NASA’s Planning on Visiting the Water Worlds of the Solar System and Beyond

Next stop the ocean worlds of Enceladus and Europa

This illustration shows Cassini diving through the Enceladus plume in 2015. New ocean world discoveries from Cassini and Hubble will help inform future exploration and the broader search for life beyond Earth.
Credits: NASA/JPL-Caltech

Space news (planetary science: water worlds of the solar system; Enceladus and Europa) – planets and moons around the solar system and exoplanets across the universe covered with water

This graphic illustrates how scientists on NASA’s Cassini mission think water interacts with rock at the bottom of the ocean of Saturn’s icy moon Enceladus, producing hydrogen gas (H2).
The Cassini spacecraft detected the hydrogen in the plume of gas and icy material spraying from Enceladus during its deepest and last dive through the plume on Oct. 28, 2015. Cassini also sampled the plume’s composition during previous flybys, earlier in the mission. From these observations, scientists have determined that nearly 98 percent of the gas in the plume is water vapor, about 1 percent is hydrogen, and the rest is a mixture of other molecules including carbon dioxide, methane, and ammonia.
The graphic shows water from the ocean circulating through the seafloor, where it is heated and interacts chemically with the rock. This warm water, laden with minerals and dissolved gasses (including hydrogen and possibly methane) then pours into the ocean creating chimney-like vents.
The hydrogen measurements were made using Cassini’s Ion and Neutral Mass Spectrometer, or INMS, instrument, which sniffs gasses to determine their composition.
The finding is an independent line of evidence that hydrothermal activity is taking place in the Enceladus ocean. Previous results from Cassini’s Cosmic Dust Analyzer instrument, published in March 2015, suggested hot water is interacting with rock beneath the ocean; the new findings support that conclusion and indicate that the rock is reduced in its geochemistry. With the discovery of hydrogen gas, scientists can now conclude that there is a source of chemical free energy in Enceladus’ ocean.
The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The Ion and Neutral Mass Spectrometer was designed and built by NASA Goddard Space Flight Center, Greenbelt, Maryland; the team is based at Southwest Research Institute (SwRI) in San Antonio.
For more information about the Cassini mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Image Credit: NASA.

The solar system’s awash in water! NASA missions have provided verifiable facts showing ocean worlds and moons exist in our solar system and beyond, other than Earth. Planetary bodies where water is locked in a frozen embrace and even flowing beneath miles of ice. Liquid water exobiologists are keen to explore for life forms they would love to meet and get to know a little better during the next phase of the human journey to the beginning of space and time. Watch this YouTube video on NASA’s search for life on the ocean worlds of the solar system.

Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter’s moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.
This revelation didn’t happen until 1979 when NASA’s Voyager 1 and 2 flew by Jupiter and found evidence that Europa’s interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon’s interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.
Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.
The location of the plumes corresponds to the position of an unusually warm spot on the moon’s icy crust, as measured in the late 1990s by NASA’s Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon’s subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. Credits: NASA/JPL

Papers published by the journal Science and written by Cassini mission scientists and researchers working with the Hubble Space Telescope indicate hydrogen gas believed pouring from the subsurface ocean of Enceladus could potentially provide chemical energy life could use to survive and evolve. Watch this YouTube video called “NASA: Ingredients for Life at Saturn’s moon Enceladus“, it shows the proof scientists used to come to these conclusions. Their work provides new insights concerning possible oceans of water on moons of Jupiter and Saturn and other ocean moons in the solar system and beyond. 

Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter’s moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.
This revelation didn’t happen until 1979 when NASA’s Voyager 1 and 2 flew by Jupiter and found evidence that Europa’s interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon’s interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.
Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.
The location of the plumes corresponds to the position of an unusually warm spot on the moon’s icy crust, as measured in the late 1990s by NASA’s Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon’s subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. Credits: NASA/JPL

“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington. ”These results demonstrate the interconnected nature of NASA’s science missions that are getting us closer to answering whether we are indeed alone or not.”

Portrait of Thomas Zurbuchen taken on Monday, October 17, 2016, at NASA Headquarters in Washington. Photo Credit: (NASA/Aubrey Gemignani)

Researchers believe they have found evidence indicating hydrogen gas could be pouring out of hydrothermal vents on the floor of Saturn’s moon Enceladus and into these oceans of water. Any microbes existing in these distant waters could use this gas as a form of chemical energy to operate biological processes. By combining hydrogen with carbon dioxide dissolved in this ocean of water in a chemical reaction called methanogenesis, geochemists think methane could be produced which could act as the basis of a tree of life similar to the one observed on Earth. 

Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. The tiger stripes are four prominent, approximately 84-mile- (135-kilometer-) long fractures that cross the moon’s south polar terrain.
This two-image mosaic is one of the highest resolution views acquired by Cassini during its imaging survey of the geyser basin capping the southern hemisphere of Saturn’s moon Enceladus. It clearly shows the curvilinear arrangement of geysers, erupting from the fractures. .From left to right, the fractures are Alexandria, Cairo, Baghdad, and Damascus.
As a result of this survey, 101 geysers were discovered: 100 have been located on one of the tiger stripes (PIA17188), and the three-dimensional configurations of 98 of these geysers have also been determined (PIA17186). The source location of the remaining geyser could not be definitively established. These results, together with those of other Cassini instruments, now strongly suggest that the geysers have their origins in the sea known to exist beneath the ice underlying the south polar terrain.
These findings from the imaging survey, of which the two images composing this mosaic are a part, were presented in a paper by Porco, DiNino, and Nimmo and published in the online version of the Astronomical Journal in July 2014: http://dx.doi.org/10.1088/0004-6256/148/3/45.
A companion paper, by Nimmo et al., is available at http://dx.doi.org/10.1088/0004-6256/148/3/46.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org.
Photojournal notes: This image has been rotated 180 degrees from its original orientation published on February 2, 2010.
Image Credit:
NASA/JPL/Space Science Institute

On Earth, this process is thought to be at the root of the tree of life, and could even be essential, critical to the origin of life on our little blue dot. Life existing on our planet requires three main ingredients, liquid water, a source of energy for metabolic processes, and specific chemical ingredients to develop and continue to thrive. This study shows Enceladus could have the right ingredients for life to exist, but planetary scientists and exobiologists are looking for evidence of the presence of sulfur and phosphorus. 

This set of images from NASA’s Cassini mission shows how the gravitational pull of Saturn affects the amount of spray coming from jets at the active moon Enceladus. Enceladus has the most spray when it is farthest away from Saturn in its orbit (inset image on the left) and the least spray when it is closest to Saturn (inset image on the right).
Water ice and organic particles gush out of fissures known as “tiger stripes” at Enceladus’ south pole. Scientists think the fissures are squeezed shut when the moon is feeling the greatest force of Saturn’s gravity. They theorize the reduction of that gravity allows the fissures to open and release the spray. Enceladus’ orbit is slightly closer to Saturn on one side than the other. A simplified version of that orbit is shown as a white oval.
Scientists correlate the brightness of the Enceladus plume to the amount of solid material being ejected because the fine grains of water ice in the plume are very bright when lit from behind. Between the dimmest and brightest images, they detected a change of about three to four times in brightness, approximately the same as moving from a dim hallway to a brightly lit office.
This analysis is the first clear finding that shows the jets at Enceladus vary in a predictable manner. The background image is a mosaic made from data obtained by Cassini’s imaging science subsystem in 2006. The inset image on the left was obtained on Oct. 1, 2011. The inset image on the right was obtained on Jan. 30, 2011.
A related image, PIA17039, shows just the Enceladus images. The Saturn system mosaic was created from data obtained by Cassini’s imaging cameras in 2006.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, DC. The Cassini orbiter was designed, developed and assembled at JPL. The visual and infrared mapping spectrometer was built by JPL, with a major contribution by the Italian Space Agency. The visual and infrared mapping spectrometer science team is based at the University of Arizona, Tucson.
For more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov/.
Image Credit:
NASA/JPL-Caltech/University of Arizona/Cornell/SSI

Previous data shows the rocky core of this moon is similar to meteorites containing these two elements, so they’re thought to be chemically similar in nature, and scientists are looking for the same chemical ingredients of life found on Earth, primarily carbon, nitrogen, oxygen, and of course hydrogen, phosphorus, and sulphur.

Linda Spilker
Cassini Project Scientist. Credits: NASA

“Confirmation that the chemical energy for life exists within the ocean of a small moon of Saturn is an important milestone in our search for habitable worlds beyond Earth,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

This illustration shows NASA’s Cassini spacecraft about to make one of its dives between Saturn and its innermost rings as part of the mission’s grand finale.
Cassini will make 22 orbits that swoop between the rings and the planet before ending its mission on Sept. 15, 2017, with a final plunge into Saturn. The mission team hopes to gain powerful insights into the planet’s internal structure and the origins of the rings, obtain the first-ever sampling of Saturn’s atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn’s clouds and inner rings.
During its time at Saturn, Cassini has made numerous dramatic discoveries, including a global ocean that showed indications of hydrothermal activity within the icy moon Enceladus, and liquid methane seas on its moon Titan.
The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington.
For more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Image Credit: NASA/JPL-Caltech

Cassini detected hydrogen in plumes of gas and frozen matter spewing from Enceladus during the spacecraft’s deepest pass over its surface on October 28, 2015. This combined with previous data obtained by Cassini’s Ion and Neutral Mass Spectrometer (INMS) during earlier flybys around 2005, helped scientists determine that nearly 98 percent of the material spraying from the surface of the moon is water. The remaining two percent is thought to be around 1 percent hydrogen with some carbon dioxide, methane, ammonia and assorted unknown molecules in the mix. 

Cassini has shown us two independent detections of possible water spewing from the surface of Enceladus. NASA and its partners are currently looking over proposals to send spacecraft to determine if there is an ocean of water beneath its surface by taking a sample. The Europa Life Finder (ELF) is the proposal NASA’s seriously looking at undertaking at this point, but reports indicate a few other proposals are also being discussed. We’ll provide additional information on other proposals as they’re released to media outlets.

“Although we can’t detect life, we’ve found that there’s a food source there for it. It would be like a candy store for microbes,” said Hunter Waite, lead author of the Cassini study.

Two different observations of possible plumes of water spraying from the icy surface of Saturn’s moon Enceladus provides proof hydrothermal activity is occurring beneath. Geophysicists believe hot water is combining chemically with rock and other matter at the bottom of an ocean of water underneath its icy surface to produce hydrogen gas. Hydrogen gas exobiologists think could be used as energy, food of a sort, to sustain life forms exobiologists want to meet and learn more about. A meeting that would change our place in the cosmos, the way we think about the universe, and reality.

Looking for an interplanetary vacation destination? Consider a visit to Europa, one of the Solar System’s most tantalizing moons. Ice-covered Europa follows an elliptical path in its 85-hour orbit around our ruling gas giant Jupiter. Heat generated from strong tidal flexing by Jupiter’s gravity keeps Europa’s salty subsurface ocean liquid all year round. That also means even in the absence of sunlight Europa has energy that could support simple life forms. Unfortunately, it is currently not possible to make reservations at restaurants on Europa, where you might enjoy a dish of the local extreme shrimp. But you can always choose another destination from Visions of the Future.

Astronomers and researchers working with the Hubble Space Telescope in 2016 reported on an observation of a possible plume erupting from the icy surface of Europa in the same general location Hubble observed a possible plume in 2014. This location also corresponds to the unusually warm region with cracks in the icy surface observed by NASA’s Galileo spacecraft back in the 1990s. This provides evidence this phenomenon could be periodic, intermittent in this region of the moon. Mission planners are looking at this region as a possible location to obtain a sample of water erupting from a possible ocean of water beneath its icy surface. Watch this video on Europa.

Estimates of the size of this most recently observed plume indicate it rose about 62 miles (~100 kilometers) from the surface of Europa, while the plume in 2014 only reached a height of around 30 miles (50 kilometers). 

William Sparks
Space Telescope Science Institute. Credits: Space Science Institute/NASA/JPL

“The plumes on Enceladus are associated with hotter regions, so after Hubble imaged this new plume-like feature on Europa, we looked at that location on the Galileo thermal map. We discovered that Europa’s plume candidate is sitting right on the thermal anomaly,” said William Sparks of the Space Telescope Science Institute in Baltimore, Maryland. Sparks led the Hubble plume studies in both 2014 and 2016.

One interesting thought’s the plumes and the hot spot is somehow linked. If this is the case, it could mean the vented water’s falling onto the surface of the moon, which would change the structure and chemistry of the surface grains and allow them to retain heat longer than the surrounding region. This location would be a great place to search for the ingredients of life and a possible entry point into an ocean of water beneath.

NASA’s Europa Clipper mission is being designed to fly by the icy Jovian moon multiple times and investigate whether it possesses the ingredients necessary for life.
Credits: NASA/JPL-Caltech/SETI Institute

These observations by the Hubble Space Telescope and future looks enable future space missions to Europa and other ocean worlds in the solar system. Specifically, laying the groundwork for NASA’s Europa Clipper mission, which is set for a launch sometime in the 2020s. 

James Green: Director of Planetary Science, NASA Headquarters. Credits: NASA

“If there are plumes on Europa, as we now strongly suspect, with the Europa Clipper we will be ready for them,” said Jim Green, Director of Planetary Science, at NASA Headquarters.

NASA has indicated they’re looking to identify a possible site with persistent, intermittent plume activity as a target location for a mission to Europa to explore using its powerful suite of science instruments. Another team’s currently at work on a powerful ultraviolet camera to add to the Europa Clipper that would offer data similar to that provided by the Hubble Space Telescope, while some members of the Cassini team are working on a very sensitive, next generation INMS instrument to put on the spacecraft. 

Water’s the story of life on Earth! Science has shown it played and plays the main part in the birth, evolution, and sustenance of life on Earth. 

NASA’s planning on taking the human journey to the beginning of space and time to the ocean worlds of the solar system during the decades ahead. To search for the ingredients of life and even possibly simple one-celled life forms, of an unknown type. We plan on going along for the ride to have a look for ourselves and we hope to see your name on the ship manifest. We’ll save a seat for you.

Join the human journey to the beginning of space and time by taking part in NASA’s Backyard Worlds: Planet 9. Participants take part in the search for hidden worlds between Neptune and Proxima Centauri.

NASA’s and FEMA are currently tracking the progress of a 300 to 800 ft asteroid they think has around a 2 percent chance of hitting the Earth around September 20, 2020.

Planetary scientists searching the Red Planet for signs of past and present water believe they have found evidence indicating Mars once was a lot wetter and a possible location for the evolution of life.

Advertisements

NASA Establishes Translational Research Institute

To study ways to protect future astronauts as they prepare and one day travel to the other planets and throughout the solar system

iss036e006520
Enter a captionVisual Impairment Intracranial Pressure (VIIP) Syndrome was identified in 2005. It is currently NASA’s leading spaceflight-related health risk and is more predominant among men than women in space. Here, NASA astronaut Karen Nyberg of NASA uses a fundoscope to image her eye while aboard the International Space Station.Credits: NASA

Space news (NASA initiatives: The Transitional Research Institute (NTRI); researching and developing innovative approaches to decrease risks for humans associated with traveling and living in space) – Texas Medical Center Innovation Institute in Houston, Texas –

hrp-parabolic-flight-research-jsc2014e068503
Astronauts need to be tested and readied for space, a dangerous and hazardous environment for humans to work and live in. Credits: NASA

During the next few decades human beings will travel to parts of the solar system never visited before and the journey is expected to be dangerous, yet awe-inspiring. In order to reduce the risks associated with traveling and living in space, NASA has announced the formation of a partnership with Baylor College of Medicine in Houston. Plans are to operate a new institute charged with researching and developing innovative approaches designed to help keep astronauts alive and healthy during long-term voyages to Mars and beyond. 

spaceradiationgenderillustration59459-jpg

Men and women react differently to the environment called space and research can differ between the two. This diagram shows key differences between men and women in cardiovascular, immunologic, sensorimotor, musculoskeletal, and behavioral adaptations to human spaceflight. Credits: NASA

 

hhp-exercise-physiology-jsc2011e204363_alt
Astronauts need to be in shape to handle the rigors and hazards associated with living and traveling in space. Biomechanical Engineer Renita Fincke monitors Biomechanical Engineer Erin Caldwell as she performs a squat exercise to generate a computational biomechanical model in the Exercise Physiology and Counter Measures Project in Building 261. Photo Date: October 25, 2011.

Called the NASA Transitional Research Institute (NTRI), the new institute will implement a bench-to-spaceflight strategy. Their main goals to produce new treatments, countermeasures, and technologies with practical applications towards known spaceflight health risks. Medical problems like visual impairment intracranial pressure (VIIP) Syndrome, which was identified in 2005, and is currently NASA’s number one spaceflight-related health risk for astronauts. Plans are for the work to be done at the Texas Medical Center Innovation Institute in Houston, Texas.

1c6dc60
Marshall Porterfield is the new director of NASA’s Space Life and Physical Sciences Research and Applications Division. He’ll be leading the charge to protect astronauts as they prepare to head to Mars. Credit: Linked

“It’s fitting on the 47th anniversary of humanity’s first moon landing that we’re announcing a new human spaceflight research institute that will help reduce risks for our astronauts on the next giant leap – our Journey to Mars,” said Marshall Porterfield, NASA’s director of Space Life and Physical Sciences Research and Applications.

Time to get to work

Astronauts will be happy to hear this news and it has the potential to enable mankind’s journey to Mars and beyond to the beginning of space and time. The NASA Transitional Research Institute will help form relationships between scientists and medical laboratories and institutes looking to reduce health risks and performance barriers for humans traveling and living in space. It will also keep astronauts healthier during their space missions during the decades ahead. 

Learn about the Curiosity rover discovering evidence suggesting the Red Planet was once a much wetter world.

Discover how astronomers measure distances to objects on the other side of the Milky Way.

Read about the recent launch of NASA’s OSIRIS-REx to an expected rendezvous with asteroid Bennu.

You can learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Learn more about the NASA Human Research Program.

Learn more about the work of the professionals at the Baylor College of Medicine.

Discover the Texas Medical Center Innovation Institute.

Learn more about NASA’s plans to travel to send astronauts to Mars here.

Ferocious Wind Nebula Around Magnetar Observed for First Time

Giving us a rare, unique window into the environment and emission history of the strongest magnets in the cosmos

This X-ray image shows extended emission around a source known as Swift J1834.9-0846, a rare ultra-magnetic neutron star called a magnetar. The glow arises from a cloud of fast-moving particles produced by the neutron star and corralled around it. Color indicates X-ray energies, with 2,000-3,000 electron volts (eV) in red, 3,000-4,500 eV in green, and 5,000 to 10,000 eV in blue. The image combines observations by the European Space Agency's XMM-Newton spacecraft taken on March 16 and Oct. 16, 2014. Credits: ESA/XMM-Newton/Younes et al. 2016
This X-ray image shows extended emission around a source known as Swift J1834.9-0846, a rare ultra-magnetic neutron star called a magnetar. The glow arises from a cloud of fast-moving particles produced by the neutron star and corralled around it. Color indicates X-ray energies, with 2,000-3,000 electron volts (eV) in red, 3,000-4,500 eV in green, and 5,000 to 10,000 eV in blue. The image combines observations by the European Space Agency’s XMM-Newton spacecraft taken on March 16 and Oct. 16, 2014.
Credits: ESA/XMM-Newton/Younes et al. 2016

Space news (astrophysics: wind nebulas; Swift J1834.9-0846) – 13,000 light-years toward the constellation Scutum in the midst of a vast cloud of high-energy, particles surrounding supernova remnant W41 –

Astronomers studying the strongest magnets discovered during the human journey to the beginning of space and time, magnetars, have detected one they haven’t seen before. A magnetar, a rare highly magnetic neutron star with a vast cloud of high-energy, recently-emitted particles called a wind nebula streaming from it. Offering a unique window into the characteristics, environment and emission history of one of the most enigmatic and eye-opening objects ever detected.

“Right now, we don’t know how J1834.9 developed and continues to maintain a wind nebula, which until now was a structure only seen around young pulsars,” said lead researcher George Younes, a postdoctoral researcher at George Washington University in Washington. “If the process here is similar, then about 10 percent of the magnetar’s rotational energy loss is powering the nebula’s glow, which would be the highest efficiency ever measured in such a system.”

This illustration compares the size of a neutron star to Manhattan Island in New York, which is about 13 miles long. A neutron star is the crushed core left behind when a massive star explodes as a supernova and is the densest object astronomers can directly observe. Credits: NASA's Goddard Space Flight Center
This illustration compares the size of a neutron star to Manhattan Island in New York, which is about 13 miles long. A neutron star is the crushed core left behind when a massive star explodes as a supernova and is the densest object astronomers can directly observe.
Credits: NASA’s Goddard Space Flight Center

An object around 13 miles (20 kilometers) in diameter, or about the length of Manhattan Island, only 29 magnetars have been detected, so far. In this particular case, the source of detected emissions is called Swift J1834.9-0846, a rare type of ultra-magnetic neutron star detected by the Swift Gamma-ray Burst Satellite on August 7, 2011. It was subsequently looked at closer a month later by a team led by Younes using the European Space Agency’s (ESA) XMM-Newton X-ray Observatory. It was at this time astronomers realized and confirmed the first wind nebula ever detected around a magnetar.

“For me, the most interesting question is, why is this the only magnetar with a nebula? Once we know the answer, we might be able to understand what makes a magnetar and what makes an ordinary pulsar,” said co-author Chryssa Kouveliotou, a professor in the Department of Physics at George Washington University’s Columbian College of Arts and Sciences.

Neutron stars are the crushed cores of massive stars left over after they have gone supernova and the densest objects astrophysicists have been able to directly observe during the human journey to the beginning of space and time. All neutron star magnetic fields detected, so far, are 100 to 10 trillion times stronger than Earth’s, and magnetar fields reach levels thousands of times stronger. Astrophysicists have no ideas on how magnetic fields of such immense strength are formed. 

 co-author Alice Harding, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA
Co-author Alice Harding, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Credits: NASA

“Making a wind nebula requires large particle fluxes, as well as some way to bottle up the outflow so it doesn’t just stream into space,” said co-author Alice Harding, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We think the expanding shell of the supernova remnant serves as the bottle, confining the outflow for a few thousand years. When the shell has expanded enough, it becomes too weak to hold back the particles, which then leak out and the nebula fades away. This naturally explains why wind nebulae are not found among older pulsars, even those driving strong outflows.

“The nebula around J1834.9 stores the magnetar’s energetic outflows over its whole active history, starting many thousands of years ago,” said team member Jonathan Granot, an associate professor in the Department of Natural Sciences at the Open University in Ra’anana, Israel. “It represents a unique opportunity to study the magnetar’s historical activity, opening a whole new playground for theorists like me.”

What’s next?

Astrophysicists think a magnetar outburst’s powered by energy stored in its super-strong magnetic field produced gamma rays and x-rays, along with the gales of accelerated particles making up the nebula wind detected in the case of Swift J1834.9-0846. Now, they have a mystery to figure out, and new theories to deduce to explain the way a magnetar produces a nebula wind. 

Learn about the plasma jets of active supermassive black holes.

Learn what astronomers have discovered about the distribution of common chemicals during the early moments of the cosmos.

Read about NASA’s Juno spacecraft’s five year journey to Jupiter.

Join NASA’s journey to the beginning of space and time here.

Learn more about neutron stars.

Read more about magnetars here.

Discover NASA’s Goddard Space Flight Center.

Learn more about the discoveries of NASA’s Swift Gamma-ray Burst Satellite here.

Read more about Swift J1834.9-0846.

Read about the work of the European Space Agency here.

Discover the ESA’s XMM-Newton X-ray Observatory.

How do Astronomers Precisely Determine Distances to Objects on the Other Side of the Milky Way Galaxy?

By studying light echoes, rings of x-rays observed around binary star system Circinus X-1

A light echo in X-rays detected by NASA’s Chandra X-ray Observatory has provided a rare opportunity to precisely measure the distance to an object on the other side of the Milky Way galaxy. The rings exceed the field-of-view of Chandra’s detectors, resulting in a partial image of X-ray data. Credits: NASA/CXC/U. Wisconsin/S. Heinz
The image above shows a light echo in x-rays detected by NASA’s Chandra X-ray Observatory which astronomers used to precisely measure the distance to a stellar object across the spiral disk of the Milky Way galaxy. The sizes of the light echoes detected in this image exceed the ability of the detectors, which has resulted in a partial construction of X-ray data. Credits: NASA/CXC/U. Wisconsin/S. Heinz

Space news (astrophysics: measuring distances of objects; light echoes) – 30,700 light-years from Earth in the plane of the Milky Way Galaxy, observing X-rays emitted by a neutron star in double star system Circinus X-1 reflecting off massive, surrounding clouds of gas and dust –

The youngest member of an important class of objects has been found using data from NASA's Chandra X-ray Observatory and the Australia Compact Telescope Array. A composite image shows the X-rays in blue and radio emission in purple, which have been overlaid on an optical field of view from the Digitized Sky Survey. This discovery, described in the press release, allows scientists to study a critical phase after a supernova and the birth of a neutron star.
The youngest member of an important class of objects has been found using data from NASA’s Chandra X-ray Observatory and the Australia Compact Telescope Array. A composite image shows the X-rays in blue and radio emission in purple, which have been overlaid on an optical field of view from the Digitized Sky Survey. This discovery allows scientists to study a critical phase after a supernova and the birth of a neutron star. Credits: NASA/Chandra

Determining the apparent distance of objects tens of thousands of light-years from Earth across the breadth of the Milky Way was a difficult problem to solve during the early days of the human journey to the beginning of space and time. During the years since these early days, astronomers have developed a few techniques and methods to help calculate distances to stellar objects on the other side of the galaxy. 

The most recently measured distance to an object on the other side of the Milky Way used the newest method developed. By detecting the rings from X-ray light echoes around the star Circinus X-1, a double star system containing a neutron star. Astronomers were able to determine the apparent distance to this system is around 30,700 light-years from Earth.

“It’s really hard to get accurate distance measurements in astronomy and we only have a handful of methods,” said Sebastian Heinz of the University of Wisconsin in Madison, who led the study. “But just as bats use sonar to triangulate their location, we can use the X-rays from Circinus X-1 to figure out exactly where it is.”

 Sebastian Heinz of the University of Wisconsin in Madison
Sebastian Heinz of the University of Wisconsin in Madison Credits: University of Wisconsin in Madison.

The rings are faint echoes from an outburst of x-rays emitted by Circinus X-1 near the end of 2013. The x-rays reflected off of separate clouds of gas and dust surrounding the star system, with some being sent toward Earth. The reflected x-rays arrived from different angles over a three month period, which created the observed X-ray rings. Using radio data scientists were able to determine the distance to each cloud of gas and dust, while detected X-ray echoes and simple geometry allowed for an accurate measurement of the distance to Circinus X-1 from Earth.

“We like to call this system the ‘Lord of the Rings,’ but this one has nothing to do with Sauron,” said co-author Michael Burton of the University of New South Wales in Sydney, Australia. “The beautiful match between the Chandra X-ray rings and the Mopra radio images of the different clouds is really a first in astronomy.”

Michael Burton of the University of New South Wales Credits: University of New South Wales
Michael Burton of the University of New South Wales Credits: University of New South Wales

In addition to this new distance measurement to Circinus X-1, astrophysicists determined this binary system’s naturally brighter in X-rays and other light than previously thought. This points to a star system that has repeatedly passed the threshold of brightness where the outward pressure of emitted radiation is balanced by the inward force of gravity. Astronomers have witnessed this equilibrium more often in binary systems containing a black hole, not a neutron star as in this case. The jet of high-energy particles emitted by this binary system’s also moving at 99.9 percent of the speed of light, which is a feature normally associated with a

The jet of high-energy particles emitted by this binary system’s also moving at 99.9 percent of the speed of light, which is a feature normally associated with a relativistic jet produced by a system containing a black hole. Scientists are currently studying this to see if they can determine why this system has such an unusual blend of characteristics.  

“Circinus X-1 acts in some ways like a neutron star and in some like a black hole,” said co-author Catherine Braiding, also of the University of New South Wales. “It’s extremely unusual to find an object that has such a blend of these properties.”

Astronomers think Circinus X-1 started emitting X-rays observers on Earth could have detected starting about 2,500 years ago. If this is true, this X-ray binary system’s the youngest detected, so far, during the human journey to the beginning of space and time.

This new X-ray data is being used to create a detailed three-dimensional map of the dust clouds between Circinus X-1 and Earth. 

What’s next?

Astrophysicists are preparing to measure distances to other stellar objects on the other side of the Milky Way using the latest distance measurement method. This new astronomy tool’s going to come in handy during the next leg of the human journey to the beginning of space and time.

Become a NASA Disk Detective and help classify embryonic planetary systems.

Read about the final goodbye of the Rosetta spacecraft, just before it crashes into the surface of comet 67P/Churyumov-Gerasimenko

Learn more about China’s contributions to the human journey to the beginning of space and time.

Assess NASA’s contribution to the human journey to the beginning of space and time here.

Discover the Milky Way.

You can view the published results of this study in The Astrophysical Journal and online here.

Learn about astronomy at the University of Wisconsin.

Discover astronomy at the University of New South Wales.

Learn more about Circinus X-1.

Learn what NASA’s Chandra X-ray Observatory has shown us about the cosmos here.

Traveling Across the Tarantula Nebula on a Runaway Star

hs-2010-14-a-web_print (1)
This image of the 30 Doradus nebula, a rambunctious stellar nursery, and the enlarged inset photo show a heavyweight star that may have been kicked out of its home by a pair of heftier siblings. In the inset image at right, an arrow points to the stellar runaway and a dashed arrow to its presumed direction of motion. The image was taken by the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA’s Hubble Space Telescope. The heavyweight star, called 30 Dor #016, is 90 times more massive than the Sun and is traveling at more than 250,000 miles an hour. In the wider view of 30 Doradus, the homeless star, located on the outskirts of the nebula, is centered within a white box. The box shows Hubble’s field of view. The image was taken by the European Southern Observatory’s (ESO) Wide Field Imager at the 2.2-meter telescope on La Silla, Chile. Credits: NASA/ESA/Hubble

Traveling at 250,000 mph would be a windy, visually spectacular ride to hell 

Space news (Astrophysics: stellar nursery dynamics; runaway stars) – 170,000 light-years from Earth, near the edge of the Tarantula Nebula – 

hs-2010-14-b-full_jpg
Hubble/WFPC2 and ESO/2.2-m Composite Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

If you want to travel through the galaxy, hitch a ride on a runaway star like the one astronomers have been tracking since it came screaming out of 30 Doradus (Tarantula Nebula) in 2006. Data collected by the newly installed Cosmic Origins Spectrograph on the Hubble Space Telescope suggests a massive star, as much as 90 times the mass of Sol, was knocked out of the nebula by gravitational interactions with even more massive suns. Traveling at around 250,000 mph, voyaging through the cosmos on this runaway star would be an adventure to write home about.  

hs-2010-14-c-large_web
ESO 2.2-m WFI Image of the Tarantula Nebula. Credits: NASA/ESA/Hubble

The trail leads back to a star-forming region deep within the Tarantula Nebula called R136, where over 2,400 massive stars near the center of this huge nebula produce an intense wind of radiation. Astronomers think interactions with some of the 100 plus solar mass stars detected in this stellar nursery resulted in this runaway star being flung over 375 light-years by its bigger siblings.  

hs-2010-14-d-web_print
Massive Star is Ejected from a Young Star Cluster. Credits: NASA/ESA/Hubble

These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region,” says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. “Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters.”   

walbornq75sm
Nolan Walborn. Credits: NASA/ESA/Hubble Heritage Site

Astrophysicists studying the runaway star and the region in the Tarantula region where the trail ended believe it’s likely a massive, blue-white sun at least ten times hotter than Sol and only a few million years old. It’s far from home and in a region of space where no clusters with similar stars are found. It’s also left an egg-shaped cavity in its wake with glowing edges pointing in the direction of the center of 30 Doradus and the region of R136. A flaming trail you would see behind the star as you traveled across the cosmos and onto eternity.  

hs-2010-14-e-web_print
Compass/Scale Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

 “It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster’s most massive stars have not yet exploded as supernovae,” says COS team member Danny Lennon of the Space Telescope Science Institute. “This implies that the star must have been ejected through dynamical interaction.” 

This runway star continues to scream across the cosmos, nearing the outskirts of 30 Doradus a star-forming region in the Large Magellanic Cloud, it will one day end its existence in a titanic explosion or supernova, and possibly leave behind one of the most mysterious and enigmatic objects discovered during the human journey to the beginning of space and time, a black hole.  

hs-2010-14-f-web_print
Hubble Observations of Massive Stars in the Large Magellanic Cloud. Credits: NASA/ESA/Hubble

Imagine riding this runaway star until it contracted into a black hole and left our universe altogether. Where would we travel? To a random location in spacetime? To another reality or universe? The possibilities abound and far exceed our ability to imagine such a reality. Scientists tell us such a journey wouldn’t be possible, but they’re just stumbling around in the dark looking for ideas to grasp. For handholds on the dark cliff we climb as we search for answers to the mysteries before us.  

What’s next?

Astronomers continue to study the Tarantula Nebula and the star-forming region R136 looking for signs of impending supernovae among the zoo of supermassive stars within. They also continue to track this runaway star and two other blue hot, supermassive stars outside the boundary of 30 Doradus that appear to have also been ejected from their host systems. We’ll update you with any news on it, and other runaway stars as it continues to scream across the cosmos. 

You can follow the space journey of NASA here

Experience the space voyage of the ESA

Learn more about the Tarantula Nebula here

Read about the discoveries of the Hubble Space Telescope

Explore NASA’s Space Telescope Institute here

Discover everything astronomers know about the star-forming region R136

Discover the mysteries of the Large Magellanic Cloud here

Read about the discoveries of the Chandra X-ray Observatory

Read and learn more about ancient navigators “The Incredible Polynesian Navigators Followed the Stars“.

Learn what astronomers are discovering about the first black holes to exist in the universe.

Read about astronomers observe the shock wave of a supernova in visible light for the first time.

Mars

A symbol for war and aggression for human tribes for thousands of years, fear and foreboding grew in the heart whenever a blood-red star, Mars (the Red Planet) appeared and moved across the night sky.

Global mosaic of Mars. Visible in the center of this mosaic is the largest known chasm in the solar system, Valles Marineris. Reproduced from Volume 14 of the Mars Digital Image Model (MDIM) CD-ROM set.
Global mosaic of Mars. Visible in the center of this mosaic is the largest known chasm in the solar system, Valles Marineris. Reproduced from Volume 14 of the Mars Digital Image Model (MDIM) CD-ROM set.

Space & Astronomy Wiki – the planets of the solar system –

With 11 percent of the mass and half the diameter of Earth, Mars is smaller than Venus and bigger than both Mercury and the Moon. A world of geological wonders, with ancient volcanoes dwarfing the biggest mountains on Earth, the Red Planet had warm and wet geological periods in the distant past.

The most studied of the nine planets besides Earth, Mars is the fourth planet from the Sun at an average distance of 142 million miles and is named after the Roman God of War.

Tuesday was Mars Day in ancient Babylonia, who first created the seven-day week because they believed on this day Mars influenced their lives. With two small moons called Phobos and Deimos, that look much more like asteroids from the Main Asteroid Belt, and a surface that looks Earth-like in photographs, the Red Planet is probably the best planet to terraform.

Mars has an atmosphere primarily composed of carbon dioxide, with a little water vapor, and not enough oxygen for you to breath. With a gravity field .375 of Earth’s and an average surface temperature of -81 degrees Celsius, it will take generations to make the Red Planet habitable for human life.

You can find out more about Mars here.

Read about the first Earth-sized planet found orbiting in its host star’s habitable zone.

Learn more about main sequence stars like our Sun.

Read about floating debris or waves space scientists see on the seas of Saturn’s moon Titan.

 

Pisces

The 14th biggest constellation in the night sky, Pisces the Fishes is visible in the night sky between latitude 90 to -65 degrees.

The constellation of Pisces actually consists of two fish, one working its way north, the other west. You’ll find Alpha (α) Piscium located at the southern tip of the constellation, at the point where the two segments are joined. That strange name, Alrescha, is derived from the Arabian name, Al Risha, meaning “cord,” which refers to the point at which the two piscatorial cousins are bound together in a knotted cord. Note that the locations shown for Jupiter and Uranus on this chart are current as of the first half of November, 2011. (Stellarium image with labels added, click for a larger view).
The constellation of Pisces actually consists of two fish, one working its way north, the other west. You’ll find Alpha (α) Piscium located at the southern tip of the constellation, at the point where the two segments are joined. That strange name, Alrescha, is derived from the Arabian name, Al Risha, meaning “cord,” which refers to the point at which the two piscatorial cousins are bound together with a knotted cord. Note that the locations are shown for Jupiter and Uranus on this chart as of the first half of November 2011. (Stellarium image with labels added, click for a larger view).

Space & astronomy wiki – the constellations in the sky –

Northeast of Aquarius the Water Bearer and Northwest of Cetus the Sea-monster, observers in Canada best look in early Autumn to view this faint, but huge V-shaped constellation occupying 889 square degrees of the 1st quadrant of the Northern Hemisphere.

The best time to see Pisces is around 9 p.m. (10 p.m. local standard time) between November 6-9. This changes to around 8 p.m. during the early days of December.

Look for the celestial signpost most observers use to find Pisces the Fishes, the Great Square of Pegasus as shown in the image below. Look for the Circlet of Pisces – often called the head of the Western Fish – to the south of the Square of Pegasus. Once you locate the Circlet of Pisces, head east of the Square of Pegasus to the Eastern Fish.

One of the first constellations in the night sky to be identified by ancient astronomers, Pisces the Fishes is believed to be based originally on the Syrian goddess of love and fertility Atagartis. Half-fish and half-woman some archaeologists believe Atagartis is the inspiration Babylonian astronomers used to originate both Greek and Roman goddesses of love and beauty Aphrodite and Venus.

For more information on Pisces, the Fishes go here.

Learn more about how stars seed the universe with the building blocks of the cosmos.

Read about Einstein’s spacetime.

Read about NASA’s Spitzer Telescopes view of the chaotic heart of supernova M82.