiles

Space news (November 17, 2015) – U.S. House of Congress –

When President Abraham Lincoln signed the Homestead Act into law on May 20, 1862, this spurred growth in the search for gold and timber to fuel the expanding economy of the nation and opened up new frontiers for continued growth and prosperity for all. 

Now, all Americans can take part in the future asteroid bonanza on the space frontier in the decades ahead. 

On November 10, 2015, U.S. Congress passed into law bill H.R. 2262, legislation recognizing the right of Americans to own the resources contained within asteroids they claim as property. 

One 300 meter asteroid can contain more minerals than have been mined on Earth, so far.
One 300 meter asteroid can contain more minerals than have been mined on Earth, so far.

We are proud to have the support of Congress. Throughout history, governments have spurred growth in new frontiers by instituting sensible legislation. Long ago, The Homestead Act of 1862 advocated for the search for gold and timber, and today, H.R. 2262 fuels a new economy that will open many avenues for the continual growth and prosperity of humanity. This off-planet economy will forever change our lives for the better here on Earth,” said Chris Lewicki, President, and Chief Engineer, Planetary Resources, Inc.

Planetary Resources is grateful for the leadership shown by Congress in crafting this legislation and looks forward to President Obama signing the language into law. We applaud the members of Congress who have led this effort and actively sought stakeholder input to ensure a vibrant economy and prosperous way of life now and for centuries to come. Patty Murray (D-WA), Kevin McCarthy (R-CA), Lamar Smith (R-TX), Bill Posey (R-FL) and Derek Kilmer (D-WA) have been unwavering in their support and leadership for the growth of the U.S. economy into the Solar System. Their forward-looking stance and active role in enabling the development of an economically and strategically valuable new marketplace will ensure our country’s continued leadership in space,” said Peter Marquez, Vice President of Global Engagement, Planetary Resources, Inc.

Planetary Resources is one of a new breed of private space adventures planning on mining an asteroid close to Earth in the next decade.
Planetary Resources is one of a new breed of private space adventures planning on mining an asteroid close to Earth in the next decade.

In the words of Senator Murray, “I am glad that we’ve taken this important step forward to update our federal policies to make sure they work for innovative businesses creating jobs in Washington state. Washington state leads in so many ways, and I’m proud that local businesses are once again at the forefront of new industries that will help our economy continue to grow.”

Congressman Posey said, “This bipartisan, bicameral legislation is a landmark for American leadership in space exploration. Recognizing basic legal protections in space will help pave the way for exciting future commercial space endeavors. Asteroids and other objects in space are excellent potential sources of rare minerals and other resources that can be used to manufacture a wide range of products here on Earth and to support future space exploration missions. Americans willing to invest in space mining operations need legal certainty that they can keep the fruits of their labor, and this bill provides that certainty.”

Congressman Kilmer said, “The commercial space industry in Washington state is leading the way in developing the cutting edge technology necessary to support human space exploration. The U. S. Commercial Space Launch Competitiveness Act will give these ventures the framework they need to continue to innovate and to keep the United States at the head of this growing, global industry. I congratulate the Senate for taking this step, and I look forward to the House quickly sending this bill to President Obama’s desk.”

Eric Anderson, Co-Founder, and Co-Chairman, Planetary Resources, Inc., said, “Many years from now, we will view this pivotal moment in time as a major step toward humanity becoming a multi-planetary species. This legislation establishes the same supportive framework that created the great economies of history, and it will foster the sustained development of space.”

Time to cash in those old stocks and bonds from the bygone era of Earth exploitation. The future is asteroids! 

Private firms around the United States and the world are currently making plans to take part in the future space bonanza. Can you afford to sit idly on the sidelines, while the future and opportunity pass you by? 

Take action! Join Planetary Resources or one of the few private firms planning on mining an asteroid in the decades ahead. 

Get your little piece of the future, in the form of a portion of the resources and monetary rewards of being part of the coming space bonanza.

People are currently getting in on the ground floor of this adventure and opportunity to take part in the future of mankind. 

The future is before us! Waiting to greet us into a sustainable way of living among the stars.  

Join the human journey to the beginning of space and time by investing in the future of mankind.

Read about NASA’s Explorer Program, which allows for relatively low-cost exploration of the solar system and cosmos.

Learn more about private firm Planetary Resources Inc. and their plans to mine an asteroid in the future.

Read about the search for the missing link in black hole evolution.

Learn more about mining as asteroid here.

Check out and join private firm Planetary Resources Inc. in their plans to cash in on the asteroid mining bonanza here.

Learn more about historic legislation H.R. 2262 here.

Planetary Resources Inc. Planning on Mining an Asteroid

One 300-500 meter asteroid has enough resources to make it financially feasible to mine for ore and water

Space news ( September 02, 2015) – Finding and moving an asteroid of this size with the right composition safely to the right location for mining is the difficult part 

Here is an illustration that shows the three typical orbit patterns of near-Earth asteroids. You can see that the Aten, Amor and Apollo orbits come very close to, and sometimes intersect, with the Earth’s orbit. When this occurs we observe them and can even rendezvous with them with our Arkyd spacecraft. Credit: Planetary Resources, Inc.
Here is an illustration that shows the three typical orbit patterns of near-Earth asteroids. You can see that the Aten, Amor and Apollo orbits come very close to, and sometimes intersect, with the Earth’s orbit. When this occurs we observe them and can even rendezvous with them with our Arkyd spacecraft. Credit: Planetary Resources, Inc.

Planetary Resources Inc. is currently doing a survey of potential asteroids with the right composition close enough to make mining safely feasible. Potential asteroids are all closer to Earth than Main Belt asteroids, which are much more difficult to reach and mine for ore and water. Mining a Main Belt asteroid is a project for the future and one better done from a location closer to the target area.

1999 JU3 is on Planetary Resources Target list. It is a known carbonaceous asteroid that is predicted to be worth trillions. Image Credit: Planetary Resources, Inc. http://www.planetaryresources.com/asteroids/#asteroids-targets
1999 JU3 is on Planetary Resources Target list. It is a known carbonaceous asteroid that is predicted to be worth trillions. Image Credit: Planetary Resources, Inc. http://www.planetaryresources.com/asteroids/#asteroids-targets

At this point, Planetary Resources is gathering together the data collected by scientists during the last two decades on over 11,000 potential asteroids, along with nearly a million possible targets located in the Main Belt. Using this data they have developed a list of potential asteroids they’re currently following and evaluating for further prospecting. 

Prospecting potential asteroids using specifically designed spacecraft

In Planetary Resources factory in Redmond, WA engineers and scientists are developing advanced spacecraft capable of traveling to and prospecting potential asteroids. Called Arkyd rendezvous prospectors, these low-cost spacecraft are equipped with hyperspectral and infrared sensors, which will allow scientists to gather data on the composition of potential asteroids. They’ll also analyze data collected and send it back to Earth to be evaluated by geologists for mining feasibility.

Planetary Resources engineers are currently testing this space prospecting technology in low-Earth orbit. The Arkyd 3R deployed from the International Space Station during July. Engineers and scientists are presently testing systems and technologies designed for use in future Arkyd spacecraft.

Arkyd 6 launching in 2015
Arkyd 6 launching in 2015

Work continues

Later in 2015, Planetary Resources is planning on launching Arkyd 6 (A6), a slightly larger and more robust spacecraft carrying an infrared imaging sensor geologists want to use to look at asteroids for water and water-bearing minerals. The data they collect using their Arkyd 3R and A6 spacecraft will be used to define a mission profile for the feasible mining of a potential asteroid in the near future.

For more information on Planetary Resources and plans to mine an asteroid visit here.

For more information on asteroids go here.

Learn about a Magnetar found orbiting Sagittarius A, the supermassive black hole astronomers believe resides at the center of the Milky Way.

Read about the first Earth-sized exoplanet discovered suitable as a cradle for a new human genesis.

Learn more about the current search for habitable planets and life beyond Earth.

Calculating Orbits of Asteroids in the Main Asteroid Belt

The International Astronomical Search Campaign

The International Astronomical Search Campaign is looking for astronomy leaders of tomorrow
The International Astronomical Search Campaign is looking for astronomy leaders of tomorrow

Space news (astronomy leaders of tomorrow: The International Astronomical Search Campaign)

An asteroid is a piece of solid rock with an irregular body ranging in size between 500 meters and hundreds of kilometers. The majority of these bodies can be found in the main asteroid belt, a region of space between Mars and Jupiter. Pieces of rocky material left over from the formation of the solar system over 4.6 billion years ago, NASA scientists estimate there are as many as 40,000 asteroids contained within this main asteroid belt, with a combined mass less than the Moon. Confirming the identity and calculating the orbit of the asteroids contained within this belt is part of the space mission of NASA’s Wide-Field Infrared Survey Explorer (WISE).

The IASC plans and campaigns are expected to drive the human journey to the beginning of space and time forward
The IASC plans and campaigns are expected to drive the human journey to the beginning of space and time forward

The International Astronomical Search Campaign (IASC) is an educational outreach program created to allow high school and college students around the country to participate in identifying and calculating the orbit of every rocky body within the main asteroid belt. Originally created and developed by Patrick Miller of Hardin-Simmons University in the state of Texas, this program has helped tens of thousands of students in 250 schools and 25 countries on five continents learn more about astronomy.

Students can help determine the identify and orbit of asteroids in the main asteroid belt
Students can help determine the identity and orbit of asteroids in the main asteroid belt

Students participating in the program download images taken of an asteroid within the main asteroid belt in the last few hours by telescopes (24 and 32 inches) located in the Astronomical Institute in Illinois. Students must determine the identity and calculate the three-dimensional orbit of an asteroid using Astrometrica, a software package users need to download directly from the IASC website, within a three-day window.

The telescopes take three images of an asteroid at six-minute intervals,  which means it would have moved around five pixels in relation to distant background stars in each image. Astrometrica highlights objects in each image fitting these criteria by putting a red circle around them.

In order to determine an object is an asteroid, students must sort through objects that have moved in the images, and ones that are static. They do this by taking a look at the fit of the point spread function, the signal-to-noise ratio, and any change in the size of an object in the images. If an object has moved in a relatively straight line, stayed about the same size, has a signal-to-noise ratio greater than five, and is approximately round in shape, then it’s probably an asteroid.

Join the human journey to the beginning of space and time today!

A typical International Astronomical Search Campaign lasts about 45 days, during which new asteroids are often discovered, identified, and their orbits determined. This is your chance to become an astronomy leader of tomorrow, by participating in the International Astronomical Search Campaign, and WISE’s mission to identify and calculate the orbit of every rocky body in the main asteroid belt.

You can find more information and news on the space mission of NASA’s WISE spacecraft here.

You can find more on the current campaigns of the International Astronomical Search Campaign here.

Schools desiring to take part in the International Astronomical Search Campaign contact the IASC Director, Dr. J. Patrick Miller by email at:
iascsearch@hsutx.edu.

Read about Rosetta preparing to make history

Read about the first earth size world discovered orbiting within the life zone of a star

Read about 715 new planets discovered by the Kepler Mission