Common Chemicals Were Evenly Distributed Across the Early Cosmos

By stars that went supernovae at the end of their life cycles 

This visible light view shows the central part of the Virgo Cluster. The brightest object is the giant elliptical galaxy M87 (left of center). The image spans approximately 1.2 degrees, or about 2.4 times the apparent diameter of a full moon. Credits: NOAO/AURA/NSF Download the image in HD at NASA's Scientific Visualization Studio
This visible light view shows the central part of the Virgo Cluster. The brightest object is the giant elliptical galaxy M87 (left of center). The image spans approximately 1.2 degrees or about 2.4 times the apparent diameter of a full moon.
Credits: NOAO/AURA/NSF
Download the image in HD at NASA’s Scientific Visualization Studio

Space news (astrophysics: creation and distribution of heavier chemical elements; supernovae) – watching as the elements of creation were spread evenly across millions of light-years more than ten billion years ago – 

This illustration depicts the Suzaku spacecraft. Suzaku (originally known as Astro-E2) was launched July 10, 2005, and maintains a low-Earth orbit while it observes X-rays from the universe. The satellite was developed at the Japanese Institute of Space and Astronautical Science (part of the Japan Aerospace Exploration Agency, JAXA) in collaboration with Japanese and U.S. institutions, including NASA. Credit: NASA's Goddard Space Flight Center
This illustration depicts the Suzaku spacecraft. Suzaku (originally known as Astro-E2) was launched July 10, 2005, and maintains a low-Earth orbit while it observes X-rays from the universe. The satellite was developed at the Japanese Institute of Space and Astronautical Science (part of the Japan Aerospace Exploration Agency, JAXA) in collaboration with Japanese and U.S. institutions, including NASA.
Credit: NASA’s Goddard Space Flight Center

Astronomers using Japan’s Suzaku X-ray Satellite to survey hot, x-ray emitting gas in the Virgo Galaxy Cluster over 54 million light-years away have discovered something about the early universe. The survey showed the building blocks of the cosmos needed to make the planets, stars, and living things were evenly distributed across the cosmos over 10 billion years ago.  

Suzaku mapped iron, magnesium, silicon and sulfur in four directions all across the Virgo galaxy cluster for the first time. The northern arm of the survey (top) extends 5 million light-years from M87 (center), the massive galaxy at the cluster's heart. Ratios of these elements are constant throughout the cluster, which means they were mixed well early in cosmic history. The dashed circle shows what astronomers call the virial radius, the boundary where gas clouds are just entering the cluster. Some prominent members of the cluster are labeled as well. The background image is part of the all-sky X-ray survey acquired by the German ROSAT satellite. The blue box at center indicates the area shown in the visible light image. Credits: A. Simionescu (JAXA) and Hans Boehringer (MPE) Download the graphic in HD at NASA's Scientific Visualization Studio
Suzaku mapped iron, magnesium, silicon and sulfur in four directions all across the Virgo galaxy cluster for the first time. The northern arm of the survey (top) extends 5 million light-years from M87 (center), the massive galaxy at the cluster’s heart. Ratios of these elements are constant throughout the cluster, which means they were mixed well early in cosmic history. The dashed circle shows what astronomers call the virial radius, the boundary where gas clouds are just entering the cluster. Some prominent members of the cluster are labeled as well. The background image is part of the all-sky X-ray survey acquired by the German ROSAT satellite. The blue box at center indicates the area shown in the visible light image.
Credits: A. Simionescu (JAXA) and Hans Boehringer (MPE)
Download the graphic in HD at NASA’s Scientific Visualization Studio

A team of astronomers led by Aurora Simionescu of Japan’s Aerospace Exploration Agency (JAXA) in Sagamihara acquired data of the Virgo Galaxy Cluster along four arms extending up to 5 million light-years from its center. Data they used to show the elements of creation were evenly distributed across millions of light-years early in the cosmos. 

Aurora Simionescu of Japan's Aerospace Exploration Agency (JAXA) in Sagamihara Credits Image: NASA/JAXA
Aurora Simionescu of Japan’s Aerospace Exploration Agency (JAXA) in Sagamihara
Credits Image: NASA/JAXA

“Heavier chemical elements from carbon on up are produced and distributed into interstellar space by stars that explode as supernovae at the ends of their lifetimes,” Simionescu said. “This chemical dispersal continues at progressively larger scales through other mechanisms, such as galactic outflows, interactions and mergers with neighboring galaxies, and stripping caused by a galaxy’s motion through the hot gas filling galaxy clusters.” 

Astronomers study the distribution of the elements of creation during the early moments of the cosmos by shifting through the remains of giant stars that explode at the moment of their death supernovae. The core of a giant star born with more than eight times the mass of the Sun collapses near the end of its lifespan and then expands rapidly in an event called a core-collapse supernova. This rapid expansion scatters elements ranging from oxygen to silicon across the surrounding regions, while other types of supernovae spread elements of creation like iron and nickel across the universe. By surveying a vast region of space, like the Virgo Galaxy Cluster, scientists reconstruct how, when and where the elements of creation were created and distributed during the first moments of the universe.  

Astrophysicists believe the overall elemental composition of a large volume of space depends on the mixture of different supernovae types contributing elements. For example, they have determined the overall chemical makeup of the Sun and solar system required a combination of one Type Ia supernovae for every five core-collapse types.  

“One way to think about this is that we’re looking for the supernova recipe that produced the chemical makeup we see on much larger scales, and comparing it with the recipe for our own sun,” said co-author Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California. 

 Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California
Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California. Credits: KIPAC/NASA/Stanford University

Werner led an earlier study using Suzaku that showed iron was distributed evenly throughout the Perseus Galaxy Cluster. The new Suzuka data provided by the study led by Simionescu and her team shows iron, magnesium, silicon and sulfur spread evenly across the Virgo Galaxy Cluster. The elemental ratios obtained during the study are constant across the entire volume of the cluster and roughly consistent with the levels detected in the composition of the Sun and stars in the Milky Way. Extrapolated to the larger cosmos, scientists believe this shows the elements of creation were mixed well during the early moments of the cosmos over ten billion years ago.   

“This means that elements so important to life on Earth are available, on average, in similar relative proportions throughout the bulk of the universe,” explained Simionescu. “In other words, the chemical requirements for life are common throughout the cosmos.” 

Launched on July 10, 2005, the Suzaku mission showed us things about the universe during a space journey lasting over five times its intended lifespan, to become the longest-operating Japanese x-ray observatory in history. A space collaboration between Japan’s Japanese Aerospace Exploration Agency (JAXA) and NASA, the Suzaku X-ray Satellite scanned the x-ray cosmos until retiring from space service on August 26, 2015. Leaving a legacy of revolutionary x-ray discoveries its successor ASTRO-H (HITOMI), Japan’s sixth x-ray astronomy satellite is currently adding to since its launch in February 2016. 

What’s next?

Suzaku provided us with a decade of revolutionary measurements,” said Robert Petre, chief of Goddard’s X-ray Astrophysics Laboratory. “We’re building on that legacy right now with its successor, ASTRO-H, Japan’s sixth X-ray astronomy satellite, and we’re working toward its launch in 2016.” 

Artist concept of Hitomi Credits: Japan Aerospace Exploration Agency (JAXA). Credits: NASA/JAXA
Artist concept of Hitomi
Credits: Japan Aerospace Exploration Agency (JAXA). Credits: NASA/JAXA

Proving the saying, “Old Japanese x-ray satellites don’t retire, they sit back and keep watching the show.” 

Learn more about the birth and evolution of black holes and other stellar objects over 11 billion years ago.

Learn and understand more about the clues the Hubble Space Telescope has uncovered about the formation of the Milky Way galaxy.

Learn more about the things scientists have discovered about the crucible of the building blocks of life on Earth.

Take the space voyage of NASA here

Learn more about JAXA

Learn more about the discoveries of the Suzaku X-ray Satellite here

Read and discover more about HITOMI (ASTRO-H)

Learn more about the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California here

Discover more about the Virgo Galaxy Cluster

 

 

 

Advertisements

Small Region of Sky Source of Mysterious, Energetic Blasts

Astronomers have identified source as a supermassive, unknown star cluster containing some of the most massive stars in the Milky Way 

Hidden within the region inset in the small square lie some of the rarest, most massive stars in the galaxy.
Hidden within the region inset in the small square lie some of the rarest, most massive stars in the galaxy. More than a dozen red supergiant stars. Credit: NASA/ESA/STScI

Space news (unknown X-ray and gamma-ray sources) – 2/3 of the way to the core of the Milky Way or 18,900 light-years (5,800 parsecs) from Earth toward the constellation Scutum in the Bermuda Triangle of the Milky Way – 

For years, astronomers studied a small region of the sky called the Bermuda Triangle known for mysterious, highly energetic blasts of X-rays and gamma rays looking for clues to the source. The identity of the source was finally determined around 2005 as an unknown, hefty star cluster containing some of the rarest and most massive stars in the Milky Way. More than a dozen red supergiant stars, supermassive stars that are destroyed when a star goes supernova, within a million years time.  

This color composite image compiled by the Spitzer Space Telescope highlights the colors of the cosmos. Credit: NASA/ESA/STScI
This color composite image compiled by the Spitzer Space Telescope highlights the dazzling color palette of the cosmos. Credit: NASA/ESA/STScI

Astronomers detected 14 gigantic, red supergiant stars bloated to beyond 100 times their original size hidden within a star cluster estimated to be over 20 times the average size. Their outer envelopes of hydrogen bloated to beyond bursting, these behemoth stars are destined to end their days in one of the most energetic events in the cosmos a supernova. Destined to spread the elements of creation throughout the galaxy in a titanic explosion more energetic than the output of the entire Milky Way. 

“Only the most massive clusters can have lots of red supergiants because they are the only clusters capable of making behemoth stars,” explains Don Figer led scientists for the study. “They are good signposts that allow astronomers to predict the mass of the cluster. This observation also is a rare chance to study huge stars just before they explode. Normally, we don’t get to see stars before they pop off.” 

This very colorful artist's impression of the stars within this unknown star cluster. CreditNASA/ESA/STScI
This very colorful artist’s impression of the 14 red supergiant stars within this unknown star cluster. CreditNASA/ESA/STScI

What’s next for the team?

Red supergiant stars were indeed rare during the human journey to the beginning of space and time. Only about 200 such titanic stars have been identified among the hundreds of millions detected in the Milky Way. Finding 14 of these behemoth stars relatively close to Earth is an opportunity for astronomers to study their life cycle in greater detail. An opportunity Figer and his team at the Space Telescope Science Institute (STScI) in Baltimore plan on taking full advantage of during the years ahead. 

At the same time, Figer and his team of space scientists plan on studying an additional 130 supermassive star cluster candidates from the newly found clusters compiled in the Two Micron All Sky Survey catalog. “We can only see a small part of our galaxy in visible light because a dusty veil covers most of our galaxy,” Figer said. “I know there are other massive clusters in the Milky Way that we can’t see because of the dust. My goal is to find them using infrared light, which penetrates the dusty veil.” 

“Mysterious X-ray and gamma ray source explained!” 

“Now, we search for new cosmic mysteries to unveil!”

Take the space journey of NASA

Learn more about the Milky Way here

Discover the constellation Scutum

Learn more about the Space Telescope Science Institute here

Discover things about star clusters here

Take the space voyage of the Hubble Space Telescope here.

Learn more about red supergiant stars

Read about the Nuclear Star Cluster, the Milky Way’s densest star cluster.

Learn more about the giant star blowing a huge bubble of gas.

Read about astronomers discovering superstar binary systems like Eta Carinae are more common than first thought.

The Milky Way’s Nuclear Star Cluster

The most massive, densest star cluster in the galaxy 

hubbleimage1p1611a1r
In this image the infrared light, which is invisible to humans, has been translated into colors our eyes can see. The red stars observed are embedded or shrouded by intervening dust and gas. Areas appearing dark against the bright background stars are actually very dense clouds of gas and dust seen in silhouette. These regions even the infrared eyes of the Hubble Space Telescope can’t penetrate. Credits: NASA/ESA/Hubble

Space news (Into the lair of the Monster of the Milky Way) – the center of the galaxy, 27,000 light-years away – 

Astronomers recently used the Hubble Space Telescope’s infrared vision to observe the lair of the Monster of the Milky Way. Using Hubble’s infrared cameras scientists revealed a dusty galactic core crammed with over an estimated half a million stars. Plus at least ten million stars too faint to be seen by Hubble through the dust in the disk of our island universe. Watch this Spitzer Space Telescope site video “The Hidden Universe: The Galactic Center Revisited“.

hs-1998-28-d-large_web
A keyhole-view through Hubble’s looking glass towards the center of the Milky Way through the Sagittarius Star Cloud at a treasure chest full of stars. A treasure chest containing ancient stars that first formed the galaxy with a tale to tell astronomers about the evolution of galaxies.

Part of the Milky Way’s nuclear star cluster, the densest and most massive star cluster in the galaxy, these stars orbit Sagittarius A, a supermassive black hole astronomers believe resides at the center of our galaxy. Called the Monster of the Milky Way, the stars in this cluster are doomed to fall prey to this mysterious object, to be swallowed whole by this 4 million solar mass supermassive black hole. 

The 4-million-solar-mass black hole at the center of the Milky Way.

The bottom panel of this graphic is a view of the region around Sgr A* where red, green, and blue represent low, medium, and high-energy X-rays detected by NASA’s Chandra X-ray Observatory. Sgr A* itself is not visible in this image but is embedded in the white dot at the end of the arrow. The other two telescopes involved in the 15 years of X-ray observations were ESA’s XMM-Newton and NASA’s Swift Gamma Ray Burst Explorer, but their data are not included in this image.

Astrophysicists measured the movements of the stars within the galactic core to determine the mass and structure of the nuclear star cluster. Using these measurements they were able to get a glimpse backward in time to the moment it was formed. To see if it was constructed over time as globular clusters fell into the core of the galaxy or from gas and dust spiraling into the core from the disk to form new stars. 

hubbleimage2s1611aw
This image is meant to show the grand scale of the lair of the Monster of the Milky Way. The storm of stars seen here is actually just the tip of the iceberg, there are at least 10 million stars in this image to faint for Hubble to detect according to estimates by astronomers. Astronomers used the Hubble Space Telescope’s infrared vision to look through the dust in the disk of the Milky Way at its nuclear star cluster. Credits: NASA/ESA/Hubble

Study continues

Astronomers weren’t able to determine which scenario best fits current theory and computer simulations conducted. They continue to modify parameters and devise additional scenarios to explain the formation of the nuclear star cluster. We’ll update you on their findings in future articles. 

Learn more about the Monster of the Milky Way – Sagittarius A

Discover NASA

Take the space journey of the ESA here

Read and learn more about the Milky Way’s nuclear star cluster

Read about the unusual star formation timescale astronomers have observed in dwarf galaxy Leo A.

Check out this artist’s conception of future Europa spacecraft.

Read about Chandra’s detection of X-rays emitted by a distant supermassive black hole.

 

NASA WISE and Spitzer Telescopes Discover Titanic Galaxy Cluster

Astronomers say this monster was one of the biggest galaxy clusters of its time

The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. Credits: NASA/JPL-Caltech/Gemini/CARMA
The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster.
Credits: NASA/JPL-Caltech/Gemini/CARMA

Space news (November 07, 2015) – 8.5 billion light-years away in a remote part of the cosmos –

NASA astronomers conducting a survey of galaxy clusters using the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) recently viewed one of the biggest galaxy clusters ever recorded. Called Massive Overdense Object (MOO) J1142+1527, this monster galaxy cluster is in a very distant part of the universe and existed around 4 billion years before the birth of Earth.

8.5 billion years have passed since the light seen in the image above reached us here on Earth. MOO J1142+1527 has grown bigger during this time as more galaxies were drawn into the cluster and become even more extreme as far as galaxy clusters go. Containing thousands of galaxies, each with hundreds of billions of individual suns, galaxy clusters like this are some of the biggest structures in the cosmos. 

It’s the combination of Spitzer and WISE that lets us go from a quarter billion objects down to the most massive galaxy clusters in the sky,” said Anthony Gonzalez of the University of Florida in Gainesville, lead author of a new study published in the Oct. 20 issue of the Astrophysical Journal Letters.

Based on our understanding of how galaxy clusters grow from the very beginning of our universe, this cluster should be one of the five most massive in existence at that time,” said co-author Peter Eisenhardt, the project scientist for WISE at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Astronomers conducting this survey will now spend the next year sifting through more than 1,700 more galaxy clusters detected by the combined power of NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer looking for the largest galaxy clusters in the cosmos. Once they find the biggest galaxy clusters in the universe, they’ll use the data obtained to investigate their evolution and the extreme environments they’re found.

Once we find the most massive clusters, we can start to investigate how galaxies evolved in these extreme environments,” said Gonzalez.

You can learn more about the mission of the Spitzer Space Telescope here.

Discover the voyage and discoveries of WISE here.

Learn more about galaxy clusters here.

Read about the space missions of NASA here.

Learn more about the final days of stars.

Read about the Little Gem Nebula.

Read about plans for man to travel to Mars in the decades ahead.

Hubble Telescope Views Young Globular Cluster NGC 1783

One of the largest globular clusters in the Large Magellanic Cloud

 This new Hubble image of NGC 1783, taken with the Advanced Camera for Survey (ACS), shows the typical shape of young globular clusters viewed during the human journey to the beginning of space and time. Image credit NASA.

This new Hubble image of NGC 1783, taken with the Advanced Camera for Survey (ACS), shows the typical shape of young globular clusters viewed during the human journey to the beginning of space and time. Image credit NASA.

Space news (September 20, 2015) – 160,000 light-years from Earth toward the constellation Dorado –

Held in the grip of its own gravity, globular cluster NGC 1783 orbits the Milky Way as part of the Large Magellanic Cloud, a region of space filled with star-forming regions like the Tarantula Nebula and LHA 120-N 11.

Lying in the southern hemisphere constellation Dorado, the typical symmetrical form and dense collection of suns near the center of NGC 1783 was first recorded by John Herschel around 1835.

Astrophysicists studied the color and brightness of individual suns within globular cluster NGC 1783 to estimate its age and history of star formation. Measurements indicate that despite its typical distribution of stars and shape this larger star cluster is only about 1.5 billion years old and during its lifespan has undergone at least two-star forming periods separated by 50 to 100 million years. Typically globular clusters viewed are several billion years of age.

The highs and lows of star formation in a globular cluster gives astrophysicists an indication of the density of gas available for new stars to form during its life span. During periods when dense gas is available for star formation, the most massive stars explode as supernovae, blowing away the gas needed for new stars to form. The reservoir of gas for new star formation is then replenished by less massive stars which live longer and die less violently.  Once the reservoir of gas flows to denser, central regions of a star cluster, the second phase of star formation takes place, and a massive star with a short life spans once again blow off the gas. Astrophysicists think this cycle continues until the gas leftover can no longer sustain the formation of new stars.

Learn more about the formation of new stars here.

Discover NASA’s space mission here.

Journey to the beginning of space and time using the Hubble Space Telescope here.

Read more about galactic nurseries found during our journey.

Learn about New Horizons Visit to Pluto and its moon Charon.

Learn more about the star systems discovered during our trip through the cosmos.

Radio Phoenix Erupts After Collision Between Galaxy Clusters in Abell 1033

Produced by shockwaves compressing and re-energizing dormant clouds of electrons that shine at radio frequencies

 High-energy X-rays detected by NASA's Chandra X-ray Observatory are seen in pink in the image above, while radio data from NSF's Karl Jansky Very Large Array (VLA) is green. A map of the density of galaxies in the region, seen in blue was obtained by analysis of optical data.

High-energy X-rays detected by NASA’s Chandra X-ray Observatory are seen in pink in the image above, while radio data from NSF’s Karl Jansky Very Large Array (VLA) is green. A map of the density of galaxies in the region, seen in blue was obtained by analysis of optical data.

Space news (September 14, 2015) – 1.6 billion light-years from Earth in Abell 1033 –

Astronomers and astrophysicists looking at data provided by NASA’s Chandra X-ray Observatory, the Sloan Digital Sky Survey (SDSS), NSF’s Karl Jansky Very Large Array (VLA) and the Westerbork Synthesis Radio Telescope have detected what they refer to as a “Radio Phoenix“.

Consisting of an array of 14 radio telescopes with a diameter of 25 meters each, the Dutch Westerbork Synthesis Radio Telescope simulates a radio telescope with a diameter of up to 2.7 kilometres. Image credit Universe Awareness
Consisting of an array of 14 radio telescopes with a diameter of 25 meters each, the Dutch Westerbork Synthesis Radio Telescope simulates a radio telescope with a diameter of up to 2.7 kilometers. Image credit Universe Awareness

A Radio Phoenix as seen in the multiwavelength photo at the top of the page is a cloud of bright radio emission of high-energy electrons thousands of light-years across that originally erupted from the supermassive black hole near the center of Abell 1033. As the cloud expanded it faded over time as electrons within lost energy, until millions of years later it was reborn when shockwaves from a collision between Abell 1033 and another galaxy cluster compressed and re-energized the electrons, causing the cloud to shine as a Radio Phoenix.

This Radio Phoenix is expected to be reborn for only a few tens of million of years, just a blink of an eye on cosmic scales. The intense density and pressures in the region and powerful magnetic fields near the center of Abell 1033 will cause it to eventually fade into darkness.

To learn more about the Chandra X-ray Observatory go here.

Discover NSF’s Karl Jansky Very Large Array (VLA) here.

Learn more about the Westerbork Synthesis Radio Telescope here.

Learn more about NASA’s space mission here.

Go here to discover more about the Sloan Digital Sky Survey.

Learn more about Pluto and a recent visit by NASA’s New Horizons spacecraft.

Discover the search for the missing link in black hole evolution.

Read about plans for the human journey to the beginning of space and time to head to Jupiter’s moon Europa to look for signs of life.

NASA Releases New View of Iconic Pillars of Creation in 3D

Revealing protostars and giant clouds of gas and dust where new stars were born

This visualisation of the three-dimensional structure of the Pillars of Creation within the star formation region Messier 16 (also called the Eagle Nebula) is based on new observations of the object using the MUSE instrument on ESO’s Very Large Telescope in Chile. The pillars actually consist of several distinct pieces on either side of the star cluster NGC 6611. In this illustration, the relative distance between the pillars along the line of sight is not to scale. Image Credit: European Southern Observatory
This visualization of the three-dimensional structure of the Pillars of Creation within the star formation region Messier 16 (also called the Eagle Nebula) is based on new observations of the object using the MUSE instrument on ESO’s Very Large Telescope in Chile. The pillars actually consist of several distinct pieces on either side of the star cluster NGC 6611. In this illustration, the relative distance between the pillars along the line of sight is not to scale.
Image Credit: European Southern Observatory

Space news (August 18, 2015) – 7,000 light-years away toward constellation Serpens (The Serpent); the iconic Pillars of Creation

Astronomers working with the Multi Unit Spectroscopic Explorer (MUSE) on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) have released the first 3D image of the Pillars of Creation in the Eagle Nebula (M16 or Messier 16).

 The iconic first image of the Pillars of Creation, to the left in the image below, was taken by the Hubble Space Telescope in 1995, but the latest image shown on the right below is both bigger and shows new details. An immense jet from a young star, intense radiation and stellar winds from brilliant O and B type suns sculpture the dusty Pillars of Creation over time. Three million years in the future the pillars will be totally evaporated by these forces.
Undersea coral? Enchanted castles? Space serpents? These eerie, dark pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern.

The Pillars of Creation are a stellar feature that is more common than people first assume. Similar structures and shapes have been and are quite frequently seen during the human journey to the beginning of space and time. The columns of the Pillars of Creation were formed when intense radiation and stellar winds from huge, newly formed blue-white O and B suns blew away less dense material in the region of space surrounding them.

A study has shown the very top of the left pillar in the image is pointing toward us and sitting on top of another pillar behind nearby stellar cluster NGC 6611. This top portion of the left pillar is bearing the majority of withering radiation from nearby stars and this is why it looks brighter to our eyes compared to the other pillars.

I’m impressed by how transitory these structures are. They are actively being ablated away before our very eyes. The ghostly bluish haze around the dense edges of the pillars is material getting heated up and evaporating away into space. We have caught these pillars at a very unique and short-lived moment in their evolution,” explained Paul Scowen of Arizona State University in Tempe. He and astronomer Jeff Hester, formerly of Arizona State University, led the original Hubble observations of the Eagle Nebula.

Scowen said. “The gas is not being passively heated up and gently wafting away into space. The gaseous pillars are actually getting ionized, a process by which electrons are stripped off of atoms, and heated up by radiation from the massive stars. And then they are being eroded by the stars’ strong winds and a barrage of charged particles, which are literally sandblasting away the tops of these pillars.   

The denser material left behind acted as a shield against the harsh, withering glare of nearby brilliant young stars, and formed the shape of the region. The dark “tails” or “elephant trunks” viewed as the dark body of the pillars point away from the intense radiation and stellar winds of nearby brilliant stars.

Now, astronomers plan on studying how newborn O and B stars in NGC 6611 influence the growth of further generations of stars. Previous studies have detected protostars forming within the clouds of NGC 6611. The latest study also provided evidence for protostars forming in the middle and left clouds of the Pillars of Creation and there are also probably other protostars and young stars hidden from view within the region.

Astronomers want to study star-forming regions like the Pillars of Creation in order to better understand the conditions in which stars like our own Sun formed. Current evidence points to the early solar system being bombarded with radioactive shrapnel from a nearby supernova. This indicates we formed in a star-forming region with young stars massive enough to produce powerful ionizing radiation like we see in the Eagle Nebula.

“That’s the only way the nebula from which the sun was born could have been exposed to a supernova that quickly, in the short period of time that represents, because supernovae only come from massive stars, and those stars only live a few tens of millions of years,” Scowen explained. “What that means is when you look at the environment of the Eagle Nebula or other star-forming regions, you’re looking at exactly the kind of nascent environment that our sun formed in.”

You can find out more about the MUSE here.

Learn more about the European Southern Observatory here.

Discover more about the Hubble Space Telescope and the things we have discovered here.

Learn more about the formation of stars here.

Read about the surprises planetary scientists discovered during the recent flyby of NASA’s New Horizons spacecraft.

Learn more about how exploding stars seed the universe with the building blocks of life.

Read about how NASA scientists used the Hubble Space Telescope to map temperatures and water vapor on “a hot Jupiter-class exoplanet“.