Planetary Scientists Suggest Three Landing Sites for Mars 2020

One of the oldest regions of the Red Planet discovered, an ancient Martian lake, or the site of an ancient hot spring first explored by NASA’s Spirit rover

mars2020_landingsites_gusevjezerosyrtis
NASA’s Mars 2020 rover’s expected to land at one of the three sites noted on this image of the Red Planet. Credits: NASA

Space news (The Journey to Mars: Mars 2020; possible landing sites) – Northeast Syrtis: Jerero crater; or Columbia Hills, on the Red Planet –

Planetary scientists and other scientists attending the third landing site workshop hosted by NASA in order to determine the best place for its Mars 2020 rover to land recommend three places. NASA’s been using the Mars Reconnaissance Orbiter to search for suitable sites since about 2006 and to help in the identification, study, and verification of possible future landing sites for coming manned missions during most recent history. Data and observations provided by the MRO also helped participants narrow down the choices to three during the workshop.

golombek
Dr. Matt Golombek, just one of the rocket geniuses working at NASA’s Jet Propulsion Laboratory. Credits: NASA/JPL

“From the point of view of evaluating potential landing sites, the Mars Reconnaissance Orbiter is the perfect spacecraft for getting all the information needed,” said the workshop’s co-chair, Matt Golombek of NASA’s Jet Propulsion Laboratory, Pasadena, California. “You just can’t overstate the importance of MRO for landing-site selection.”

people-8
Leslie Tamppari, another genius working at NASA’s Jet Propulsion Laboratory. Credits: NASA/JPL

“Missions on the surface of Mars give you the close-up view, but what you see depends on where you land. MRO searches the globe for the best sites,” said MRO Deputy Project Scientist Leslie Tamppari of JPL.

people-96
NASA’s Jet Propulsion is famous for employing the experience, skills, and knowledge of geniuses, but this is getting to be ridiculous. Credits: NASA/JPL

“Whether it is looking at the surface, the subsurface or the atmosphere of the planet, MRO has viewed Mars from orbit with unprecedented spatial resolution, and that produces huge volumes of data,” said MRO Project Scientist Rich Zurek of JPL.“These data are a treasure trove for the whole Mars scientific community to study as we seek to answer a broad range of questions about the evolving habitability, geology, and climate of Mars.”

The Journey to the Red Planet

The human journey to the beginning of space and time will be making a stop on Mars sometime in the 2030s if everything goes as planned with NASA’s Journey to Mars. Mars 2020 is expected to launch aboard the Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida around July 2020. After a journey of millions of miles across the solar system to the Red Planet, the Mars 2020 rover will land at one of three possible sites.

Northeast Syrtis

mro_hirise_syrtis_major_esp_015942_1980-br2
NASA’s Mars 2020 rover could be landing here to look for evidence one-celled life flourished in water accumulated on the surface of the Red Planet. Credits: NASA/MRO/HIRISE

Images of the first possible landing site in the Northeast part of Syrtis Major show Early Noachian bedrock planetary scientists would like to have a closer look at for signs of possible life. An excellent place for study and exploration of the past of the Red Planet, scientists are currently studying whether it’s safe for Mars 2020 to land. There could be too many boulders or even steep slopes unidentified in the initial analysis of images of this region making landing problematic at best. There’s also always the possibility of something we haven’t thought of. If the site is safe, it will be considered for the final choice, and possibly even for the rovers planned by Europe and NASA sometime around 2018.

This part of the Red Planet was once warmed by volcanoes, so planetary scientists want to look for ancient hot springs and even surface ice melt where liquid water could have flowed. Liquid water’s one of the catalysts-of-life planetary scientists look for in the search for extraterrestrial life. The layered terrain of Northeast Syrtis could hold a record of ancient simple life forms that existed on Mars during its early history. At the very least it should tell us more about interactions between water and minerals over successive parts of the Red Planet when it was young. This site we should definitely take a look at.

Jezero Crater

080716_jezerocrater_hr-br2
NASA scientists plan on using instruments on the Mars 2020 rover to look into the possibility simple, one-celled life could have evolved and flourished in the water of a lake they think existed on the surface of the Red Planet in this region. Credits: NASA/MRO/HIRISE

Rewind time 3.5 billion years in Jezero crater, to when river channels spilled over the crater wall and formed a lake. Planetary scientists see evidence water from this lake carried clay minerals from the lake bed after this body of water dried up. Scientists want to explore the crater for signs microbial life once lived here during events such as this when Jezero crater was a little wetter. For the remains of ancient life in the lakebed sediments.

Columbia Hills, Mars

mars_spirit_rover_gusev_crater_longhorn_rock_pia06770-br2
Scientists think simple, one-celled life could have developed and flourished in the waters of a shallow lake they believe formed here billions of years ago. Credits: NASA/MRO/HIRISE

After additional study planetary scientists and geochemists agree mineral springs once bubbled up from the rocks of Columbia Hills in Gusev crater on the Red Planet. Originally, the Spirit rover found no clear signs water flowed over or existed in the rocks of this region of Mars, but the discovery hot springs once existed here has scientists thinking a shallow lake may have once formed for a time. Warm, inviting waters microbial life could have evolved in, exobiologists are keen to examine soils and lakebed sediments of Gusev crater for their remains.

The Final Landing Site of the Mars 2020 rover

 

mars2020_3_landing_sites_slideshow_shareable
NASA’s shortlisted the possible landing sites to the three regions seen in the slideshow above. Credits: NASA/MRO/HIRISE

 

Possible landing sites of NASA’s Mars 2020 rover may change as the mission goes forward, the science mission and even engineering considerations of achieving their goals could change as they learn more. Ultimately, NASA will decide on a landing site with geology indicating a wetter past that also meets all criteria. Stay tuned to the human journey to the beginning of space and time during the months and years ahead to learn more. 

Learn about NASA’s desire to find private firms and individuals to form space technology partnerships with.

Read and learn about the plasma jets of active supermassive black holes.

Help NASA classify young star systems by becoming a Disk Detective.

Learn more about NASA’s Journey to Mars.

Learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Discover the Mars 2020 rover.

Learn more about the discoveries of the Mars Reconnaissance Orbiter.

Discover the Spirit rover.

Advertisements

NASA Establishes Translational Research Institute

To study ways to protect future astronauts as they prepare and one day travel to the other planets and throughout the solar system

iss036e006520
Enter a captionVisual Impairment Intracranial Pressure (VIIP) Syndrome was identified in 2005. It is currently NASA’s leading spaceflight-related health risk and is more predominant among men than women in space. Here, NASA astronaut Karen Nyberg of NASA uses a fundoscope to image her eye while aboard the International Space Station.Credits: NASA

Space news (NASA initiatives: The Transitional Research Institute (NTRI); researching and developing innovative approaches to decrease risks for humans associated with traveling and living in space) – Texas Medical Center Innovation Institute in Houston, Texas –

hrp-parabolic-flight-research-jsc2014e068503
Astronauts need to be tested and readied for space, a dangerous and hazardous environment for humans to work and live in. Credits: NASA

During the next few decades human beings will travel to parts of the solar system never visited before and the journey is expected to be dangerous, yet awe-inspiring. In order to reduce the risks associated with traveling and living in space, NASA has announced the formation of a partnership with Baylor College of Medicine in Houston. Plans are to operate a new institute charged with researching and developing innovative approaches designed to help keep astronauts alive and healthy during long-term voyages to Mars and beyond. 

spaceradiationgenderillustration59459-jpg

Men and women react differently to the environment called space and research can differ between the two. This diagram shows key differences between men and women in cardiovascular, immunologic, sensorimotor, musculoskeletal, and behavioral adaptations to human spaceflight. Credits: NASA

 

hhp-exercise-physiology-jsc2011e204363_alt
Astronauts need to be in shape to handle the rigors and hazards associated with living and traveling in space. Biomechanical Engineer Renita Fincke monitors Biomechanical Engineer Erin Caldwell as she performs a squat exercise to generate a computational biomechanical model in the Exercise Physiology and Counter Measures Project in Building 261. Photo Date: October 25, 2011.

Called the NASA Transitional Research Institute (NTRI), the new institute will implement a bench-to-spaceflight strategy. Their main goals to produce new treatments, countermeasures, and technologies with practical applications towards known spaceflight health risks. Medical problems like visual impairment intracranial pressure (VIIP) Syndrome, which was identified in 2005, and is currently NASA’s number one spaceflight-related health risk for astronauts. Plans are for the work to be done at the Texas Medical Center Innovation Institute in Houston, Texas.

1c6dc60
Marshall Porterfield is the new director of NASA’s Space Life and Physical Sciences Research and Applications Division. He’ll be leading the charge to protect astronauts as they prepare to head to Mars. Credit: Linked

“It’s fitting on the 47th anniversary of humanity’s first moon landing that we’re announcing a new human spaceflight research institute that will help reduce risks for our astronauts on the next giant leap – our Journey to Mars,” said Marshall Porterfield, NASA’s director of Space Life and Physical Sciences Research and Applications.

Time to get to work

Astronauts will be happy to hear this news and it has the potential to enable mankind’s journey to Mars and beyond to the beginning of space and time. The NASA Transitional Research Institute will help form relationships between scientists and medical laboratories and institutes looking to reduce health risks and performance barriers for humans traveling and living in space. It will also keep astronauts healthier during their space missions during the decades ahead. 

Learn about the Curiosity rover discovering evidence suggesting the Red Planet was once a much wetter world.

Discover how astronomers measure distances to objects on the other side of the Milky Way.

Read about the recent launch of NASA’s OSIRIS-REx to an expected rendezvous with asteroid Bennu.

You can learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Learn more about the NASA Human Research Program.

Learn more about the work of the professionals at the Baylor College of Medicine.

Discover the Texas Medical Center Innovation Institute.

Learn more about NASA’s plans to travel to send astronauts to Mars here.

NASA’s Curiosity Mars Rover Detects Clues Hinting at a Wetter Past 

During the same relative time period, other clues indicate more oxygen was present in the atmosphere than found currently

This scene shows NASA's Curiosity Mars rover at a location called "Windjana," where the rover found rocks containing manganese-oxide minerals, which require abundant water and strongly oxidizing conditions to form. In front of the rover are two holes from the rover's sample-collection drill and several dark-toned features that have been cleared of dust (see inset images). These flat features are erosion-resistant fracture fills containing manganese oxides. The discovery of these materials suggests the Martian atmosphere might once have contained higher abundances of free oxygen than it does now. Credits: NASA/JPL-Caltech/MSSS
This image shows NASA’s Curiosity Mars rover at a location called “Windjana,” where the rover found rocks containing manganese oxide minerals, which require abundant water and strongly oxidizing conditions to form. In front of the rover are two holes from the rover’s sample-collection drill and several dark-toned features that have been cleared of dust (see inset images). These flat features are erosion-resistant fracture fills containing manganese oxides. The discovery of these materials suggests the Martian atmosphere might once have contained higher abundances of free oxygen than it does now.
Credits: NASA/JPL-Caltech/MSSS

Space news (planetary science: Martian rocks containing manganese oxide minerals; indicating a wetter surface with more atmospheric oxygen than presently found on Mars) – Mars (the Red Planet), 154 million miles (249 kilometers) from Sol, or 141 million miles (228 million kilometers) from Earth, on average –

This view from the Mars Hand Lens Imager (MAHLI) on NASA's Curiosity Mars Rover shows the rock target "Windjana" and its immediate surroundings after inspection of the site by the rover. The drilling of a test hole and a sample collection hole produced the mounds of drill cuttings that are markedly less red than the other visible surfaces. This is material that the drill pulled up from the interior of the rock. This view is from the 627th Martian day, or sol, of Curiosity's work on Mars (May 12, 2014). The open hole from sample collection is 0.63 inch (1.6 centimeters) in diameter. It was drilled on Sol 621 (May 5, 2014). A preparatory "mini drill" hole, to lower right from the open hole, was drilled on Sol 615 (April 29, 2014) and subsequently filled in with cuttings from the sample collection drilling. Two small patches of less-red color to the right of the drill holes are targets "Stephen" (higher) and "Neil," where multiple laser hits by Curiosity's Chemistry and Camera (ChemCam) instrument blasted some of the reddish surface dust off the surface of the rock. The vigorous activity of penetrating the rock with the rover's hammering drill also resulted in slides of loose material near the rock. For comparison to the site before the drilling, see the Sol 609 image of Windjana at http://photojournal.jpl.nasa.gov/catalog/PIA18087. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. Credit: NASA/JPL-Caltech/MSSS
This view from the Mars Hand Lens Imager (MAHLI) on NASA’s Curiosity Mars Rover shows the rock target “Windjana” and its immediate surroundings after inspection of the site by the rover. The drilling of a test hole and a sample collection hole produced the mounds of drill cuttings that are markedly less red than the other visible surfaces. This is material that the drill pulled up from the interior of the rock.
This view is from the 627th Martian day, or sol, of Curiosity’s work on Mars (May 12, 2014).
The open hole from sample collection is 0.63 inch (1.6 centimeters) in diameter. It was drilled on Sol 621 (May 5, 2014). A preparatory “mini drill” hole, to lower right from the open hole, was drilled on Sol 615 (April 29, 2014) and subsequently filled in with cuttings from the sample-collection drilling.
Two small patches of less red color to the right of the drill holes are targets “Stephen” (higher) and “Neil,” where multiple laser hits by Curiosity’s Chemistry and Camera (ChemCam) instrument blasted some of the reddish surface dust off the surface of the rock.
The vigorous activity of penetrating the rock with the rover’s hammering drill also resulted in slides of loose material near the rock. 
MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.
Credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity Mars rover has found rocks at a place called Windjana containing manganese oxide minerals according to reports from planetary scientists studying samples from the region. On Earth rocks of this type formed during the distant past in the presence of abundant water and atmospheric oxygen. This news added to previous reports of ancient lakes and other groundwater sources during Mar’s past points to a wetter environment in the study region Gale Crater during this time. 

This image from the Navigation Camera (Navcam) on NASA's Curiosity Mars rover shows a sandstone slab on which the rover team has selected a target, "Windjana," for close-up examination and possible drilling. The target is on the approximately 2-foot-wide (60-centimeter-wide) rock seen in the right half of this view. The Navcam's left-eye camera took this image during the 609th Martian day, or sol, of Curiosity's work on Mars (April 23, 2014). The rover's name is written on the covering for a portion of the robotic arm, here seen stowed at the front of the vehicle. The sandstone target's informal name comes from Windjana Gorge in Western Australia. If this target meets criteria set by engineers and scientists, it could become the mission's third drilled rock and the first that is not mudstone. The rock is within a waypoint location called "the Kimberley," where sandstone outcrops with differing resistance to wind erosion result in a stair-step pattern of layers. Windjana is within what the team calls the area's "middle unit," because it is intermediate between rocks that form buttes in the area and lower-lying rocks that show a pattern of striations. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover and the rover's Navcam. > Read more: NASA's Curiosity Mars Rover Inspects Site Image Credit: NASA/JPL-Caltech
This image from the Navigation Camera (Navcam) on NASA’s Curiosity Mars rover shows a sandstone slab on which the rover team has selected a target, “Windjana,” for close-up examination and possible drilling. The target is on the approximately 2-foot-wide (60-centimeter-wide) rock seen in the right half of this view.
The Navcam’s left-eye camera took this image during the 609th Martian day, or sol, of Curiosity’s work on Mars (April 23, 2014). The rover’s name is written on the covering for a portion of the robotic arm, here seen stowed at the front of the vehicle.
The sandstone target’s informal name comes from Windjana Gorge in Western Australia. If this target meets criteria set by engineers and scientists, it could become the mission’s third drilled rock and the first that is not mudstone.
The rock is within a waypoint location called “the Kimberley,” where sandstone outcrops with differing resistance to wind erosion result in a stair-step pattern of layers. Windjana is within what the team calls the area’s “middle unit,” because it is intermediate between rocks that form buttes in the area and lower-lying rocks that show a pattern of striations.
NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover and the rover’s Navcam.
Image Credit: NASA/JPL-Caltech

Planetary scientists used the laser-firing instrument on the Curiosity Mars rover to detect high levels of manganese-oxide in mineral veins found at Windjana. “The only ways on Earth that we know how to make these manganese materials involve atmospheric oxygen or microbes,” said Nina Lanza, a planetary scientist at Los Alamos National Laboratory in New Mexico. “Now we’re seeing manganese oxides on Mars, and we’re wondering how the heck these could have formed?”

On this view of the Curiosity rover mission's waypoint called "the Kimberley," the red dot indicates the location of a sandstone target, "Windjana," that researchers selected for close-up inspection and possibly for drilling. The view is an excerpt from an April 11, 2014, observation by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. A larger scene from the same observation is at http://photojournal.jpl.nasa.gov/catalog/PIA18081. In the image's enhanced color, Curiosity itself appears as the bright blue object at the two-o'clock position relative to the butte in the lower center of the scene. That butte is called "Mount Remarkable" and stands about 16 feet (5 meters) high. The rover subsequently drove to within its robotic arm's reach of Windjana. For scale, the distance between the parallel wheel tracks visible in the image is about 9 feet (2.7 meters). In the area of the Kimberley waypoint, sandstone outcrops with differing resistance to wind erosion result in a stair-step pattern of layers. Windjana is within what the team calls the area's "middle unit," because it is intermediate between rocks that form buttes in the area and lower-lying rocks that show a pattern of striations. If Windjana meets criteria set by engineers and scientists, it could become the mission's third drilled rock and the first that is not mudstone. This view is an enhanced-color product from HiRISE observation ESP_036128_1755, available at the HiRISE website at http://uahirise.org/releases/msl-kimberley.php. The exaggerated color, to make differences in Mars surface materials more apparent, makes Curiosity appear bluer than the rover really looks. HiRISE is one of six instruments on NASA's Mars Reconnaissance Orbiter. The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Science Laboratory projects for NASA's Science Mission Directorate, Washington. JPL designed and built the Mars Science Laboratory Project's Curiosity rover. Image Credit: NASA/JPL-Caltech/Univ. of Arizona
On this view of the Curiosity rover mission’s waypoint called “the Kimberley,” the red dot indicates the location of a sandstone target, “Windjana,” that researchers selected for close-up inspection and possibly for drilling.
The view is an excerpt from an April 11, 2014, observation by the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. In the image’s enhanced color, Curiosity itself appears as the bright blue object at the two-o’clock position relative to the butte in the lower center of the scene. That butte is called “Mount Remarkable” and stands about 16 feet (5 meters) high. The rover subsequently drove to within its robotic arm’s reach of Windjana. For scale, the distance between the parallel wheel tracks visible in the image is about 9 feet (2.7 meters).
In the area of the Kimberley waypoint, sandstone outcrops with differing resistance to wind erosion result in a stair-step pattern of layers. Windjana is within what the team calls the area’s “middle unit,” because it is intermediate between rocks that form buttes in the area and lower-lying rocks that show a pattern of striations.
The exaggerated color, to make differences in Mars surface materials more apparent, makes Curiosity appear bluer than the rover really looks.
HiRISE is one of six instruments on NASA’s Mars Reconnaissance Orbiter. The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Science Laboratory projects for NASA’s Science Mission Directorate, Washington. JPL designed and built the Mars Science Laboratory Project’s Curiosity rover.
Image Credit: NASA/JPL-Caltech/Univ. of Arizona

Planetary scientists are looking at other processes that could create the manganese-oxide they found in rocks in Mar’s Gale Crater region. Possible culprits at this point include microbes, but even optimistic planetary scientists are finding little fan fair accompanying their ideas. Lanza said, “These high manganese materials can’t form without lots of liquid water and strongly oxidizing conditions. Here on Earth, we had lots of water but no widespread deposits of manganese oxides until after the oxygen levels in our atmosphere rose.”

NASA's Curiosity Mars rover used the Mars Hand Lens Imager (MAHLI) instrument on its robotic arm to illuminate and record this nighttime view of the sandstone rock target "Windjana." The rover had previously drilled a hole to collect sample material from the interior of the rock and then zapped a series of target points inside the hole with the laser of the rover's Chemistry and Camera (ChemCam) instrument. The hole is 0.63 inch (1.6 centimeters) in diameter. The precision pointing of the laser that is mounted atop the rover's remote-sensing mast is evident in the column of scars within the hole. That instrument provides information about the target's composition by analysis of the sparks of plasma generated by the energy of the laser beam striking the target. Additional ChemCam laser scars are visible at upper right, on the surface of the rock. This view combines eight separate MAHLI exposures, taken at different focus settings to show the entire scene in focus. The exposures were taken after dark on the 628th Martian day, or sol, of Curiosity's work on Mars (May 13, 2014). The rover drilled this hole on Sol 621 (May 5, 2014). MAHLI includes light-emitting diodes as well as a color camera. Using the instrument's own lighting yields an image of the hole's interior with less shadowing than would be seen in a sunlit image. The camera's inspection of the interior of the hole provides documentation about what the drill bit passed through as it penetrated the rock -- for example, to see if it cut through any mineral veins or visible layering. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. Credit: NASA/JPL-Caltech/MSSS
NASA’s Curiosity Mars rover used the Mars Hand Lens Imager (MAHLI) instrument on its robotic arm to illuminate and record this nighttime view of the sandstone rock target “Windjana.” The rover had previously drilled a hole to collect sample material from the interior of the rock and then zapped a series of target points inside the hole with the laser of the rover’s Chemistry and Camera (ChemCam) instrument. The hole is 0.63 inch (1.6 centimeters) in diameter.
The precision pointing of the laser that is mounted atop the rover’s remote-sensing mast is evident in the column of scars within the hole. That instrument provides information about the target’s composition by analysis of the sparks of plasma generated by the energy of the laser beam striking the target. Additional ChemCam laser scars are visible at upper right, on the surface of the rock.
This view combines eight separate MAHLI exposures, taken at different focus settings to show the entire scene in focus. The exposures were taken after dark on the 628th Martian day, or sol, of Curiosity’s work on Mars (May 13, 2014). The rover drilled this hole on Sol 621 (May 5, 2014).
MAHLI includes light-emitting diodes as well as a color camera. Using the instrument’s own lighting yields an image of the hole’s interior with less shadowing than would be seen in a sunlit image. The camera’s inspection of the interior of the hole provides documentation about what the drill bit passed through as it penetrated the rock — for example, to see if it cut through any mineral veins or visible layering.
MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.
Credit: NASA/JPL-Caltech/MSSS

Geologists have found high concentrations of manganese oxide minerals is an important marker of a major shift in Earth’s atmospheric composition, from relatively low oxygen levels during the distant past, to the oxygen-rich environment we live in today. Planetary scientists studying the rocks they found in Gale Crater suggest the presence of these materials indicates oxygen levels on Mars rose also, before declining to the present low levels detected. The question is how was Mar’s oxygen-rich atmosphere formed?

November 3, 2015 Lanza at the summit of Hvannadalsnukur, the highest mountain in Iceland, practicing glacier travel techniques similar to those needed for Antarctic fieldwork. Lanza at the summit of Hvannadalsnukur, the highest mountain in Iceland, practicing glacier travel techniques similar to those needed for Antarctic fieldwork. Credit: Los Alamos National Laboratory
November 3, 2015
Planetary scientist Lanza at the summit of Hvannadalsnukur, the highest mountain in Iceland, practicing glacier travel techniques similar to those needed for exploring the farthest reaches of the planet and possibly the solar system.
Credit: Los Alamos National Laboratory

“One potential way that oxygen could have gotten into the Martian atmosphere is from the breakdown of water when Mars was losing its magnetic field,” said Lanza. “It’s thought that at this time in Mars’ history, water was much more abundant. Yet without a protective magnetic field to shield the surface, ionizing radiation started splitting water molecules into hydrogen and oxygen. Because of Mars’ relatively low gravity, the planet wasn’t able to hold onto the very light hydrogen atoms, but the heavier oxygen atoms remained behind. Much of this oxygen went into rocks, leading to the rusty red dust that covers the surface today. While Mars’ famous red iron oxides require only a mildly oxidizing environment to form, manganese oxides require a strongly oxidizing environment, more so than previously known for Mars.

Lanza added, “It’s hard to confirm whether this scenario for Martian atmospheric oxygen actually occurred. But it’s important to note that this idea represents a departure in our understanding for how planetary atmospheres might become oxygenated. Abundant atmospheric oxygen has been treated as a so-called biosignature or a sign of extant life, but this process does not require life.

This image from the Navigation Camera (Navcam) on NASA's Curiosity Mars rover shows two holes at top center drilled into a sandstone target called "Windjana." The farther hole, with larger pile of tailings around it, is a full-depth sampling hole. It was created by the rover's hammering drill while the drill collected rock-powder sample material from the interior of the rock. The nearer hole was created by a shallower test drilling into the rock in preparation for the sample collection. Each hole is 0.63 inch (1.6 centimeters) in diameter. The full-depth hole is about 2.6 inches (6.5 centimeters) deep, drilled during the 621st Martian day, or sol, of Curiosity's work on Mars (May 5, 2014). The test hole is about 0.8 inch (2 centimeters) deep, drilled on Sol 615 (April 29, 2014). This image was taken on Sol 621 (May 5). The sandstone target's informal name comes from Windjana Gorge in Western Australia. The rock is within a waypoint location called "The Kimberley," where sandstone outcrops with differing resistance to wind erosion result in a stair-step pattern of layers. Windjana is within what the team calls the area's "middle unit," because it is intermediate between rocks that form buttes in the area and lower-lying rocks that show a pattern of striations. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover and the rover's Navcam. Credit: NASA/JPL-Caltech
This image from the Navigation Camera (Navcam) on NASA’s Curiosity Mars rover shows two holes at top center drilled into a sandstone target called “Windjana.” The farther hole, with larger pile of tailings around it, is a full-depth sampling hole. It was created by the rover’s hammering drill while the drill collected rock-powder sample material from the interior of the rock. The nearer hole was created by a shallower test drilling into the rock in preparation for the sample collection. Each hole is 0.63 inch (1.6 centimeters) in diameter. The full-depth hole is about 2.6 inches (6.5 centimeters) deep, drilled during the 621st Martian day, or sol, of Curiosity’s work on Mars (May 5, 2014). The test hole is about 0.8 inch (2 centimeters) deep, drilled on Sol 615 (April 29, 2014). This image was taken on Sol 621 (May 5).
The sandstone target’s informal name comes from Windjana Gorge in Western Australia. The rock is within a waypoint location called “The Kimberley,” where sandstone outcrops with differing resistance to wind erosion result in a stair-step pattern of layers. Windjana is within what the team calls the area’s “middle unit,” because it is intermediate between rocks that form buttes in the area and lower-lying rocks that show a pattern of striations.
NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover and the rover’s Navcam.
Credit: NASA/JPL-Caltech

The Curiosity rover has been investigating Gale Crater for around four years and recent evidence supports the possibility conditions needed to form these deposits were present in other locations. The concentrations of manganese oxide discovered were found in mineral-filled cracks in sandstones in a region of the crater called “Kimberley”. NASA’s Opportunity rover has been exploring the surface of the planet since 2004 and recently reported similar high manganese deposits in a region thousands of miles away. Supporting the idea environments required to form similar deposits could be found well beyond Gale Crater.

NASA's Curiosity Mars rover used the camera at the end of its arm in April and May 2014 to take dozens of component images combined into this self-portrait where the rover drilled into a sandstone target called "Windjana." The camera is the Mars Hand Lens Imager (MAHLI), which previously recorded portraits of Curiosity at two other important sites during the mission: "Rock Nest" (http://photojournal.jpl.nasa.gov/catalog/PIA16468) and "John Klein" (http://photojournal.jpl.nasa.gov/catalog/PIA16937). Winjana is within a science waypoint site called "The Kimberley," where sandstone layers with different degrees of resistance to wind erosion are exposed close together. The view does not include the rover's arm. It does include the hole in Windjana produced by the hammering drill on Curiosity's arm collecting a sample of rock powder from the interior of the rock. The hole is surrounded by grayish cuttings on top of the rock ledge to the left of the rover. The Mast Camera (Mastcam) atop the rover's remote sensing mast is pointed at the drill hole. A Mastcam image of the drill hole from that perspective is at http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0626MR0026780000401608E01_DXXX&s=626. The hole is 0.63 inch (1.6 centimeters) in diameter. The rover's wheels are 20 inches (0.5 meter) in diameter. Most of the component frames of this mosaic view were taken during the 613th Martian day, or sol, of Curiosity's work on Mars (April 27, 2014). Frames showing Windjana after completion of the drilling were taken on Sol 627 (May 12, 2014). The hole was drilled on Sol 621 (May 5, 2014). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. > NASA’s Mars Curiosity Rover Marks First Martian Year with Mission Successes Image Credit: NASA/JPL-Caltech/MSSS
NASA’s Curiosity Mars rover used the camera at the end of its arm in April and May 2014 to take dozens of component images combined into this self-portrait where the rover drilled into a sandstone target called “Windjana.” The camera is the Mars Hand Lens Imager (MAHLI), which previously recorded portraits of Curiosity at two other important sites during the mission: “Rock Nest” 
Winjana is within a science waypoint site called “The Kimberley,” where sandstone layers with different degrees of resistance to wind erosion are exposed close together.
The view does not include the rover’s arm. It does include the hole in Windjana produced by the hammering drill on Curiosity’s arm collecting a sample of rock powder from the interior of the rock. The hole is surrounded by grayish cuttings on top of the rock ledge to the left of the rover. The Mast Camera (Mastcam) atop the rover’s remote sensing mast is pointed at the drill hole. The hole is 0.63 inch (1.6 centimeters) in diameter. The rover’s wheels are 20 inches (0.5 meter) in diameter.
Most of the component frames of this mosaic view were taken during the 613th Martian day, or sol, of Curiosity’s work on Mars (April 27, 2014). Frames showing Windjana after completion of the drilling were taken on Sol 627 (May 12, 2014). The hole was drilled on Sol 621 (May 5, 2014).
MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.
> NASA’s Mars Curiosity Rover Marks First Martian Year with Mission Successes
Image Credit: NASA/JPL-Caltech/MSSS

What’s next for Curiosity?

NASA’s Curiosity rover’s currently collecting drilled rock powder from the 14th drill site called the Murray formation on the lower part of Mount Sharp. Plans call for NASA’s mobile laboratory to head uphill towards new destinations as part of a two-year mission extension starting near the beginning of October. 

NASA's Curiosity Mars rover completed a shallow "mini drill" activity on April 29, 2014, as part of evaluating a rock target called "Windjana" for possible full-depth drilling to collect powdered sample material from the rock's interior. This image from Curiosity's Mars Hand Lens Imager (MAHLI) instrument shows the hole and tailings resulting from the mini drill test. The hole is 0.63 inch (1.6 centimeters) in diameter and about 0.8 inch (2 centimeters) deep. When collecting sample material, the rover's hammering drill bores as deep as 2.5 inches (6.4 centimeters). This preparatory activity enables the rover team to evaluate interaction between the drill and this particular rock and to view the potential sample-collection target's interior and tailings. Both the mini drill activity and acquisition of this image occurred during the 615th Martian day, or sol, of Curiosity's work on Mars (April 29, 2014). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. Credit: NASA/JPL-Caltech/MSSS
NASA’s Curiosity Mars rover completed a shallow “mini drill” activity on April 29, 2014, as part of evaluating a rock target called “Windjana” for possible full-depth drilling to collect powdered sample material from the rock’s interior. This image from Curiosity’s Mars Hand Lens Imager (MAHLI) instrument shows the hole and tailings resulting from the mini drill test. The hole is 0.63 inch (1.6 centimeters) in diameter and about 0.8 inches (2 centimeters) deep.
When collecting sample material, the rover’s hammering drill bores as deep as 2.5 inches (6.4 centimeters). This preparatory activity enables the rover team to evaluate the interaction between the drill and this particular rock and to view the potential sample-collection target’s interior and tailings. Both the mini-drill activity and acquisition of this image occurred during the 615th Martian day, or sol, of Curiosity’s work on Mars (April 29, 2014).
MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.
Credit: NASA/JPL-Caltech/MSSS

The rover will go forward about a-mile-and-a-half (two-and-a-half-kilometers) to a ridge capped with material rich in the iron-oxide mineral hematite first identified by observations made with NASA’s Mars Reconnaissance Orbiter. Just beyond this area, there’s also a region with clay-rich bedrock planetary scientists want to have a closer look.

The foreground of this scene from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows purple-hued rocks near the rover's late-2016 location on lower Mount Sharp. The scene's middle distance includes higher layers that are future destinations for the mission. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. The purple tone of the foreground rocks has been seen in other rocks where Curiosity's Chemical and Mineralogy (CheMin) instrument has detected hematite. Winds and windblown sand in this part of Curiosity's traverse and in this season tend to keep rocks relatively free of dust, which otherwise can cloak rocks' color. The three frames combined into this mosaic were acquired by the Mastcam's right-eye camera on Nov. 10, 2016, during the 1,516th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. Sunlight on Mars is tinged by the dusty atmosphere and this adjustment helps geologists recognize color patterns they are familiar with on Earth. The view spans about 15 compass degrees, with the left edge toward southeast. The rover's planned direction of travel from its location when this scene was recorded is generally southeastward. The orange-looking rocks just above the purplish foreground ones are in the upper portion of the Murray formation, which is the basal section of Mount Sharp, extending up to a ridge-forming layer called the Hematite Unit. Beyond that is the Clay Unit, which is relatively flat and hard to see from this viewpoint. The next rounded hills are the Sulfate Unit, Curiosity's highest planned destination. The most distant slopes in the scene are higher levels of Mount Sharp, beyond where Curiosity will drive. Figure 1 is a version of the same scene with annotations added as reference points for distance, size and relative elevation. The annotations are triangles with text telling the distance (in kilometers) to the point in the image marked by the triangle, the point's elevation (in meters) relative to the rover's location, and the size (in meters) of an object as big as the triangle at that distance. Malin Space Science Systems, San Diego, built and operates Mastcam. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington, and built the project's Curiosity rover. Image Credit: NASA/JPL-Caltech/MSSS
The foreground of this scene from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover shows purple-hued rocks near the rover’s late-2016 location on lower Mount Sharp. The scene’s middle distance includes higher layers that are future destinations for the mission.
Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. The purple tone of the foreground rocks has been seen in other rocks where Curiosity’s Chemical and Mineralogy (CheMin) instrument has detected hematite. Winds and windblown sand in this part of Curiosity’s traverse and in this season tend to keep rocks relatively free of dust, which otherwise can cloak rocks’ color.
The three frames combined into this mosaic were acquired by the Mastcam’s right-eye camera on Nov. 10, 2016, during the 1,516th Martian day, or sol, of Curiosity’s work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. Sunlight on Mars is tinged by the dusty atmosphere and this adjustment helps geologists recognize color patterns they are familiar with on Earth.
The view spans about 15 compass degrees, with the left edge toward the southeast. The rover’s planned direction of travel from its location when this scene was recorded is generally southeastward.
The orange-looking rocks just above the purplish foreground ones are in the upper portion of the Murray formation, which is the basal section of Mount Sharp, extending up to a ridge-forming layer called the Hematite Unit. Beyond that is the Clay Unit, which is relatively flat and hard to see from this viewpoint. The next rounded hills are the Sulfate Unit, Curiosity’s highest planned destination. The most distant slopes in the scene are higher levels of Mount Sharp, beyond where Curiosity will drive.
Figure 1 is a version of the same scene with annotations added as reference points for distance, size and relative elevation. The annotations are triangles with text telling the distance (in kilometers) to the point in the image marked by the triangle, the point’s elevation (in meters) relative to the rover’s location, and the size (in meters) of an object as big as the triangle at that distance.
Malin Space Science Systems, San Diego, built and operates Mastcam. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington, and built the project’s Curiosity rover.
Image Credit: NASA/JPL-Caltech/MSSS

NASA has been exploring these key exploration sites on lower Mount Sharp as part of an effort to investigate evidence the Red planet was once a much wetter environment, which contrasts with the pictures of Mars we have received from our orbiters and rovers. A wetter environment where life could have taken root and grown.

“We continue to reach higher and younger layers on Mount Sharp,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California. “Even after four years of exploring near and on the mountain, it still has the potential to completely surprise us.”

Planetary scientists found the Murray formation consists primarily of mudstone, which on Earth would form from mud accumulated on the bottom on an ancient lake. This seems to indicate any lake environment that existed on the Red Planet lasted awhile, but we’ll need to investigate this possibility more. Plans are for Curiosity to investigate the upper regions of the Murray formation, ahead, for at least one year of the mission. 

“We will see whether that record of lakes continues further,” Vasavada said. “The more vertical thickness we see, the longer the lakes were present, and the longer habitable conditions existed here. Did the ancient environment change over time? Will the type of evidence we’ve found so far transition to something else?”

Vasavada said, “The Hematite and the Clay units likely indicate different environments from the conditions recorded in the older rock beneath them and different from each other. It will be interesting to see whether either or both were habitable environments.”

Read about the ferocious wind nebula astronomers have observed for the first time.

Learn how astronomers determine distances to objects on the other side of the Milky Way.

Help NASA find and classify young planetary systems to study by becoming a Disk Detective.

Find out more about NASA’s contributions to the human journey to the beginning of space and time.

Learn more about NASA Jet Propulsion Laboratory and its mission here.

Discover more about the Red Planet.

Read more about NASA’s Curiosity rover.

NASA’s Successor to Curiosity Rover Working Toward Summer Launch in 2020

To investigate Martian rocks for evidence of past life in advance of sending humans to work and live on the Red Planet

An artist concept image of where seven carefully-selected instruments will be located on NASA’s Mars 2020 rover. The instruments will conduct unprecedented science and exploration technology investigations on the Red Planet as never before. IMAGE CREDIT: NASA
An artist concept image of where seven carefully-selected instruments will be located on NASA’s Mars 2020 rover. The instruments will conduct unprecedented science and exploration technology investigations on the Red Planet as never before.
IMAGE CREDIT: NASA

Space news (missions to Mars: successor to Curiosity rover; Mars 2020 rover) – NASA’s Jet Propulsion Laboratory in Pasadena, California –

Planning for NASA's 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Mars 2020 is a mission concept that NASA announced in late 2012 to re-use the basic engineering of Mars Science Laboratory to send a different rover to Mars, with new objectives and instruments, launching in 2020. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages NASA's Mars Exploration Program for the NASA Science Mission Directorate, Washington. Credits: NASA/JPL-Caltech
Planning for NASA’s 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Mars 2020 is a mission concept that NASA announced in late 2012 to re-use the basic engineering of Mars Science Laboratory to send a different rover to Mars, with new objectives and instruments, launching in 2020. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages NASA’s Mars Exploration Program for the NASA Science Mission Directorate, Washington.
Credits: NASA/JPL-Caltech

NASA managers are looking forward to shifting gears on the Mars rover program in the 2020s. NASA’s Mars 2020 rover’s expected to arrive at the Red Planet around February 2021, carrying a science instrument package designed to build upon the success of NASA’s Mars Curiosity rover. It will investigate regions of the planet astrobiologists think were once favorable to microbial life, by collecting soil and rock samples, and then leaving them on the surface for a future Mars mission to collect for the possible return to Earth.

Terrain-Relative Navigation helps us land safely on Mars - especially when the land below is full of hazards like steep slopes and large rocks!
Terrain-Relative Navigation helps us land safely on Mars – especially when the land below is full of hazards like steep slopes and large rocks! The Mars 2020 spacecraft follows an entry, descent, landing process similar to that used in landing the Mars rover, Curiosity. It also has major new technologies that improve entry, descent, and landing: Range Trigger, Terrain-Relative Navigation, MEDLI and its EDL caneras and microphone. Credits: NASA/JPL

“The Mars 2020 rover is the first step in a potential multi-mission campaign to return carefully selected and sealed samples of Martian rocks and soil to Earth,” said Geoffrey Yoder, acting associate administrator of NASA’s Science Mission Directorate in Washington. “This mission marks a significant milestone in NASA’s Journey to Mars, to determine whether life has ever existed on Mars, and to advance our goal of sending humans to the Red Planet.”

The surface operations phase is the time when the rover conducts its scientific studies on Mars. After landing safely, Mars 2020 has a primary mission span of at least one Martian year (687 Earth days). The Mars 2020 rover uses a depot caching strategy for its exploration of Mars.
The surface operations phase is the time when the rover conducts its scientific studies on Mars. After landing safely, Mars 2020 has a primary mission span of at least one Martian year (687 Earth days).
The Mars 2020 rover uses a depot caching strategy for its exploration of Mars. Credits: NASA/JPL

NASA engineers, scientists and mission planners are ready to begin final design and construction of the next Mars rover. In the end, Mars 2020 will look like its six-wheeled, one-ton predecessor, Curiosity, but with a science instrument package designed to begin a new phase of exploration of the surface of Mars. It will begin exploring specifically selected regions of the planet for signs of life and the resources needed for future colonists to survive. Using two science instruments mounted on the rover’s robotic arm and two instruments on the mast, NASA’s Mars 2020 rover’s expected to show us new things about the Red Planet.

Current plans call for the Mars 2020 rover to use an upgraded version of the same sky crane landing system used by Curiosity. Engineers and designers have added a few improvements to the system opening up more potential landing sites on Mars with this edition. Giving mission planners more options to explore the Red Planet to a greater degree and hopefully provide a few more answers to the questions we have all been asking ourselves about Mars. 

Mars Science Laboratory (MSL) Entry Descent & Landing (EDL) activities in SFOF MSA Fishbowl. Pre-Landing. Date: 05 August/2012 Photographer: T. Wynne
Allen Chen, Mars 2020 entry, descent, and landing lead at NASA’s Jet Propulsion Laboratory conducting Mars Science Laboratory (MSL) Entry Descent & Landing (EDL) activities in SFOF MSA Fishbowl. Pre-Landing. 
Date: 05 August/2012
Photographer: T. Wynne

“By adding what’s known as range trigger, we can specify where we want the parachute to open, not just at what velocity we want it to open,” said Allen Chen, Mars 2020 entry, descent and landing lead at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “That shrinks our landing area by nearly half.”

NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010.
NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010. Credits: NASA/JPL

Engineers and designers have also added a suite of cameras and a microphone providing data onboard computers will analysis during descent and landing of the rover. This will help the spacecraft land in a safe zone and capture the sounds and imagery of the entry, descent, and landing as never before. We expect this data to eventually make for a thrilling video and improve the chances of future Mars missions. 

“As it is descending, the spacecraft can tell whether it is headed for one of the unsafe zones and divert to safe ground nearby,” said Chen. “With this capability, we can now consider landing areas with unsafe zones that previously would have disqualified the whole area. Also, we can land closer to a specific science destination, for less driving after landing.”

“Nobody has ever seen what a parachute looks like as it is opening in the Martian atmosphere,” said JPL’s David Gruel, assistant flight system manager for the Mars 2020 mission. “So this will provide valuable engineering information.”

“This will be a great opportunity for the public to hear the sounds of Mars for the first time, and it could also provide useful engineering information,” said Mars 2020 Deputy Project Manager Matt Wallace of JPL.

Mars 2020 rover goes forward

As the optimist said, “So far, so good.” NASA has completed stage three of a four-stage approval process needed for the Mars 2020 rover to go for launch. Now engineers and designers get to work assembling the final systems of NASA’s next Mars rover. Fortunately, they have already done a lot of the work during the building of Curiosity, and even have some spare parts and hardware that should work just fine laying around somewhere in the Jet Propulsion Laboratory. 

“Since Mars 2020 is leveraging the design and some spare hardware from Curiosity, a significant amount of the mission’s heritage components have already been built during Phases A and B,” said George Tahu, Mars 2020 program executive at NASA Headquarters in Washington. “With the KDP to enter Phase C completed, the project is proceeding with final design and construction of the new systems, as well as the rest of the heritage elements for the mission.”

Read and learn about the latest method astrophysicists have developed to help determine distances to objects on the other side of the Milky Way.

Learn more about the titanic, massive plasma jets astronomers have detected emanating from near some supermassive black holes.

Read about some of China’s contributions to the human journey to the beginning of space and time.

Read more about NASA’s Mars 2020 rover.

Join NASA’s journey to the beginning of space and time here.

Follow NASA’s Curiosity rover as it explores the surface of Mars.

Learn what NASA’s Spirit and Opportunity rovers have told us about the Red Planet here.

Learn more about NASA’s Jet Propulsion Laboratory.

 

NASA Adds to Framework of Plans for Three Year Mission to Mars

Planners under pressure to provide details of long-term plans before Presidential election

A team prepares a robot – the yellow machine attached to the liquid hydrogen tank for the Space Launch System rocket -- for friction plug welding at NASA's Michoud Assembly Facility in New Orleans. Friction plug welding is a technique developed by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama. It uses a robot to fill holes left after the tank goes through assembly in a larger robotic welder. The liquid hydrogen tank is more than 130 feet long and is the largest part of the rocket’s core stage -- the backbone of the rocket. The liquid hydrogen tank, along with a liquid oxygen tank, will provide 733,000 gallons of fuel for the first integrated mission of SLS with NASA's Orion spacecraft in 2018. SLS will be the world's most powerful rocket and take astronauts in Orion to deep space, including on the Journey to Mars. Image Credit: NASA/Michoud/Steve Seipel
A team prepares a robot – the yellow machine attached to the liquid hydrogen tank for the Space Launch System rocket — for friction plug welding at NASA’s Michoud Assembly Facility in New Orleans. Friction plug welding is a technique developed by engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama. It uses a robot to fill holes left after the tank goes through assembly in a larger robotic welder. The liquid hydrogen tank is more than 130 feet long and is the largest part of the rocket’s core stage — the backbone of the rocket. The liquid hydrogen tank, along with a liquid oxygen tank, will provide 733,000 gallons of fuel for the first integrated mission of SLS with NASA’s Orion spacecraft in 2018. SLS will be the world’s most powerful rocket and take astronauts in Orion to deep space, including on the Journey to Mars.
Image Credit: NASA/Michoud/Steve Seipel

Space news (Deep space missions: go for Mars; Orion spacecraft) – Marshall Space Flight Center in Huntsville, Alabama –

Technicians from Janicki Industries in Hamilton, Washington, position the layers of the diaphragm for the Orion stage adapter. The adapter will join the Orion spacecraft to the interim cryogenic propulsion stage (ICPS) of the Space Launch System, NASA's new rocket for the journey to Mars. The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. The adapter diaphragm is used to keep launch vehicle gases away from the spacecraft. The diaphragm is constructed of multiple layers of carbon fiber fabric material engrained with epoxy. The layers are pieced together and carefully positioned in place using laser projectors to outline where they need to go. Janicki finished laying the final piece in late October. The diaphragm work is being done in collaboration with NASA's Langley Research Center in Hampton, Virginia, and NASA's Marshall Space Flight Center in Huntsville, Alabama. Image Credit: Janicki Industries
Technicians from Janicki Industries in Hamilton, Washington, position the layers of the diaphragm for the Orion stage adapter. The adapter will join the Orion spacecraft to the interim cryogenic propulsion stage (ICPS) of the Space Launch System, NASA’s new rocket for the journey to Mars. The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. The adapter diaphragm is used to keep launch vehicle gases away from the spacecraft.
The diaphragm is constructed of multiple layers of carbon fiber fabric material engrained with epoxy. The layers are pieced together and carefully positioned in place using laser projectors to outline where they need to go. Janicki finished laying the final piece in late October. The diaphragm work is being done in collaboration with NASA’s Langley Research Center in Hampton, Virginia, and NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Image Credit: Janicki Industries

NASA plans to travel to the Red Planet for a three-year mission to set up operations for future missions and possible colonization recently took one step forward. NASA mission managers and other experts gave the Safety Oversight Board an update on the current status of plans to travel to Mars during the latest Aerospace Safety Advisory Panel (ASAP) meeting. The committee members took a very close look at their plans and pointed out America and NASA can’t afford to fumble the ball at this point in history. That with the Presidential election taking place, they‘ll need to see more on NASA’s future plans to travel to Mars, before more funding for future missions will be forthcoming.

We need the biggest rocket stage ever built for the bold missions in deep space that NASA's Space Launch System rocket will give us the capability to achieve. This infographic sums up everything you need to know about the SLS core stage, the 212-foot-tall stage that serves as the backbone of the most powerful rocket in the world. The core stage includes the liquid hydrogen tank and liquid oxygen tank that hold 733,000 gallons of propellant to power the stage’s four RS-25 engines needed for liftoff and the journey to Mars. #SLSFiredUp Image Credit: NASA/MSFC
We need the biggest rocket stage ever built for the bold missions in deep space that NASA’s Space Launch System rocket will give us the capability to achieve. This infographic sums up everything you need to know about the SLS core stage, the 212-foot-tall stage that serves as the backbone of the most powerful rocket in the world. The core stage includes the liquid hydrogen tank and liquid oxygen tank that hold 733,000 gallons of propellant to power the stage’s four RS-25 engines needed for liftoff and the journey to Mars. #SLSFiredUp
Image Credit: NASA/MSFC

NASA at this point’s trying to get work completed on the planned debut for the Space Launch System (SLS) with the launch of Exploration Mission Orion (EM-1) in 2017-2018. The second test of the Space Launch System (SLS) is scheduled for around 2021, with a crew this time, but NASA’s presently trying to reduce the five-year gap between the first two SLS missions. This launch system or something similar is needed for plans to travel to Mars and colonize the Red Planet sometime in the 2030s

When astronauts are on their first test flight aboard NASA’s Orion spacecraft, which will take them farther into the solar system than humanity has ever traveled before, their mission will be to confirm all of the spacecraft’s systems operate as designed in the actual environment of deep space. After an Orion test campaign that includes ground tests, systems demonstrations on the International Space Station, and uncrewed space test flights, this first crewed test flight will mark a significant step forward on NASA’s Journey to Mars. Credits: NASA/JPL
The first test flight aboard NASA’s Orion spacecraft will mark the furthest point human beings have traveled from the bosom of Mother Earth. This flight will confirm the spacecraft”s systems work as needed to keep astronauts alive during a deep space trip to Mars. Credits: NASA/JPL

At this point in time, these are the only scheduled SLS missions, but NASA’s documents do show preliminary plans for 41 SLS missions between 2018 to 2046 towards future surface missions on Phobos and then the Red Planet. NASA also provided a generalized plan calling for astronauts to journey to the fourth planet from the Sun for a permanent stay sometime in the 2030s. At this point, however, concrete long-term plans surrounding future manned trips to Mars are hazy due to NASA’s funding outlook, which is only estimated for long-term space mission requirements. Experts agree, though, a hefty increase in funding’s going to be needed for a realistic, viable plan and trip to the Red Planet. Getting it ready for more colonizers is a different question, though, requiring additional thought, planning, and funding.

Space Launching System installed in the Transonic Dynamic Tunnel for testing. Engineers, Martin Sekula, Mike Ramsey and David Piatak surveys the model before testing.
Space Launching System installed in the Transonic Dynamic Tunnel for testing. Engineers, Martin Sekula, Mike Ramsey and David Piatak surveys the model before testing. Final touches are made on a 10-foot model of the world’s most powerful rocket, the Space Launch System, just before testing it in the Transonic Dynamics Tunnel at NASA’s Langley Research Center in Hampton, Virginia. Credits: NASA/David C. Bowman

NASA’s Associate Administrator for Human Exploration and Operations Bill Gerstenmaier stated the SLS will launch at least once a year when questioned about the tight schedule of EM-1. NASA’s monster rocket system isn’t scheduled to take astronauts into space until sometime in the next decade, so expectations are for NASA to plan and execute a range of different unmanned space missions to test the system. This could include a mission to Jupiter’s moon Europa, to take a dip in the ocean of water planetary scientists think exists below its icy crust.

SLS_TDT: Mike Ramsey, Martin Sekula, and David Piatak in the control room of the Transonic Dynamic Tunnel testing the Space Launching System model. Engineers, Martin Sekula, David Piatak and Mike Ramsey
SLS_TDT: Mike Ramsey, Martin Sekula, and David Piatak in the control room of the Transonic Dynamic Tunnel testing the Space Launching System model. Engineers, Martin Sekula, David Piatak and Mike Ramsey. Rocket scientists at NASA’s Langley Research Center in Hampton, Virginia, analyze data in the control room during wind tunnel testing of a 10-foot model of the Space Launch System. Credits: NASA/David C. Bowman

Bill Hill, Deputy Associate Administrator for Exploration Systems Development (ESD) for NASA’s Human Exploration and Operations Mission Directorate (HEOMD), updated board members on the status of current plans for astronauts to travel to Mars by the 2030s. At this point in the planning, program managers are still reviewing options, rather than adding a foundation to present plans.

NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010.
NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010. Credits: NASA

NASA planners have significant hurdles to overcome if they’re to successfully send astronauts to the Red Planet and allow them to get back into orbit. The first obstacle’s going to be designing, engineering and testing a Solar Electric Propulsion (SEP) system capable of generating enough energy to get a spacecraft up to a significant percentage of the speed of light. The Helios space probes hold the record for the fastest recorded human spacecraft at around 150,000 miles per hour as they whip around the Sun measuring the solar wind and environment. The second significant hurdle’s collecting enough oxygen from the frozen regions of Mars to provide the fuel required to travel from the surface back into orbit. Plans for a three-year mission are also of concern to scientists, engineers and planners worried about the dangers and problems astronauts will face living, working and staying healthy during a long-duration space mission.

The spacecraft, rockets and associated systems in development for NASA's Commercial Crew Program are critical links in the agency's chain to send astronauts safely to and from the Red Planet in the future, even though the commercial vehicles won’t venture to Mars themselves. The key is reliable access to the International Space Station as a test bed.
The spacecraft, rockets and associated systems in development for NASA’s Commercial Crew Program are critical links in the agency’s chain to send astronauts safely to and from the Red Planet in the future, even though the commercial vehicles won’t venture to Mars themselves. The key is reliable access to the International Space Station as a test bed. Credits: NASA

Of concern previously and still a problem the committee mentioned was the need for engineers and scientists to produce a heat shield for the Orion spacecraft capable of surviving reentry. The spacecraft will have to survive a 13.5 kilometers per second entry velocity and planners indicated this capability’s on the agency’s must-do list. At present, Orion isn’t going to survive the fall to Earth after it returns from Mars, according to engineers and scientists. Committee members also noted they have been asking NASA managers for a formal outline of their plans to send astronauts to Mars for awhile. They specifically wanted to know what new technologies will be needed to successfully allow astronauts to travel to the Red Planet to begin colonization.

An artist's rendering of the Mars Ice Home concept. Credits: NASA/Clouds AO/SEArch
An artist’s rendering of the Mars Ice Home concept. Mars colonists arriving at the Red Planet might find the accommodations a little sparse. Getting out and about is going to be a little more difficult, but every day will be an adventure to never forget. Credits: NASA/Clouds AO/SEArch

NASA officials responded to committee member requests by stating the agency was in the process of “adding meat to the bones” of the transitional phase of their plans to send astronauts to Mars. During this phase 0, NASA’s turns its attention toward successful test flights for the SLS and Orion, while using the International Space Station (ISS) to test the effects of living and working in space for long periods of time.

Team members of the Ice Home Feasibility Study discuss past and present technology development efforts in inflatable structures at NASA's Langley Research Center. Credits: Courtesy of Kevin Kempton
Team members of the Ice Home Feasibility Study discuss past and present technology development efforts in inflatable structures at NASA’s Langley Research Center.
Credits: Courtesy of Kevin Kempton

The Asteroid Redirect Mission’s (ARM) phase 1 of NASA’s three-part plan to send astronauts to the Red Planet. Initially, this mission had a nominal date of around 2021, but planners have recently updated the mission launch date to around 2026. They’ll need to complete this mission successfully in order to learn some of the things they’ll need to know to send astronauts to Mars to begin colonization. During this phase, engineers and scientists will test the flight capability of the system using the Exploration Missions.

UPDATED Jan. 4, 2017, at 2 p.m. PST NASA's Mars Odyssey spacecraft has resumed full service following recovery after entering a safe standby mode on Dec. 26, 2016. The orbiter resumed communication relay assistance to Mars rovers on Dec. 30, 2016. Science observations of Mars by instruments on Odyssey resumed on Jan. 3, 2017, with its Thermal Emission Imaging System, and on the next day with its High Energy Neutral Spectrometer and the Neutron Spectrometer.
NASA’s Mars Odyssey spacecraft has resumed full service following recovery after entering a safe standby mode on Dec. 26, 2016. The orbiter resumed communication relay assistance to Mars rovers on Dec. 30, 2016. Science observations of Mars by instruments on Odyssey resumed on Jan. 3, 2017, with its Thermal Emission Imaging System, and on the next day with its High Energy Neutral Spectrometer and the Neutron Spectrometer. Credits: NASA

Phase 2 of NASA’s plans to send astronauts to Mars will test all flight elements needed to travel to the Red Planet, during planned Beyond Earth Orbit test missions. The committee thanked Mars Mission managers but asked to see more detail and definite plans on NASA’s current outline.

NASA has set a new launch opportunity, beginning May 5, 2018, for the InSight mission to Mars. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground.
NASA has set a new launch opportunity, beginning May 5, 2018, for the InSight mission to Mars. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. This artist’s concept depicts the InSight lander on Mars after the lander’s robotic arm has deployed a seismometer and a heat probe directly onto the ground. Credits: NASA/JPL

Mankind goes for Mars

Mr. Hill commented that NASA’s already learned many needed lessons towards phase 0 of their Mars Mission plans. He added that the nation had already invested significantly in the technology needed to send astronauts to Mar during the decades ahead. That more work needed to be done in order to not loose this work and get the job done within a specific time period. Specific milestones have been met and Exploration Mission 1’s (EM-1) on target for a launch window between September to November 2018.

Help NASA discover possible solar systems with planets suitable as cradles for a new human Genesis by becoming a Disk Detective.

Read about NASA’s ExoMars 2016 Trace Orbiter preparing to descend to the Red Planet.

Learn more about China’s space history and present contributions to the human journey to the beginning of space and time.

Learn more about NASA news concerning plans to send astronauts to Mars here.

Read more about NASA’s new Space Launch System (SLS).

Discover NASA’s Exploration Mission Orion (EM-1) here.

Read more about NASA’s Mars Missions.

Join NASA’s journey to the beginning of space and time.

Discover the International Space Station here.

Read and learn more about NASA’s Asteroid Redirect Mission (ARM).