Ferocious Wind Nebula Around Magnetar Observed for First Time

Giving us a rare, unique window into the environment and emission history of the strongest magnets in the cosmos

This X-ray image shows extended emission around a source known as Swift J1834.9-0846, a rare ultra-magnetic neutron star called a magnetar. The glow arises from a cloud of fast-moving particles produced by the neutron star and corralled around it. Color indicates X-ray energies, with 2,000-3,000 electron volts (eV) in red, 3,000-4,500 eV in green, and 5,000 to 10,000 eV in blue. The image combines observations by the European Space Agency's XMM-Newton spacecraft taken on March 16 and Oct. 16, 2014. Credits: ESA/XMM-Newton/Younes et al. 2016
This X-ray image shows extended emission around a source known as Swift J1834.9-0846, a rare ultra-magnetic neutron star called a magnetar. The glow arises from a cloud of fast-moving particles produced by the neutron star and corralled around it. Color indicates X-ray energies, with 2,000-3,000 electron volts (eV) in red, 3,000-4,500 eV in green, and 5,000 to 10,000 eV in blue. The image combines observations by the European Space Agency’s XMM-Newton spacecraft taken on March 16 and Oct. 16, 2014.
Credits: ESA/XMM-Newton/Younes et al. 2016

Space news (astrophysics: wind nebulas; Swift J1834.9-0846) – 13,000 light-years toward the constellation Scutum in the midst of a vast cloud of high-energy, particles surrounding supernova remnant W41 –

Astronomers studying the strongest magnets discovered during the human journey to the beginning of space and time, magnetars, have detected one they haven’t seen before. A magnetar, a rare highly magnetic neutron star with a vast cloud of high-energy, recently-emitted particles called a wind nebula streaming from it. Offering a unique window into the characteristics, environment and emission history of one of the most enigmatic and eye-opening objects ever detected.

“Right now, we don’t know how J1834.9 developed and continues to maintain a wind nebula, which until now was a structure only seen around young pulsars,” said lead researcher George Younes, a postdoctoral researcher at George Washington University in Washington. “If the process here is similar, then about 10 percent of the magnetar’s rotational energy loss is powering the nebula’s glow, which would be the highest efficiency ever measured in such a system.”

This illustration compares the size of a neutron star to Manhattan Island in New York, which is about 13 miles long. A neutron star is the crushed core left behind when a massive star explodes as a supernova and is the densest object astronomers can directly observe. Credits: NASA's Goddard Space Flight Center
This illustration compares the size of a neutron star to Manhattan Island in New York, which is about 13 miles long. A neutron star is the crushed core left behind when a massive star explodes as a supernova and is the densest object astronomers can directly observe.
Credits: NASA’s Goddard Space Flight Center

An object around 13 miles (20 kilometers) in diameter, or about the length of Manhattan Island, only 29 magnetars have been detected, so far. In this particular case, the source of detected emissions is called Swift J1834.9-0846, a rare type of ultra-magnetic neutron star detected by the Swift Gamma-ray Burst Satellite on August 7, 2011. It was subsequently looked at closer a month later by a team led by Younes using the European Space Agency’s (ESA) XMM-Newton X-ray Observatory. It was at this time astronomers realized and confirmed the first wind nebula ever detected around a magnetar.

“For me, the most interesting question is, why is this the only magnetar with a nebula? Once we know the answer, we might be able to understand what makes a magnetar and what makes an ordinary pulsar,” said co-author Chryssa Kouveliotou, a professor in the Department of Physics at George Washington University’s Columbian College of Arts and Sciences.

Neutron stars are the crushed cores of massive stars left over after they have gone supernova and the densest objects astrophysicists have been able to directly observe during the human journey to the beginning of space and time. All neutron star magnetic fields detected, so far, are 100 to 10 trillion times stronger than Earth’s, and magnetar fields reach levels thousands of times stronger. Astrophysicists have no ideas on how magnetic fields of such immense strength are formed. 

 co-author Alice Harding, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA
Co-author Alice Harding, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Credits: NASA

“Making a wind nebula requires large particle fluxes, as well as some way to bottle up the outflow so it doesn’t just stream into space,” said co-author Alice Harding, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We think the expanding shell of the supernova remnant serves as the bottle, confining the outflow for a few thousand years. When the shell has expanded enough, it becomes too weak to hold back the particles, which then leak out and the nebula fades away. This naturally explains why wind nebulae are not found among older pulsars, even those driving strong outflows.

“The nebula around J1834.9 stores the magnetar’s energetic outflows over its whole active history, starting many thousands of years ago,” said team member Jonathan Granot, an associate professor in the Department of Natural Sciences at the Open University in Ra’anana, Israel. “It represents a unique opportunity to study the magnetar’s historical activity, opening a whole new playground for theorists like me.”

What’s next?

Astrophysicists think a magnetar outburst’s powered by energy stored in its super-strong magnetic field produced gamma rays and x-rays, along with the gales of accelerated particles making up the nebula wind detected in the case of Swift J1834.9-0846. Now, they have a mystery to figure out, and new theories to deduce to explain the way a magnetar produces a nebula wind. 

Learn about the plasma jets of active supermassive black holes.

Learn what astronomers have discovered about the distribution of common chemicals during the early moments of the cosmos.

Read about NASA’s Juno spacecraft’s five year journey to Jupiter.

Join NASA’s journey to the beginning of space and time here.

Learn more about neutron stars.

Read more about magnetars here.

Discover NASA’s Goddard Space Flight Center.

Learn more about the discoveries of NASA’s Swift Gamma-ray Burst Satellite here.

Read more about Swift J1834.9-0846.

Read about the work of the European Space Agency here.

Discover the ESA’s XMM-Newton X-ray Observatory.

NASA’s Successor to Curiosity Rover Working Toward Summer Launch in 2020

To investigate Martian rocks for evidence of past life in advance of sending humans to work and live on the Red Planet

An artist concept image of where seven carefully-selected instruments will be located on NASA’s Mars 2020 rover. The instruments will conduct unprecedented science and exploration technology investigations on the Red Planet as never before. IMAGE CREDIT: NASA
An artist concept image of where seven carefully-selected instruments will be located on NASA’s Mars 2020 rover. The instruments will conduct unprecedented science and exploration technology investigations on the Red Planet as never before.
IMAGE CREDIT: NASA

Space news (missions to Mars: successor to Curiosity rover; Mars 2020 rover) – NASA’s Jet Propulsion Laboratory in Pasadena, California –

Planning for NASA's 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Mars 2020 is a mission concept that NASA announced in late 2012 to re-use the basic engineering of Mars Science Laboratory to send a different rover to Mars, with new objectives and instruments, launching in 2020. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages NASA's Mars Exploration Program for the NASA Science Mission Directorate, Washington. Credits: NASA/JPL-Caltech
Planning for NASA’s 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Mars 2020 is a mission concept that NASA announced in late 2012 to re-use the basic engineering of Mars Science Laboratory to send a different rover to Mars, with new objectives and instruments, launching in 2020. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages NASA’s Mars Exploration Program for the NASA Science Mission Directorate, Washington.
Credits: NASA/JPL-Caltech

NASA managers are looking forward to shifting gears on the Mars rover program in the 2020s. NASA’s Mars 2020 rover’s expected to arrive at the Red Planet around February 2021, carrying a science instrument package designed to build upon the success of NASA’s Mars Curiosity rover. It will investigate regions of the planet astrobiologists think were once favorable to microbial life, by collecting soil and rock samples, and then leaving them on the surface for a future Mars mission to collect for the possible return to Earth.

Terrain-Relative Navigation helps us land safely on Mars - especially when the land below is full of hazards like steep slopes and large rocks!
Terrain-Relative Navigation helps us land safely on Mars – especially when the land below is full of hazards like steep slopes and large rocks! The Mars 2020 spacecraft follows an entry, descent, landing process similar to that used in landing the Mars rover, Curiosity. It also has major new technologies that improve entry, descent, and landing: Range Trigger, Terrain-Relative Navigation, MEDLI and its EDL caneras and microphone. Credits: NASA/JPL

“The Mars 2020 rover is the first step in a potential multi-mission campaign to return carefully selected and sealed samples of Martian rocks and soil to Earth,” said Geoffrey Yoder, acting associate administrator of NASA’s Science Mission Directorate in Washington. “This mission marks a significant milestone in NASA’s Journey to Mars, to determine whether life has ever existed on Mars, and to advance our goal of sending humans to the Red Planet.”

The surface operations phase is the time when the rover conducts its scientific studies on Mars. After landing safely, Mars 2020 has a primary mission span of at least one Martian year (687 Earth days). The Mars 2020 rover uses a depot caching strategy for its exploration of Mars.
The surface operations phase is the time when the rover conducts its scientific studies on Mars. After landing safely, Mars 2020 has a primary mission span of at least one Martian year (687 Earth days).
The Mars 2020 rover uses a depot caching strategy for its exploration of Mars. Credits: NASA/JPL

NASA engineers, scientists and mission planners are ready to begin final design and construction of the next Mars rover. In the end, Mars 2020 will look like its six-wheeled, one-ton predecessor, Curiosity, but with a science instrument package designed to begin a new phase of exploration of the surface of Mars. It will begin exploring specifically selected regions of the planet for signs of life and the resources needed for future colonists to survive. Using two science instruments mounted on the rover’s robotic arm and two instruments on the mast, NASA’s Mars 2020 rover’s expected to show us new things about the Red Planet.

Current plans call for the Mars 2020 rover to use an upgraded version of the same sky crane landing system used by Curiosity. Engineers and designers have added a few improvements to the system opening up more potential landing sites on Mars with this edition. Giving mission planners more options to explore the Red Planet to a greater degree and hopefully provide a few more answers to the questions we have all been asking ourselves about Mars. 

Mars Science Laboratory (MSL) Entry Descent & Landing (EDL) activities in SFOF MSA Fishbowl. Pre-Landing. Date: 05 August/2012 Photographer: T. Wynne
Allen Chen, Mars 2020 entry, descent, and landing lead at NASA’s Jet Propulsion Laboratory conducting Mars Science Laboratory (MSL) Entry Descent & Landing (EDL) activities in SFOF MSA Fishbowl. Pre-Landing. 
Date: 05 August/2012
Photographer: T. Wynne

“By adding what’s known as range trigger, we can specify where we want the parachute to open, not just at what velocity we want it to open,” said Allen Chen, Mars 2020 entry, descent and landing lead at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “That shrinks our landing area by nearly half.”

NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010.
NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010. Credits: NASA/JPL

Engineers and designers have also added a suite of cameras and a microphone providing data onboard computers will analysis during descent and landing of the rover. This will help the spacecraft land in a safe zone and capture the sounds and imagery of the entry, descent, and landing as never before. We expect this data to eventually make for a thrilling video and improve the chances of future Mars missions. 

“As it is descending, the spacecraft can tell whether it is headed for one of the unsafe zones and divert to safe ground nearby,” said Chen. “With this capability, we can now consider landing areas with unsafe zones that previously would have disqualified the whole area. Also, we can land closer to a specific science destination, for less driving after landing.”

“Nobody has ever seen what a parachute looks like as it is opening in the Martian atmosphere,” said JPL’s David Gruel, assistant flight system manager for the Mars 2020 mission. “So this will provide valuable engineering information.”

“This will be a great opportunity for the public to hear the sounds of Mars for the first time, and it could also provide useful engineering information,” said Mars 2020 Deputy Project Manager Matt Wallace of JPL.

Mars 2020 rover goes forward

As the optimist said, “So far, so good.” NASA has completed stage three of a four-stage approval process needed for the Mars 2020 rover to go for launch. Now engineers and designers get to work assembling the final systems of NASA’s next Mars rover. Fortunately, they have already done a lot of the work during the building of Curiosity, and even have some spare parts and hardware that should work just fine laying around somewhere in the Jet Propulsion Laboratory. 

“Since Mars 2020 is leveraging the design and some spare hardware from Curiosity, a significant amount of the mission’s heritage components have already been built during Phases A and B,” said George Tahu, Mars 2020 program executive at NASA Headquarters in Washington. “With the KDP to enter Phase C completed, the project is proceeding with final design and construction of the new systems, as well as the rest of the heritage elements for the mission.”

Read and learn about the latest method astrophysicists have developed to help determine distances to objects on the other side of the Milky Way.

Learn more about the titanic, massive plasma jets astronomers have detected emanating from near some supermassive black holes.

Read about some of China’s contributions to the human journey to the beginning of space and time.

Read more about NASA’s Mars 2020 rover.

Join NASA’s journey to the beginning of space and time here.

Follow NASA’s Curiosity rover as it explores the surface of Mars.

Learn what NASA’s Spirit and Opportunity rovers have told us about the Red Planet here.

Learn more about NASA’s Jet Propulsion Laboratory.

 

3D Printing in Space Challenges Young Innovators to “Think Outside the Box”

In the design of an item or tool astronauts living and working on the International Space Station could use to complete a number of different tasks 

First 3D printer, Portal, to be tested onboard the International Space Station. Credits: Made In Space
First 3D printer, Portal, to be tested onboard the International Space Station.
Credits: Made In Space

Space news (Space Education Programs: Future Engineers; 3D Printing in Space Challenges, “Think Outside the Box” challenge) – design an item that assembles, telescopes, hinges, accordions, grows, or expands to become larger than the printing bounds of the AMF 3D printer on the International Space Station – 

Made in Space CTO Jason Dunn (left) and P.I. of the 3DP Experiment Mike Snyder look to optimize the first 3D printer for space.
Made in Space CTO Jason Dunn (left) and P.I. of the 3DP Experiment Mike Snyder look to optimize the first 3D printer for space.

Junior and teen aspiring engineers recently put their thinking hats on and came up with a few tools and items star voyagers on the International Space Station will find useful. Founding member of innovative education platform Future Engineers and partner NASA issued a challenge to young innovators to “think outside the box” in solving problems astronauts (star voyagers) will face while living and working in space during the decades ahead. The challenge to design a tool or item star voyagers on the International Space Station could use to make living in a microgravity environment easier. Aspiring inventors and young innovators answered the challenge with some stunning, innovative tools and items we’re sure astronauts living and working on the space station will find valuable. You can check out the aspiring engineers and their innovative space tools here.

Testing of the Made In Space 3D printer involved 400-plus parabolas of microgravity test flights. Credits: Credit: Made In Space
Testing of the Made In Space 3D printer involved 400-plus parabolas of microgravity test flights. Credit: Made In Space

Read about what astronomers have discovered about the distribution of elements during the first moments of the cosmos.

Help NASA look for young planetary systems that could contain a cradle for a new human Genesis to begin by becoming a Disk Detective.

Learn more about China’s more recent contributions to the human journey to the beginning of space and time.

Check out all of the 3D Printing in Space Challenges issued to young innovators and aspiring engineers by NASA at Future Engineers.

Learn more about the International Space Station.

Join NASA’s journey to the beginning of space and time here.

Learn more about innovative education platform Future Engineers.

NASA Adds to Framework of Plans for Three Year Mission to Mars

Planners under pressure to provide details of long-term plans before Presidential election

A team prepares a robot – the yellow machine attached to the liquid hydrogen tank for the Space Launch System rocket -- for friction plug welding at NASA's Michoud Assembly Facility in New Orleans. Friction plug welding is a technique developed by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama. It uses a robot to fill holes left after the tank goes through assembly in a larger robotic welder. The liquid hydrogen tank is more than 130 feet long and is the largest part of the rocket’s core stage -- the backbone of the rocket. The liquid hydrogen tank, along with a liquid oxygen tank, will provide 733,000 gallons of fuel for the first integrated mission of SLS with NASA's Orion spacecraft in 2018. SLS will be the world's most powerful rocket and take astronauts in Orion to deep space, including on the Journey to Mars. Image Credit: NASA/Michoud/Steve Seipel
A team prepares a robot – the yellow machine attached to the liquid hydrogen tank for the Space Launch System rocket — for friction plug welding at NASA’s Michoud Assembly Facility in New Orleans. Friction plug welding is a technique developed by engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama. It uses a robot to fill holes left after the tank goes through assembly in a larger robotic welder. The liquid hydrogen tank is more than 130 feet long and is the largest part of the rocket’s core stage — the backbone of the rocket. The liquid hydrogen tank, along with a liquid oxygen tank, will provide 733,000 gallons of fuel for the first integrated mission of SLS with NASA’s Orion spacecraft in 2018. SLS will be the world’s most powerful rocket and take astronauts in Orion to deep space, including on the Journey to Mars.
Image Credit: NASA/Michoud/Steve Seipel

Space news (Deep space missions: go for Mars; Orion spacecraft) – Marshall Space Flight Center in Huntsville, Alabama –

Technicians from Janicki Industries in Hamilton, Washington, position the layers of the diaphragm for the Orion stage adapter. The adapter will join the Orion spacecraft to the interim cryogenic propulsion stage (ICPS) of the Space Launch System, NASA's new rocket for the journey to Mars. The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. The adapter diaphragm is used to keep launch vehicle gases away from the spacecraft. The diaphragm is constructed of multiple layers of carbon fiber fabric material engrained with epoxy. The layers are pieced together and carefully positioned in place using laser projectors to outline where they need to go. Janicki finished laying the final piece in late October. The diaphragm work is being done in collaboration with NASA's Langley Research Center in Hampton, Virginia, and NASA's Marshall Space Flight Center in Huntsville, Alabama. Image Credit: Janicki Industries
Technicians from Janicki Industries in Hamilton, Washington, position the layers of the diaphragm for the Orion stage adapter. The adapter will join the Orion spacecraft to the interim cryogenic propulsion stage (ICPS) of the Space Launch System, NASA’s new rocket for the journey to Mars. The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. The adapter diaphragm is used to keep launch vehicle gases away from the spacecraft.
The diaphragm is constructed of multiple layers of carbon fiber fabric material engrained with epoxy. The layers are pieced together and carefully positioned in place using laser projectors to outline where they need to go. Janicki finished laying the final piece in late October. The diaphragm work is being done in collaboration with NASA’s Langley Research Center in Hampton, Virginia, and NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Image Credit: Janicki Industries

NASA plans to travel to the Red Planet for a three-year mission to set up operations for future missions and possible colonization recently took one step forward. NASA mission managers and other experts gave the Safety Oversight Board an update on the current status of plans to travel to Mars during the latest Aerospace Safety Advisory Panel (ASAP) meeting. The committee members took a very close look at their plans and pointed out America and NASA can’t afford to fumble the ball at this point in history. That with the Presidential election taking place, they‘ll need to see more on NASA’s future plans to travel to Mars, before more funding for future missions will be forthcoming.

We need the biggest rocket stage ever built for the bold missions in deep space that NASA's Space Launch System rocket will give us the capability to achieve. This infographic sums up everything you need to know about the SLS core stage, the 212-foot-tall stage that serves as the backbone of the most powerful rocket in the world. The core stage includes the liquid hydrogen tank and liquid oxygen tank that hold 733,000 gallons of propellant to power the stage’s four RS-25 engines needed for liftoff and the journey to Mars. #SLSFiredUp Image Credit: NASA/MSFC
We need the biggest rocket stage ever built for the bold missions in deep space that NASA’s Space Launch System rocket will give us the capability to achieve. This infographic sums up everything you need to know about the SLS core stage, the 212-foot-tall stage that serves as the backbone of the most powerful rocket in the world. The core stage includes the liquid hydrogen tank and liquid oxygen tank that hold 733,000 gallons of propellant to power the stage’s four RS-25 engines needed for liftoff and the journey to Mars. #SLSFiredUp
Image Credit: NASA/MSFC

NASA at this point’s trying to get work completed on the planned debut for the Space Launch System (SLS) with the launch of Exploration Mission Orion (EM-1) in 2017-2018. The second test of the Space Launch System (SLS) is scheduled for around 2021, with a crew this time, but NASA’s presently trying to reduce the five-year gap between the first two SLS missions. This launch system or something similar is needed for plans to travel to Mars and colonize the Red Planet sometime in the 2030s

When astronauts are on their first test flight aboard NASA’s Orion spacecraft, which will take them farther into the solar system than humanity has ever traveled before, their mission will be to confirm all of the spacecraft’s systems operate as designed in the actual environment of deep space. After an Orion test campaign that includes ground tests, systems demonstrations on the International Space Station, and uncrewed space test flights, this first crewed test flight will mark a significant step forward on NASA’s Journey to Mars. Credits: NASA/JPL
The first test flight aboard NASA’s Orion spacecraft will mark the furthest point human beings have traveled from the bosom of Mother Earth. This flight will confirm the spacecraft”s systems work as needed to keep astronauts alive during a deep space trip to Mars. Credits: NASA/JPL

At this point in time, these are the only scheduled SLS missions, but NASA’s documents do show preliminary plans for 41 SLS missions between 2018 to 2046 towards future surface missions on Phobos and then the Red Planet. NASA also provided a generalized plan calling for astronauts to journey to the fourth planet from the Sun for a permanent stay sometime in the 2030s. At this point, however, concrete long-term plans surrounding future manned trips to Mars are hazy due to NASA’s funding outlook, which is only estimated for long-term space mission requirements. Experts agree, though, a hefty increase in funding’s going to be needed for a realistic, viable plan and trip to the Red Planet. Getting it ready for more colonizers is a different question, though, requiring additional thought, planning, and funding.

Space Launching System installed in the Transonic Dynamic Tunnel for testing. Engineers, Martin Sekula, Mike Ramsey and David Piatak surveys the model before testing.
Space Launching System installed in the Transonic Dynamic Tunnel for testing. Engineers, Martin Sekula, Mike Ramsey and David Piatak surveys the model before testing. Final touches are made on a 10-foot model of the world’s most powerful rocket, the Space Launch System, just before testing it in the Transonic Dynamics Tunnel at NASA’s Langley Research Center in Hampton, Virginia. Credits: NASA/David C. Bowman

NASA’s Associate Administrator for Human Exploration and Operations Bill Gerstenmaier stated the SLS will launch at least once a year when questioned about the tight schedule of EM-1. NASA’s monster rocket system isn’t scheduled to take astronauts into space until sometime in the next decade, so expectations are for NASA to plan and execute a range of different unmanned space missions to test the system. This could include a mission to Jupiter’s moon Europa, to take a dip in the ocean of water planetary scientists think exists below its icy crust.

SLS_TDT: Mike Ramsey, Martin Sekula, and David Piatak in the control room of the Transonic Dynamic Tunnel testing the Space Launching System model. Engineers, Martin Sekula, David Piatak and Mike Ramsey
SLS_TDT: Mike Ramsey, Martin Sekula, and David Piatak in the control room of the Transonic Dynamic Tunnel testing the Space Launching System model. Engineers, Martin Sekula, David Piatak and Mike Ramsey. Rocket scientists at NASA’s Langley Research Center in Hampton, Virginia, analyze data in the control room during wind tunnel testing of a 10-foot model of the Space Launch System. Credits: NASA/David C. Bowman

Bill Hill, Deputy Associate Administrator for Exploration Systems Development (ESD) for NASA’s Human Exploration and Operations Mission Directorate (HEOMD), updated board members on the status of current plans for astronauts to travel to Mars by the 2030s. At this point in the planning, program managers are still reviewing options, rather than adding a foundation to present plans.

NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010.
NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s – goals outlined in the bipartisan NASA Authorization Act of 2010 and in the U.S. National Space Policy, also issued in 2010. Credits: NASA

NASA planners have significant hurdles to overcome if they’re to successfully send astronauts to the Red Planet and allow them to get back into orbit. The first obstacle’s going to be designing, engineering and testing a Solar Electric Propulsion (SEP) system capable of generating enough energy to get a spacecraft up to a significant percentage of the speed of light. The Helios space probes hold the record for the fastest recorded human spacecraft at around 150,000 miles per hour as they whip around the Sun measuring the solar wind and environment. The second significant hurdle’s collecting enough oxygen from the frozen regions of Mars to provide the fuel required to travel from the surface back into orbit. Plans for a three-year mission are also of concern to scientists, engineers and planners worried about the dangers and problems astronauts will face living, working and staying healthy during a long-duration space mission.

The spacecraft, rockets and associated systems in development for NASA's Commercial Crew Program are critical links in the agency's chain to send astronauts safely to and from the Red Planet in the future, even though the commercial vehicles won’t venture to Mars themselves. The key is reliable access to the International Space Station as a test bed.
The spacecraft, rockets and associated systems in development for NASA’s Commercial Crew Program are critical links in the agency’s chain to send astronauts safely to and from the Red Planet in the future, even though the commercial vehicles won’t venture to Mars themselves. The key is reliable access to the International Space Station as a test bed. Credits: NASA

Of concern previously and still a problem the committee mentioned was the need for engineers and scientists to produce a heat shield for the Orion spacecraft capable of surviving reentry. The spacecraft will have to survive a 13.5 kilometers per second entry velocity and planners indicated this capability’s on the agency’s must-do list. At present, Orion isn’t going to survive the fall to Earth after it returns from Mars, according to engineers and scientists. Committee members also noted they have been asking NASA managers for a formal outline of their plans to send astronauts to Mars for awhile. They specifically wanted to know what new technologies will be needed to successfully allow astronauts to travel to the Red Planet to begin colonization.

An artist's rendering of the Mars Ice Home concept. Credits: NASA/Clouds AO/SEArch
An artist’s rendering of the Mars Ice Home concept. Mars colonists arriving at the Red Planet might find the accommodations a little sparse. Getting out and about is going to be a little more difficult, but every day will be an adventure to never forget. Credits: NASA/Clouds AO/SEArch

NASA officials responded to committee member requests by stating the agency was in the process of “adding meat to the bones” of the transitional phase of their plans to send astronauts to Mars. During this phase 0, NASA’s turns its attention toward successful test flights for the SLS and Orion, while using the International Space Station (ISS) to test the effects of living and working in space for long periods of time.

Team members of the Ice Home Feasibility Study discuss past and present technology development efforts in inflatable structures at NASA's Langley Research Center. Credits: Courtesy of Kevin Kempton
Team members of the Ice Home Feasibility Study discuss past and present technology development efforts in inflatable structures at NASA’s Langley Research Center.
Credits: Courtesy of Kevin Kempton

The Asteroid Redirect Mission’s (ARM) phase 1 of NASA’s three-part plan to send astronauts to the Red Planet. Initially, this mission had a nominal date of around 2021, but planners have recently updated the mission launch date to around 2026. They’ll need to complete this mission successfully in order to learn some of the things they’ll need to know to send astronauts to Mars to begin colonization. During this phase, engineers and scientists will test the flight capability of the system using the Exploration Missions.

UPDATED Jan. 4, 2017, at 2 p.m. PST NASA's Mars Odyssey spacecraft has resumed full service following recovery after entering a safe standby mode on Dec. 26, 2016. The orbiter resumed communication relay assistance to Mars rovers on Dec. 30, 2016. Science observations of Mars by instruments on Odyssey resumed on Jan. 3, 2017, with its Thermal Emission Imaging System, and on the next day with its High Energy Neutral Spectrometer and the Neutron Spectrometer.
NASA’s Mars Odyssey spacecraft has resumed full service following recovery after entering a safe standby mode on Dec. 26, 2016. The orbiter resumed communication relay assistance to Mars rovers on Dec. 30, 2016. Science observations of Mars by instruments on Odyssey resumed on Jan. 3, 2017, with its Thermal Emission Imaging System, and on the next day with its High Energy Neutral Spectrometer and the Neutron Spectrometer. Credits: NASA

Phase 2 of NASA’s plans to send astronauts to Mars will test all flight elements needed to travel to the Red Planet, during planned Beyond Earth Orbit test missions. The committee thanked Mars Mission managers but asked to see more detail and definite plans on NASA’s current outline.

NASA has set a new launch opportunity, beginning May 5, 2018, for the InSight mission to Mars. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground.
NASA has set a new launch opportunity, beginning May 5, 2018, for the InSight mission to Mars. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. This artist’s concept depicts the InSight lander on Mars after the lander’s robotic arm has deployed a seismometer and a heat probe directly onto the ground. Credits: NASA/JPL

Mankind goes for Mars

Mr. Hill commented that NASA’s already learned many needed lessons towards phase 0 of their Mars Mission plans. He added that the nation had already invested significantly in the technology needed to send astronauts to Mar during the decades ahead. That more work needed to be done in order to not loose this work and get the job done within a specific time period. Specific milestones have been met and Exploration Mission 1’s (EM-1) on target for a launch window between September to November 2018.

Help NASA discover possible solar systems with planets suitable as cradles for a new human Genesis by becoming a Disk Detective.

Read about NASA’s ExoMars 2016 Trace Orbiter preparing to descend to the Red Planet.

Learn more about China’s space history and present contributions to the human journey to the beginning of space and time.

Learn more about NASA news concerning plans to send astronauts to Mars here.

Read more about NASA’s new Space Launch System (SLS).

Discover NASA’s Exploration Mission Orion (EM-1) here.

Read more about NASA’s Mars Missions.

Join NASA’s journey to the beginning of space and time.

Discover the International Space Station here.

Read and learn more about NASA’s Asteroid Redirect Mission (ARM).

How do Astronomers Precisely Determine Distances to Objects on the Other Side of the Milky Way Galaxy?

By studying light echoes, rings of x-rays observed around binary star system Circinus X-1

A light echo in X-rays detected by NASA’s Chandra X-ray Observatory has provided a rare opportunity to precisely measure the distance to an object on the other side of the Milky Way galaxy. The rings exceed the field-of-view of Chandra’s detectors, resulting in a partial image of X-ray data. Credits: NASA/CXC/U. Wisconsin/S. Heinz
The image above shows a light echo in x-rays detected by NASA’s Chandra X-ray Observatory which astronomers used to precisely measure the distance to a stellar object across the spiral disk of the Milky Way galaxy. The sizes of the light echoes detected in this image exceed the ability of the detectors, which has resulted in a partial construction of X-ray data. Credits: NASA/CXC/U. Wisconsin/S. Heinz

Space news (astrophysics: measuring distances of objects; light echoes) – 30,700 light-years from Earth in the plane of the Milky Way Galaxy, observing X-rays emitted by a neutron star in double star system Circinus X-1 reflecting off massive, surrounding clouds of gas and dust –

The youngest member of an important class of objects has been found using data from NASA's Chandra X-ray Observatory and the Australia Compact Telescope Array. A composite image shows the X-rays in blue and radio emission in purple, which have been overlaid on an optical field of view from the Digitized Sky Survey. This discovery, described in the press release, allows scientists to study a critical phase after a supernova and the birth of a neutron star.
The youngest member of an important class of objects has been found using data from NASA’s Chandra X-ray Observatory and the Australia Compact Telescope Array. A composite image shows the X-rays in blue and radio emission in purple, which have been overlaid on an optical field of view from the Digitized Sky Survey. This discovery allows scientists to study a critical phase after a supernova and the birth of a neutron star. Credits: NASA/Chandra

Determining the apparent distance of objects tens of thousands of light-years from Earth across the breadth of the Milky Way was a difficult problem to solve during the early days of the human journey to the beginning of space and time. During the years since these early days, astronomers have developed a few techniques and methods to help calculate distances to stellar objects on the other side of the galaxy. 

The most recently measured distance to an object on the other side of the Milky Way used the newest method developed. By detecting the rings from X-ray light echoes around the star Circinus X-1, a double star system containing a neutron star. Astronomers were able to determine the apparent distance to this system is around 30,700 light-years from Earth.

“It’s really hard to get accurate distance measurements in astronomy and we only have a handful of methods,” said Sebastian Heinz of the University of Wisconsin in Madison, who led the study. “But just as bats use sonar to triangulate their location, we can use the X-rays from Circinus X-1 to figure out exactly where it is.”

 Sebastian Heinz of the University of Wisconsin in Madison
Sebastian Heinz of the University of Wisconsin in Madison Credits: University of Wisconsin in Madison.

The rings are faint echoes from an outburst of x-rays emitted by Circinus X-1 near the end of 2013. The x-rays reflected off of separate clouds of gas and dust surrounding the star system, with some being sent toward Earth. The reflected x-rays arrived from different angles over a three month period, which created the observed X-ray rings. Using radio data scientists were able to determine the distance to each cloud of gas and dust, while detected X-ray echoes and simple geometry allowed for an accurate measurement of the distance to Circinus X-1 from Earth.

“We like to call this system the ‘Lord of the Rings,’ but this one has nothing to do with Sauron,” said co-author Michael Burton of the University of New South Wales in Sydney, Australia. “The beautiful match between the Chandra X-ray rings and the Mopra radio images of the different clouds is really a first in astronomy.”

Michael Burton of the University of New South Wales Credits: University of New South Wales
Michael Burton of the University of New South Wales Credits: University of New South Wales

In addition to this new distance measurement to Circinus X-1, astrophysicists determined this binary system’s naturally brighter in X-rays and other light than previously thought. This points to a star system that has repeatedly passed the threshold of brightness where the outward pressure of emitted radiation is balanced by the inward force of gravity. Astronomers have witnessed this equilibrium more often in binary systems containing a black hole, not a neutron star as in this case. The jet of high-energy particles emitted by this binary system’s also moving at 99.9 percent of the speed of light, which is a feature normally associated with a

The jet of high-energy particles emitted by this binary system’s also moving at 99.9 percent of the speed of light, which is a feature normally associated with a relativistic jet produced by a system containing a black hole. Scientists are currently studying this to see if they can determine why this system has such an unusual blend of characteristics.  

“Circinus X-1 acts in some ways like a neutron star and in some like a black hole,” said co-author Catherine Braiding, also of the University of New South Wales. “It’s extremely unusual to find an object that has such a blend of these properties.”

Astronomers think Circinus X-1 started emitting X-rays observers on Earth could have detected starting about 2,500 years ago. If this is true, this X-ray binary system’s the youngest detected, so far, during the human journey to the beginning of space and time.

This new X-ray data is being used to create a detailed three-dimensional map of the dust clouds between Circinus X-1 and Earth. 

What’s next?

Astrophysicists are preparing to measure distances to other stellar objects on the other side of the Milky Way using the latest distance measurement method. This new astronomy tool’s going to come in handy during the next leg of the human journey to the beginning of space and time.

Become a NASA Disk Detective and help classify embryonic planetary systems.

Read about the final goodbye of the Rosetta spacecraft, just before it crashes into the surface of comet 67P/Churyumov-Gerasimenko

Learn more about China’s contributions to the human journey to the beginning of space and time.

Assess NASA’s contribution to the human journey to the beginning of space and time here.

Discover the Milky Way.

You can view the published results of this study in The Astrophysical Journal and online here.

Learn about astronomy at the University of Wisconsin.

Discover astronomy at the University of New South Wales.

Learn more about Circinus X-1.

Learn what NASA’s Chandra X-ray Observatory has shown us about the cosmos here.