Initial Atmospheric Study of Two Earth-Sized Exoplanets

Data shows at least one of two exoplanets studied orbits within the habitable zone of host red dwarf star in system TRAPPIST-1

This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)
This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)

Space news (the search for Earth 2.0: the first atmospheric study of Earth-sized exoplanets; TRAPPIST-1 system) – searching for possible atmospheres surrounding exoplanets TRAPPIST-1b and TRAPPIST-1c 40 light-years from Earth toward the constellation Aquarius – 

This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

Astronomers using the Hubble Space Telescope to search for suitable exoplanets to act as a cradle for a new human genesis recently sampled the atmospheres of two exoplanets orbiting a red dwarf star 40 light-years from Earth. They used Hubble’s Wide Field Camera 3 to observe TRAPPIST-1b and TRAPPIST-1c in near-infrared wavelengths to look for signs of an atmosphere. They discovered these two exoplanets probably don’t have the fluffy, hydrogen-dominated atmospheres found around larger, gaseous exoplanets.  

This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.
This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.

The image seen at the top of the page is an artist’s portrayal of TRAPPIST-1b and 1c, two Earth-sized exoplanets shown passing in front of their host red dwarf star. Astronomers used the Hubble Space Telescope to look for hints of atmospheres surrounding these distant worlds and detected signs increasing the chances of habitability.  

This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in colour.
This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in color. Credit: ESO

“The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.” 

Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis' work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope
Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis’ work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope

Julien de Wit of the Massachusetts Institute of Technology in Cambridge and a team of astronomers used spectroscopy to decipher the light, revealing clues to the chemical composition of an atmosphere surrounding these candidates. By taking advantage of a rare double-transit of both exoplanets across the face of their host star, they collected starlight passing through any gas envelope surrounding these exoplanets. This event only occurs every two years, but it allowed for a simultaneous measurement of atmospheric characteristics. The exact composition’s still a mystery at this point, further observations are required to determine more clues. This is an exciting and promising start. 

This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

“These initial Hubble observations are a promising first step in learning more about these nearby worlds, whether they could be rocky like Earth, and whether they could sustain life,” says Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington. “This is an exciting time for NASA and exoplanet research.” 

Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.
Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.

Estimates put the age of the host red dwarf star at around 500 million years, which is young for a star with a potential lifespan of trillions of years. Red dwarf stars burn a lot cooler, but completely consume their supply of hydrogen, unlike more massive types of stars. The most common star in the cosmos, astronomers think 20 out of 30 near-Earth suns could be red dwarfs. The numbers indicate searching nearby red dwarfs for an exoplanet with the right ingredients for habitability is a good place to begin our search. 

Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, "For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”
Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, “For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”

The team and other astronomers plan on making follow-up measurements of these two exoplanets using the Hubble Space Telescope, the Kepler Space Telescope, the TRAPPIST telescope at ESO’s La Silla Observatory, and other assets to look for thinner gas layers containing heavier atoms than hydrogen as in Earth’s atmosphere.  

“With more data, we could perhaps detect methane or see water features in the atmospheres, which would give us estimates of the depth of the atmospheres,” said Hannah Wakeford, the paper’s second author, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

AAEAAQAAAAAAAAb9AAAAJGFjNDRlNjYzLWFjYWYtNDU5NC05MTdkLWViYmEzNzJmZmE3ZA
Hannah Wakeford. Credits: Linked

Toward the future

In the years ahead, using assets like NASA’s James Webb Space Telescope, astronomers should be able to determine the exact composition of any atmospheres surrounding these exoplanets and others. Finding the signatures of water vapor and methane, or even carbon dioxide and ozone is a significant step toward possible habitability for lifeforms. The power of Webb should also allow planetary scientists to measure the surface and atmospheric temperature and pressure of each exoplanet. Both key factors to determining if these exoplanets orbiting red dwarf TRAPPIST-1 are possible cradles for the genesis of life. 

“Thanks to several giant telescopes currently under construction, including ESO’s E-ELT and the NASA/ESA/CSA James Webb Space Telescope due to launch for 2018, we will soon be able to study the atmospheric composition of these planets and to explore them first for water, then for traces of biological activity. That’s a giant step in the search for life in the Universe,” says Julien de Wit. 

Julien De Witt: Credits: Linked
Julien De Witt: Credits: Linked

“These Earth-sized planets are the first worlds that astronomers can study in detail with current and planned telescopes to determine whether they are suitable for life,” said de Wit. “Hubble has the facility to play the central atmospheric pre-screening role to tell astronomers which of these Earth-sized planets are prime candidates for more detailed study with the Webb telescope.” 

Read about a recent discovery about supermassive black holes changing current theories.

Read and learn about the new space technology being developed.

Read about the first observation of a supernova shockwave.

Read the official study here.

Check out NASA’s interactive exploration of the Exoplanet Zoo.

Learn more about NASA’s plans for the James Webb Space Telescope

Take the space journey of NASA here

Discover the Hubble Space Telescope. 

Read more about NASA’s plans for K2

Voyage across the cosmos on board the telescopes of the ESA here

Learn more about astronomy at the Massachusetts Institute of Technology

Read and learn more about TRAPPIST-1 and its planets here

Learn more about plans for the ESA’s E-ELT

Discover more about the work of NASA’s Space Telescope Science Institute here

Learn about the outstanding work being done by NASA’s Science Mission Directorate

Take a tour of NASA’s Goddard Space Flight Center here

 

Advertisements

Small Region of Sky Source of Mysterious, Energetic Blasts

Astronomers have identified source as a supermassive, unknown star cluster containing some of the most massive stars in the Milky Way 

Hidden within the region inset in the small square lie some of the rarest, most massive stars in the galaxy.
Hidden within the region inset in the small square lie some of the rarest, most massive stars in the galaxy. More than a dozen red supergiant stars. Credit: NASA/ESA/STScI

Space news (unknown X-ray and gamma-ray sources) – 2/3 of the way to the core of the Milky Way or 18,900 light-years (5,800 parsecs) from Earth toward the constellation Scutum in the Bermuda Triangle of the Milky Way – 

For years, astronomers studied a small region of the sky called the Bermuda Triangle known for mysterious, highly energetic blasts of X-rays and gamma rays looking for clues to the source. The identity of the source was finally determined around 2005 as an unknown, hefty star cluster containing some of the rarest and most massive stars in the Milky Way. More than a dozen red supergiant stars, supermassive stars that are destroyed when a star goes supernova, within a million years time.  

This color composite image compiled by the Spitzer Space Telescope highlights the colors of the cosmos. Credit: NASA/ESA/STScI
This color composite image compiled by the Spitzer Space Telescope highlights the dazzling color palette of the cosmos. Credit: NASA/ESA/STScI

Astronomers detected 14 gigantic, red supergiant stars bloated to beyond 100 times their original size hidden within a star cluster estimated to be over 20 times the average size. Their outer envelopes of hydrogen bloated to beyond bursting, these behemoth stars are destined to end their days in one of the most energetic events in the cosmos a supernova. Destined to spread the elements of creation throughout the galaxy in a titanic explosion more energetic than the output of the entire Milky Way. 

“Only the most massive clusters can have lots of red supergiants because they are the only clusters capable of making behemoth stars,” explains Don Figer led scientists for the study. “They are good signposts that allow astronomers to predict the mass of the cluster. This observation also is a rare chance to study huge stars just before they explode. Normally, we don’t get to see stars before they pop off.” 

This very colorful artist's impression of the stars within this unknown star cluster. CreditNASA/ESA/STScI
This very colorful artist’s impression of the 14 red supergiant stars within this unknown star cluster. CreditNASA/ESA/STScI

What’s next for the team?

Red supergiant stars were indeed rare during the human journey to the beginning of space and time. Only about 200 such titanic stars have been identified among the hundreds of millions detected in the Milky Way. Finding 14 of these behemoth stars relatively close to Earth is an opportunity for astronomers to study their life cycle in greater detail. An opportunity Figer and his team at the Space Telescope Science Institute (STScI) in Baltimore plan on taking full advantage of during the years ahead. 

At the same time, Figer and his team of space scientists plan on studying an additional 130 supermassive star cluster candidates from the newly found clusters compiled in the Two Micron All Sky Survey catalog. “We can only see a small part of our galaxy in visible light because a dusty veil covers most of our galaxy,” Figer said. “I know there are other massive clusters in the Milky Way that we can’t see because of the dust. My goal is to find them using infrared light, which penetrates the dusty veil.” 

“Mysterious X-ray and gamma ray source explained!” 

“Now, we search for new cosmic mysteries to unveil!”

Take the space journey of NASA

Learn more about the Milky Way here

Discover the constellation Scutum

Learn more about the Space Telescope Science Institute here

Discover things about star clusters here

Take the space voyage of the Hubble Space Telescope here.

Learn more about red supergiant stars

Read about the Nuclear Star Cluster, the Milky Way’s densest star cluster.

Learn more about the giant star blowing a huge bubble of gas.

Read about astronomers discovering superstar binary systems like Eta Carinae are more common than first thought.

Polar Ring Galaxy NGC 660’s a Cosmic Anomaly

A single odd galaxy in a group of around a dozen or so extremely rare, bizarre island universes 

This new Hubble image shows a peculiar galaxy known as NGC 660, located around 45 million light-years away from us. NGC 660 is classified as a "polar ring galaxy", meaning that it has a belt of gas and stars around its centre that it ripped from a near neighbour during a clash about one billion years ago. The first polar ring galaxy was observed in 1978 and only around a dozen more have been discovered since then, making them something of a cosmic rarity. Unfortunately, NGC 660’s polar ring cannot be seen in this image, but has plenty of other features that make it of interest to astronomers – its central bulge is strangely off-kilter and, perhaps more intriguingly, it is thought to harbour exceptionally large amounts of dark matter. In addition, in late 2012 astronomers observed a massive outburst emanating from NGC 660 that was around ten times as bright as a supernova explosion. This burst was thought to be caused by a massive jet shooting out of the supermassive black hole at the centre of the galaxy.
The polar ring of NGC 660 isn’t visible in this Hubble Space Telescope image, but its central bulge looks strangely tilted. Astronomers are more interested in large amounts of invisible dark matter they think could be hidden within it. Studying the formation of its polar ring during galactic interactions and mergers has provided knowledge and understanding of the shape of dark matter halos around galaxies. 

Space news (galactic interactions: rare galaxy types; polar ring galaxies) – 45 million light-years from Earth, swimming in the cosmic seas of the constellation Pisces – 

One of the most enigmatic objects discovered during the human journey to the beginning of space and time, polar ring galaxies are a cosmic anomaly. Containing a belt of gas and stars orbiting its center that it tore from another galaxy during a collision around one billion years ago, polar ring galaxies are composed of two distinct systems. One of the rarest and oddest galaxy types classified, astronomers study the formation mechanisms of polar ring galaxies in order to try to grasp more knowledge and understanding of the evolution of galaxies.  

potw1348a

NGC 660 is classified as a “polar ring galaxy”, meaning that it has a belt of gas and stars around its centre that it ripped from a near neighbour during a clash about one billion years ago. The first polar ring galaxy was observed in 1978 and only around a dozen more have been discovered since then, making them something of a cosmic rarity. Credit: Gemini North Telescope

A large, elliptical galaxy about 300 million light years from Earth.
Astronomers studying dark matter halos observe galaxies like NGC 4555 because it hasn’t interacted much with other galaxies, which makes it easier to dark matter they started with. Chandra has shown this galaxy is embedded in a cloud of 10-million-degree Celcius gas (left) with a diameter of 40,000 light-years, more than twice that of NGC 4445. (left). A dark matter halo ten times the combined mass of the stars in the galaxy (right) and 300 times the mass of the gas cloud would be required to gravitationally hold it. is difficult to determine how much dark matter they originally possessed. Chandra’s observations of NGC 4555 confirms that an isolated, elliptical galaxy can possess a dark matter halo of its own.

Studying dark matter halos

The study of the formation history of unique polar-ring spiral galaxy NGC 660 has been even more useful in the detection and shape of the galaxy’s otherwise unseen dark matter halo. The only island universe of this kind detected, so far, a team of astronomers at the Paris Observatory has been studying the formation of its polar ring during interactions and mergers between galaxies. In order to gain insight into the shape of dark matter halos around the thousands of galaxies viewed during our journey. 

QtgnudV
Polar Ring Galaxy NGC 660 Credit: AstronomyTrek

 

The disk of NGC 660 has a flat rotation curve and a rising polar ring astronomers find intriguing and rather puzzling. Scientists are studying its flatness and haven’t reached a conclusion, but they have determined it has a massive polar ring. It does raise a few difficulties in measuring the polar ring and disk velocities since they can’t be measured at the same radius. But astronomers have observed this in previous dark matter studies using polar ring galaxies. 

NGC 660’s also of interest to astronomers because late in 2012 they observed a massive burst emanating from this polar ring galaxy. An energetic outburst estimated to be nearly ten times as bright as a supernova event, they attribute to a massive jet shooting out of the supermassive black hole believed to reside at its core. This island universe’s a one-of-a-kind galaxy astronomers study looking for clues to its unique structure and formation history. A uniqueness that both intrigues and puzzles their inquisitive natures’. 

Learn about the things astronomers have determined about polar ring galaxies here

Learn more about dark matter

Take the space voyage of the ESA here

Discover NASA

Learn more about galaxies types here

Read about the unique stellar object called the Red Rectangle.

Fly on the icy blue wings of the Hen 2-437.

Read about the recent observation of gravitational waves by LIGO.

Ancient Star Clusters Often Swarm Around Lenticular Galaxies

Like bees around a cosmic beehive

potw15xx-ngc5308a
Credit: NASA/ESA/Hubble

Space news (lenticular galaxies) – 100 million light-years from Earth in the constellation Ursa Major (The Great Bear) –

The galaxy seen here is NGC 5308, a typical lenticular galaxy swarmed by star clusters circling around it like bees around a beehive. The Hubble Space Telescope image seen here is edge-on in relation to the galaxy, which offers a great view of the halo formed by the dense collection of older stars orbiting this island universe. 

Edge-on lenticular galaxies like NGC 5308 are S0 on the Hubble Tuning Fork classification system and are considered a transitional type between elliptical and spiral galaxies. But scientists are still trying to figure out the right formation theory for this type of galaxy. We’ll talk more about the current lenticular galaxy formation theory in a later article.

Also known as LEDA 48860 and UGC 8722, galaxies like this island universe are often referred to as armless spiral galaxies by astronomers. They usually have no obvious structure in their disks and are composed primarily of older, red stars. Lenticular galaxies like NGC 5308 often also appear more like elliptical galaxies than spirals, but usually have more dust.

Lenticular galaxies can often be mistaken for EO type galaxies if their central bulge isn’t very bright. They also don’t have spiral arms alive with bright, young stars as observed in spiral galaxies. But are found in some cases with a bar and in this case are classified as a barred lenticular galaxy (SBO).

Learn more about lenticular galaxies.

Take the space voyage of NASA to present day here.

Learn more about the Hubble Tuning Fork and its system of galaxy classification.

Voyage to distant cosmic discoveries with the ESA here.

Read about the Red Rectangle, a very unusual celestial object.

Discover one of the biggest, most massive stars in the galaxy.

Read about astronomers viewing a new galaxy forming.

A Titanic Supermassive Black Hole Residing in a Galactic Backwater

Makes astronomers think they need to rethink theory on black hole formation 

behemoth_blackhole
Scientists generated this computer simulation showing a supermassive black hole lurking at the center of a massive galaxy. The black sphere seen here at the core of the galaxy is its event horizon, beyond which not even light can escape the gravitational grip of this monster. A gravitational force that distorts spacetime near it and stretches and smears light from background stars as it travels past the black hole. Image credit: NASA/STSci/ESA

Space news (Black hole formation theory) – 200 million light-years from Earth in the direction of the constellation Eridanus –

Astronomers working on current black hole formation theory have detected a supermassive black hole at the center of a galaxy in a region of space and time they didn’t expect to find such a monster. A very hungry monster containing the mass of over 17 billion suns, residing in an out-of-the-way galactic backwater town.
Previously, astronomers detected titanic supermassive black holes at the center of huge, very massive galaxies in parts of space and time with a greater density of large galaxies. The very crowded Coma galaxy cluster has over 1,000 galaxies and is home to the biggest monster supermassive black hole recorded with an estimated mass of 21 billion times that of Sol.

heic1607a
NGC 1600 is a massive, isolated elliptical galaxy with one of the biggest recorded monster residing at its core. A supermassive black hole estimated to contain the matter found within 17 million suns like our own. Credit: NASA, ESA, Digital Sky Survey 2

“The newly discovered supersized black hole resides in the center of a massive elliptical galaxy, NGC 1600, located in a cosmic backwater, a small grouping of 20 or so galaxies,” said lead discoverer Chung-Pei Ma, a University of California-Berkeley astronomer and head of the MASSIVE Survey, a study of the most massive galaxies and supermassive black holes in the local universe. “While finding a gigantic black hole in a massive galaxy in a crowded area of the universe is to be expected – like running across a skyscraper in Manhattan – it seemed less likely they could be found in the universe’s small towns.”
“There are quite a few galaxies the size of NGC 1600 that reside in average-size galaxy groups,” Ma said. “We estimate that these smaller groups are about 50 times more abundant than spectacular galaxy clusters like the Coma cluster. So the question now is, ‘Is this the tip of an iceberg?’ Maybe there are more monster black holes out there that don’t live in a skyscraper in Manhattan, but in a tall building somewhere in the Midwestern plains.”

Ground-based view of NGC 1600
This is an image of lonely, wandering NGC 1600 taken by ground-based telescopes. Credit: NASA/ESA/Digitized Sky Survey 2

Astrophysicists studying NGC 1600 detected a supermassive black hole at least ten times more massive than current theory predicted at its center. Scientists previously thought the more massive the central bulge of a galaxy, proportionally more massive the supermassive black hole at its center should be, but this throws a wrench in previous correlations between the mass of a supermassive black hole and its central bulge of suns.

“It appears that that relation does not work very well with extremely massive black holes; they are a larger fraction of the host galaxy’s mass,” Ma said.

What could cause this smaller galaxy in a cosmic backwater to have such a titanic supermassive black hole at its core? It could be NGC 1600 merged with another galaxy hundreds of millions of years ago when such collisions were more common in this region of spacetime. Computer simulations show the central supermassive black holes of two merging galaxies fall into the center of the recently formed galaxy and begin orbiting each other in a slowly diminishing radius. Stars and other stellar objects that fall into the core steal momentum from the twirling monsters and in the process are often flung from the center of the galaxy. This transfer of momentum causes the supermassive black holes to slowly move closer together and eventually merge to form a super monster. A super monster that continues to grow by devouring gas drawn into the center of the galaxy by collisions and gravity.

In the words of Ma, “To become this massive, the black hole would have had a very voracious phase during which it devoured lots of gas.”

Astronomers continue to watch

Is it possible constant merging of NGC 1600 with galactic neighbors is one reason it lives in a cosmic backwater, with relatively few nearby galactic neighbors? It’s the brightest galaxy in town, more than three times brighter than any member of its galactic group. This difference in brightness has rarely been observed in other galactic groups. Maybe lots of galactic mergers resulted in one of the most titanic supermassive black holes ever recorded, residing in a small, cosmic backwater town.

The super monster lurking at the center of NGC 1600 is currently sleeping, but astronomers are watching for signs of its next meal going down. While they wait, they’re working on updating current theory on the formation of black holes, using the data obtained by studying NGC 1600 and similar galaxies. Current theory that will likely need to be revamped once new data comes in during our journey to the beginning of space and time.

The tide of science may rise and fall, but it always seeks truth in the facts. 

Take the space journey of NASA here.

Learn more about NGC 1600.

Learn more about supermassive black holes here.

Read more about black hole formation theory.

Learn more about the things astronomers learn by looking at the light from distant, young stars.

Supermassive black holes engulf any mass coming to close, and often burp after a meal.

Read about the weird light signal given off by two black holes that are destined to merge.

The Icy Blue Wings of Hen 2-437

A wintery bipolar planetary nebula

In this cosmic snapshot, the spectacularly symmetrical wings of Hen 2-437 show up in a magnificent icy blue hue. Hen 2-437 is a planetary nebula, one of around 3000 such objects known to reside within the Milky Way. Located within the faint northern constellation of Vulpecula (The Fox), Hen 2-437 was first identified in 1946 by Rudolph Minkowski, who later also discovered the famous and equally beautiful M2-9 (otherwise known as the Twin Jet Nebula). Hen 2-437 was added to a catalogue of planetary nebula over two decades later by astronomer and NASA astronaut Karl Gordon Henize. Planetary nebulae such as Hen 2-437 form when an aging low-mass star — such as the Sun — reaches the final stages of life. The star swells to become a red giant, before casting off its gaseous outer layers into space. The star itself then slowly shrinks to form a white dwarf, while the expelled gas is slowly compressed and pushed outwards by stellar winds. As shown by its remarkably beautiful appearance, Hen 2-437 is a bipolar nebula — the material ejected by the dying star has streamed out into space to create the two icy blue lobes pictured here.
In this cosmic snapshot, the spectacularly symmetrical wings of Hen 2-437 show up in a magnificent icy blue hue. Hen 2-437 is a planetary nebula, one of around 3000 such objects known to reside within the Milky Way. Located within the faint northern constellation of Vulpecula (The Fox), Hen 2-437 was first identified in 1946 by Rudolph Minkowski, who later also discovered the famous and equally beautiful M2-9 (otherwise known as the Twin Jet Nebula). Credit: Hubble/NASA/ESA 

Space news (March 09, 2016) – deep within the faint northern constellation Vulpecula (The Fox) –

Just one of over 3,000 spectacular planetary nebula astronomers have detected hidden within the Milky Way, the stunningly symmetrical icy blue wings of Hen 2-437 float upon the stars of Vulpecula in the Hubble image above. 

Just an icy blue cosmic moth adrift upon a sea of stars, Hen 2-437 is a bipolar nebula similar to hourglass shaped PN Hb 12 (Hubble 12) and the stunning M2-9 (The Twin Jet Nebula).

An example of a sun-like star in the final stages of its life cycle, material ejected by the dying star streamed outward into space to create the two icy blue wings of Hen 2-427 seen here. 

Sol will one day, billions of years in the future, swell to become a red giant and then expel its gaseous outer layers into space. Shrinking down to form a white dwarf, while ejected material is slowly compressed and pushed outward by stellar winds. The cast off gas streams outward into space to form the two icy blue lobes of Hen 2-437.

Watch this video on the icy blue wings of Hen 2-437

Learn more about two black holes astronomers believe are destined to collide.

Read about the recent observation of gravity waves by astronomers.

Learn more about the youngest, closest black hole to Sol.

Follow the journey of NASA across the solar system and stars here.

Learn more about bipolar planetary nebula.

Learn more about Wolf-Rayet stars.

Wolf-Rayet Star WR 31a Blows Hubble a Bubble

An interstellar cloud of dust, hydrogen, helium and other gasses expanding at a rate of around 220,000 kilometers (136,700 miles) per hour 

Sparkling at the centre of this beautiful NASA/ESA Hubble Space Telescope image is a Wolf–Rayet star known as WR 31a, located about 30 000 light-years away in the constellation of Carina (The Keel). The distinctive blue bubble appearing to encircle WR 31a, and its uncatalogued stellar sidekick, is a Wolf–Rayet nebula — an interstellar cloud of dust, hydrogen, helium and other gases. Created when speedy stellar winds interact with the outer layers of hydrogen ejected by Wolf–Rayet stars, these nebulae are frequently ring-shaped or spherical. The bubble — estimated to have formed around 20 000 years ago — is expanding at a rate of around 220 000 kilometres per hour! Unfortunately, the lifecycle of a Wolf–Rayet star is only a few hundred thousand years — the blink of an eye in cosmic terms. Despite beginning life with a mass at least 20 times that of the Sun, Wolf–Rayet stars typically lose half their mass in less than 100 000 years. And WR 31a is no exception to this case. It will, therefore, eventually end its life as a spectacular supernova, and the stellar material expelled from its explosion will later nourish a new generation of stars and planets.
Credit: NASA/ESA

Space news (March 11, 2016) – 30,000 light-years away in the constellation Carina (The Keel) – 

The Wolf-Rayet star WR 31a, near the centre of this Hubble image, is a bright celestial beacon ejecting hydrogen in layers that are interacting with extremely fast-moving stellar winds to produce the ring-shaped bubble of an interstellar cloud of dust, hydrogen, helium, and other gases viewed. 

Wolf-Rayet stars are the most massive stars detected during the human journey to the stars. WR 31a started life with over 20 times the mass of Sol. Our Sun is a main sequence star which is actually a little bigger than average. The more mass a star has, the shorter its expected life, which accounts for the short life span of this bright celestial beacon. In the words of NASA, massive stars “Live fast and die hard”. 

The mass of WR 31a puts it at the lower end of the mass scale for Wolf-Rayet stars, with the most massive estimates coming in at over 200 times the mass of our sun. The estimates of the mass of this type of star are still being worked on, so don’t take them to heart. 

Astronomers estimate WR 31a is only 20,000 years old, give or take a few thousand, which is around 10 percent of its life expectancy according to current theory. The life cycle of Wolf-Rayet stars is only a couple hundreds thousand years long, a mere blink of the eye in cosmic terms, which means this massive star will end its days as a spectacular supernova. 

The event we refer to as supernova is an essential part of the life cycle of the cosmos. Deep within these massive stars, the building blocks of the cosmos are created. It’s here the carbon, magnesium, calcium, and other elements that make up 4-5 percent of the universe are made using the extreme conditions that exist. 

We’re all stardust traveling on a pale-blue dot in the distance, across the vastness of space-time to an unknown but dreamed of ending. 

Watch this YouTube video on Wolf-Rayet star WR 31a.

Read about astronomers viewing gravitational waves for the first time.

Learn about the first moments of supernovae.

Read about mysterious waves detected moving across the planet-forming region of a nearby star.

You can learn more about Wolf-Rayet stars here. Talk to an astronomer about it here.

Follow the space journey of NASA

Learn more about the birth and death of stars here

Learn more about the supernova