NASA’s Backyard Worlds: Planet 9 Needs Your Help to Spot Rogue Worlds Between Neptune and Proxima Centauri

By spotting moving objects in brief movies made from images captured by NASA’s Wide-field Infrared Survey Explorer (WISE)

NASA's looking for a few citizen scientists to help search for unidentified planets beyond Neptune and out to Alpha Centauri way. Credits : NASA/JPL/Goddard Studios
NASA’s looking for a few citizen scientists to help search for unidentified planets beyond Neptune and out to Alpha Centauri way. Credits: NASA/JPL/Goddard Studios

Space news (Astrophysics: The search for nearby planets; Backyard Worlds: Planet 9) – the outer reaches of our solar system beyond Neptune and neighboring interstellar space –

NASA’s Backyard Worlds: Planet 9 invites you to join the human journey to the beginning of space and time by helping astronomers search for undiscovered worlds on the outer fringes of our solar system and wandering in nearby interstellar space. Just by viewing brief movies created by using images taken by NASA’s Wide-field Infrared Survey Explorer (WISE) and then picking out moving objects in the frames. You can help find interesting things for scientists to study further and you might even get your name on any scientific papers written on the subject. Watch this NASA video on the new website

“There are just over four light-years between Neptune and Proxima Centauri, the nearest star, and much of this vast territory is unexplored,” said lead researcher Marc Kuchner, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Because there’s so little sunlight, even large objects in that region barely shine in visible light. But by looking in the infrared, WISE may have imaged objects we otherwise would have missed.”

Marc Kuchner, for Astronomy Magazine
Credits: NASA/Goddard Studios/Marc Kuchner, for Astronomy Magazine

WISE is just one of many repurposed, retasked spacecraft working beyond the years’ designers and engineers first proposed for their space mission. After being told to stand down in 2011, our intrepid space explorer was reassigned a new mission by NASA in 2013, to identify hazardous near-Earth asteroids and comets. They also gave the old space horse a new name, the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE).

A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving orange dot (upper left) in this loop of WISE images spanning five years. By viewing movies like this, anyone can help discover more of these objects. Credits: NASA/WISE
A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving orange dot (upper left) in this loop of WISE images spanning five years. By viewing movies like this, anyone can help discover more of these objects.
Credits: NASA/WISE

People deciding to join the human journey to the beginning of space and time through this invitation search for unknown objects beyond Neptune using data provided by NEOWISE. You’ll be looking for asteroids and comets possibly on a collision course with Earth. You could also discover the fabled Planet X or a brown dwarf star too faint to be seen in nearby interstellar space, like the brown dwarf star called WISE 0855-0714.

“Brown dwarfs form like stars but evolve like planets, and the coldest ones are much like Jupiter,” said team member Jackie Faherty, an astronomer at the American Museum of Natural History in New York. “By using Backyard Worlds: Planet 9, the public can help us discover more of these strange rogue worlds.”

Jackie Faherty, Senior Scientist/Senior Education Manager at American Museum of Natural History Credits: Linked
Jackie Faherty, Senior Scientist/Senior Education Manager at American Museum of Natural History Credits: Linked

You might be wondering what your tired eyes can do to help NASA scientists? Objects closer to the solar system move across the sky at different rates, unlike ones further away. The most efficient way to search for them is by systematically looking for moving objects in NEOWISE data. Computers are normally used for this job, but human eyes are often better at picking out important moving objects among all the other things on the screen. 

Watch short animations

On Backyard Worlds: Planet 9, millions of people from around the world watch millions of short animations showing how a small patch of the sky has changed over many years. Any important moving objects noticed can be flagged by astronomers for further study. The discoverer could even be given credit in scientific papers written on the subject. This is your chance to join the human journey to the beginning of space and time and get noticed.

“Backyard Worlds: Planet 9 has the potential to unlock once-in-a-century discoveries, and it’s exciting to think they could be spotted first by a citizen scientist,” said team member Aaron Meisner, a postdoctoral researcher at the University of California, Berkeley, who specializes in analyzing WISE images.

Learn about NASA’s engineers testing a prototype asteroid capture system ARM astronauts could use to capture a boulder from the surface of a near-Earth asteroid in the near future.

Read about NASA’s successor to the Curiosity rover, the Mars 2020 rover, and its updated plans.

Become a NASA Disk Detective and help classify young planetary systems.

Join Backyard Worlds: Planet 9.

Learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Discover NEOWISE.

Learn more about the discoveries and work of WISE.

Ferocious Wind Nebula Around Magnetar Observed for First Time

Giving us a rare, unique window into the environment and emission history of the strongest magnets in the cosmos

This X-ray image shows extended emission around a source known as Swift J1834.9-0846, a rare ultra-magnetic neutron star called a magnetar. The glow arises from a cloud of fast-moving particles produced by the neutron star and corralled around it. Color indicates X-ray energies, with 2,000-3,000 electron volts (eV) in red, 3,000-4,500 eV in green, and 5,000 to 10,000 eV in blue. The image combines observations by the European Space Agency's XMM-Newton spacecraft taken on March 16 and Oct. 16, 2014. Credits: ESA/XMM-Newton/Younes et al. 2016
This X-ray image shows extended emission around a source known as Swift J1834.9-0846, a rare ultra-magnetic neutron star called a magnetar. The glow arises from a cloud of fast-moving particles produced by the neutron star and corralled around it. Color indicates X-ray energies, with 2,000-3,000 electron volts (eV) in red, 3,000-4,500 eV in green, and 5,000 to 10,000 eV in blue. The image combines observations by the European Space Agency’s XMM-Newton spacecraft taken on March 16 and Oct. 16, 2014.
Credits: ESA/XMM-Newton/Younes et al. 2016

Space news (astrophysics: wind nebulas; Swift J1834.9-0846) – 13,000 light-years toward the constellation Scutum in the midst of a vast cloud of high-energy, particles surrounding supernova remnant W41 –

Astronomers studying the strongest magnets discovered during the human journey to the beginning of space and time, magnetars, have detected one they haven’t seen before. A magnetar, a rare highly magnetic neutron star with a vast cloud of high-energy, recently-emitted particles called a wind nebula streaming from it. Offering a unique window into the characteristics, environment and emission history of one of the most enigmatic and eye-opening objects ever detected.

“Right now, we don’t know how J1834.9 developed and continues to maintain a wind nebula, which until now was a structure only seen around young pulsars,” said lead researcher George Younes, a postdoctoral researcher at George Washington University in Washington. “If the process here is similar, then about 10 percent of the magnetar’s rotational energy loss is powering the nebula’s glow, which would be the highest efficiency ever measured in such a system.”

This illustration compares the size of a neutron star to Manhattan Island in New York, which is about 13 miles long. A neutron star is the crushed core left behind when a massive star explodes as a supernova and is the densest object astronomers can directly observe. Credits: NASA's Goddard Space Flight Center
This illustration compares the size of a neutron star to Manhattan Island in New York, which is about 13 miles long. A neutron star is the crushed core left behind when a massive star explodes as a supernova and is the densest object astronomers can directly observe.
Credits: NASA’s Goddard Space Flight Center

An object around 13 miles (20 kilometers) in diameter, or about the length of Manhattan Island, only 29 magnetars have been detected, so far. In this particular case, the source of detected emissions is called Swift J1834.9-0846, a rare type of ultra-magnetic neutron star detected by the Swift Gamma-ray Burst Satellite on August 7, 2011. It was subsequently looked at closer a month later by a team led by Younes using the European Space Agency’s (ESA) XMM-Newton X-ray Observatory. It was at this time astronomers realized and confirmed the first wind nebula ever detected around a magnetar.

“For me, the most interesting question is, why is this the only magnetar with a nebula? Once we know the answer, we might be able to understand what makes a magnetar and what makes an ordinary pulsar,” said co-author Chryssa Kouveliotou, a professor in the Department of Physics at George Washington University’s Columbian College of Arts and Sciences.

Neutron stars are the crushed cores of massive stars left over after they have gone supernova and the densest objects astrophysicists have been able to directly observe during the human journey to the beginning of space and time. All neutron star magnetic fields detected, so far, are 100 to 10 trillion times stronger than Earth’s, and magnetar fields reach levels thousands of times stronger. Astrophysicists have no ideas on how magnetic fields of such immense strength are formed. 

 co-author Alice Harding, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA
Co-author Alice Harding, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Credits: NASA

“Making a wind nebula requires large particle fluxes, as well as some way to bottle up the outflow so it doesn’t just stream into space,” said co-author Alice Harding, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We think the expanding shell of the supernova remnant serves as the bottle, confining the outflow for a few thousand years. When the shell has expanded enough, it becomes too weak to hold back the particles, which then leak out and the nebula fades away. This naturally explains why wind nebulae are not found among older pulsars, even those driving strong outflows.

“The nebula around J1834.9 stores the magnetar’s energetic outflows over its whole active history, starting many thousands of years ago,” said team member Jonathan Granot, an associate professor in the Department of Natural Sciences at the Open University in Ra’anana, Israel. “It represents a unique opportunity to study the magnetar’s historical activity, opening a whole new playground for theorists like me.”

What’s next?

Astrophysicists think a magnetar outburst’s powered by energy stored in its super-strong magnetic field produced gamma rays and x-rays, along with the gales of accelerated particles making up the nebula wind detected in the case of Swift J1834.9-0846. Now, they have a mystery to figure out, and new theories to deduce to explain the way a magnetar produces a nebula wind. 

Learn about the plasma jets of active supermassive black holes.

Learn what astronomers have discovered about the distribution of common chemicals during the early moments of the cosmos.

Read about NASA’s Juno spacecraft’s five year journey to Jupiter.

Join NASA’s journey to the beginning of space and time here.

Learn more about neutron stars.

Read more about magnetars here.

Discover NASA’s Goddard Space Flight Center.

Learn more about the discoveries of NASA’s Swift Gamma-ray Burst Satellite here.

Read more about Swift J1834.9-0846.

Read about the work of the European Space Agency here.

Discover the ESA’s XMM-Newton X-ray Observatory.

NASA”s ‘Disk Detective’ Invites You to Help Astronomers Classify Embryonic Planetary Systems

To determine which young planetary systems to study closer with the Hubble Space Telescope and in a few years time its successor the James Webb Space Telescope (JWST) 

Herbig-Haro 30 is the prototype of a gas-rich young stellar object disk. The dark disk spans 40 billion miles in this image, cutting the bright nebula in two and blocking the central star from direct view. Volunteers can help astronomers find more disks like this through DiskDetective.org. Image Credit: NASA/ESA/C. Burrows (STScI)
Herbig-Haro 30 is the prototype of a gas-rich young stellar object disk. The dark disk spans 40 billion miles in this image, cutting the bright nebula in two and blocking the central star from direct view. Volunteers can help astronomers find more disks like this through DiskDetective.org.
Image Credit: NASA/ESA/C. Burrows (STScI)

Space news (NASA crowdsourcing projects: Disk Detective.org; help discover new planetary nurseries) – scanning over 745 million stellar objects across the cosmos looking for new planet nurseries to study – 

The large disk of gas surrounding Fomalhaut is clearly visible in this image. It is not centred on Fomalhaut quite as predicted, hinting that the gravity of another body – perhaps a planet – is pulling it out of shape.
Debris disks, such as this one around the bright star Fomalhaut, tend to be older than 5 million years, possess little or no gas, and contain belts of rocky or icy debris that resemble the asteroid and Kuiper belts found in our own solar system. The radial streaks are scattered starlight. Image Credit: NASA/ESA/UC Berkeley/Goddard/LLNL/JPL
NASA invites all peoples to join the human journey to the beginning of space and time by helping astronomers discover new planetary systems by joining their largest crowd-sourcing project to date Disk Detective. Volunteers view brief animations of stellar objects called flip books and then classify each object based on simple criteria. This simple classification system helps astronomers determine which objects, from around 500,000, they need to have a closer look at to see if it might be a planetary nursery.  

“Through Disk Detective, volunteers will help the astronomical community discover new planetary nurseries that will become future targets for NASA’s Hubble Space Telescope and its successor, the James Webb Space Telescope,” said James Garvin, the chief scientist for NASA Goddard’s Sciences and Exploration Directorate. 

Projected to launch in 2018, JWST is an infrared telescope that will observe the early universe, between one million and a few billion years in age. Credit: NASA
Projected to launch in 2018, JWST is an infrared telescope that will observe the early universe, between one million and a few billion years in age.
Credit: NASA

The objects volunteers help classify were originally narrowed down from around 345 million initially identified by NASA’s Wide-field Infrared Survey Explorer (WISE) during a survey of the entire sky between 2010 and 2011. Astronomers used computers to search through WISE data to find the objects volunteers classify through this citizen science initiative to identify more planetary nurseries for astronomers to study. 

“Planets form and grow within disks of gas, dust and icy grains that surround young stars, but many details about the process still elude us,” said Marc Kuchner, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “We need more examples of planet-forming habitats to better understand how planets grow and mature.”

DiskDetective with P.I. Marc Kuchner, and James Garvin, Goddard Chief Scientist, NASA/GSFC
DiskDetective with P.I. Marc Kuchner, and James Garvin, Goddard Chief Scientist, NASA/GSFC Marc Kuchner, the principal investigator for DiskDetective.org (left) and James Garvin, the chief scientist for NASA Goddard’s Sciences and Exploration Directorate, discuss the crowdsourcing project in front of the hyperwall at Goddard’s Sciece Visualization Lab. Image Credit: NASA’s Goddard Space Flight Center/David Friedlander

Join today!

NASA needs your help. You can check out DiskDetective.org to get a better idea of the requirements of taking part in this citizen science initiative. The interface used is relatively user-friendly, but the instructions were excellent, so you shouldn’t have any trouble. Just follow the instructions provided. This is your chance to join the human journey to the beginning of space and time. 

“Disk Detective’s simple and engaging interface allows volunteers from all over the world to participate in cutting-edge astronomy research that wouldn’t even be possible without their efforts,” said Laura Whyte, director of citizen science at Adler Planetarium in Chicago, Ill., a founding partner of the Zooniverse collaboration. 

Read about NASA’s recent selection of five American aerospace firms to study Mars orbiter concepts.

Learn more about NASA’s selection of seven American university teams to design and engineer space habitat prototypes.

Read and learn more about NASA’s selection of eight teams of ambitious young university students to design space habitats for colonizers heading to Mars.

Join NASA’s voyage through the cosmos here

Check out DiskDetective.org

Discover the Hubble Space Telescope here

Learn more about the James Webb Space Telescope

Discover NASA’s Goddard Space Flight Center here

Learn more about NASA’s Wide-field Infrared Survey Explorer

 

NASA’s OSIRIS-REx Launches Toward 2018 Rendezvous with Asteroid Bennu

Expected 2023 return to Earth with the largest sample returned from space since the era of the Apollo missions

NASA's OSIRIS-REx mission launches from NASA Cape Canaveral Air Force Station in Florida. Credits: NASA
NASA’s OSIRIS-REx mission launches from NASA Cape Canaveral Air Force Station in Florida. Credits: NASA

Space news (planetary science missions: sampling asteroid that was remnant of early solar system; OSIRIS-REx spacecraft’s seven-year mission to asteroid Bennu) – 7:05 p.m. EDT from Cape Canaveral Air Force Station in Florida – 

Post launch conference inside the KSCTV Auditorium after the successful launch of OSIRIS-REx. Credits: Photo credit: NASA/Kim Shiflett
Post launch conference inside the KSCTV Auditorium after the successful launch of OSIRIS-REx. Credits: Photo credit: NASA/Kim Shiflett

NASA launched its OSIRIS-REx mission to return a sample of a nearby asteroid that formed part of the early solar system more than 4.5 billion years ago at 7:05 on Thursday. The OSIRIS-REx spacecraft will be the agency’s first automated envoy to rendezvous with a nearby asteroid and return a sample for planetary scientists to study and discuss.  

NASA's OSIRIS-REx tests onboard thrusters during its journey to asteroid Bennu in this image. Credits: NASA
NASA’s OSIRIS-REx tests onboard thrusters during its journey to asteroid Bennu in this image. Credits: NASA

“Today, we celebrate a huge milestone for this remarkable mission, and for this mission team,” said NASA Administrator Charles Bolden. “We’re very excited about what this mission can tell us about the origin of our solar system, and we celebrate the bigger picture of science that is helping us make discoveries and accomplish milestones that might have been science fiction yesterday, but are science facts today.” 

How do you study the topography of an asteroid millions of miles away? Map it with a robotic cartographer! The OSIRIS-REx Laser Altimeter, or OLA, is provided by the Canadian Space Agency and will be used to create three-dimensional global topographic maps of Bennu and local maps of candidate sample sites. Credits: NASA
How do you study the topography of an asteroid millions of miles away? Map it with a robotic cartographer! The OSIRIS-REx Laser Altimeter, or OLA, is provided by the Canadian Space Agency and will be used to create three-dimensional global topographic maps of Bennu and local maps of candidate sample sites. Credits: NASA

Scientists suspect asteroids like Bennu could have been the source of much of the water and possibly organic molecules of the Genesis of Earth-based life. An uncontaminated asteroid sample to precisely analysis might provide results far beyond those achieved by spacecraft instruments or studying meteorites that have fallen to Earth.  

Dante Lauretta Professor, Principal Investigator, OSIRIS-REx. Credits: The University of Arizona
Dante Lauretta
Professor, Principal Investigator, OSIRIS-REx. Credits: The University of Arizona

“With today’s successful launch, the OSIRIS-REx spacecraft embarks on a journey of exploration to Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “I couldn’t be more proud of the team that made this mission a reality, and I can’t wait to see what we will discover at Bennu.” 

Doing a gravitational dance with asteroid Bennu

After rendezvousing with asteroid Bennu sometime in 2018, NASA’s OSIRIS-REx spacecraft will begin a delicate gravitational dance with the asteroid, mapping and studying its surface in preparation for collecting a sample. Around July 2020, the spacecraft will perform an intricate, daring maneuver designed to stir up surface material for collection. Plans are to scoop up at least two ounces (60 grams) of small rocks and dust in its onboard sample return container for planetary scientists at NASA’s Johnson Space Center in Houston, Texas to examine in depth.  

NASA's OSIRIS-REx mission will map the surface of asteroid Bennu and retrieve a sample of surface material for planetary scientists at NASA's Jet Propulsion Laboratory to examine in depth. Credits: NASA
NASA’s OSIRIS-REx mission will map the surface of asteroid Bennu and retrieve a sample of surface material for planetary scientists at NASA’s Jet Propulsion Laboratory to examine in depth. Credits: NASA

“It’s satisfying to see the culmination of years of effort from this outstanding team,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We were able to deliver OSIRIS-REx on time and under budget to the launch site, and will soon do something that no other NASA spacecraft has done – bring back a sample from an asteroid.” 

Learn about small, near-Earth asteroid 25143 Itokawa.

Learn about NASA’s NEOWISE and its one year mission to detect near-Earth asteroids.

Read about US Congress recognizing the right of Americans to own asteroid resources.

Watch this video of the liftoff of the OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida.  

Join the space mission of NASA here

Learn more about NASA’s Cape Canaveral Air Force Station. 

Read more about the OSIRIS-REx mission. 

Discover NASA’s Goddard Space Flight Center

Read and learn more about asteroid Bennu

Feedback Mechanisms of Actively Feeding Supermassive Black Holes

Can blow star-forming gas 1000 light-years out of core region of host galaxies 

This artist's rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole's accretion disk (inset) that ultimately drives such outflows. Credits: ESA/ATG Medialab
This artist’s rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole’s accretion disk (inset) that ultimately drives such outflows.
Credits: ESA/ATG Medialab

Space news (astrophysics: evolution of galaxies; feedback mechanisms) – about 2.3 billion years ago in a galaxy far, far away and standing in a fierce, 2 million mile per hour (3 million kilometers per hour) outflow of star-forming gas – 

Astrophysicists studying the evolution of galaxies using the Suzaku X-ray satellite and the European Space Agency’s Herschel Infrared Space Observatory have found evidence suggesting supermassive black holes significantly influence the evolution of their host galaxies. They found data pointing to winds near a monster black hole blowing star-forming gas over 1,000 light-years from the galaxy center. Enough material to form around 800 stars with the mass of our own Sol. 

“This is the first study directly connecting a galaxy’s actively ‘feeding’ black hole to features found at much larger physical scales,” said lead researcher Francesco Tombesi, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland, College Park (UMCP). “We detect the wind arising from the luminous disk of gas very close to the black hole, and we show that it’s responsible for blowing star-forming gas out of the galaxy’s central regions.” 

The artist’s view of galaxy IRAS F11119+3257 (F11119) above shows 3 million miles per hour winds produced near the supermassive black hole at its center heating and dispersing cold, dense molecular clouds that could form new stars. Astronomers believe these winds are part of a feedback mechanism that blows star-forming gas from galaxy centers, forever altering the structure and evolution of their host galaxy.  

A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii's 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey. Credits: NASA's Goddard Space Flight Center/SDSS/S. Veilleux
A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii’s 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey.
Credits: NASA’s Goddard Space Flight Center/SDSS/S. Veilleux

Astronomers have been studying the Monster of the Milky Way, the supermassive black hole with an estimated mass six million times that of Sol thought to reside at the center of our galaxy, for years. The monster black hole at the core of F11119 is thought to contain around 16 million times the mass of Sol. The accretion disk surrounding this supermassive black hole is measured at hundreds of times the diameter of our solar system. The 170 million miles per hour (270 million kilometers per hour) winds emanating from its accretion disk push the star-forming dust out of the central regions of the galaxy. Producing a steady flow of cold gas over a thousand light-years across traveling at around 2 million mph (3 million kph) and moving a volume of mass equal to around 800 Suns. 

Astrophysicists have been searching for clues to a possible correlation between the masses of a galaxy’s central supermassive black hole and its galactic bulge. They have observed galaxies with more massive black holes generally, have bulges with proportionately larger stellar mass. The steady flow of material out of the central regions of galaxy F11119 and into the galactic bulge could help explain this correlation. 

“These connections suggested the black hole was providing some form of feedback that modulated star formation in the wider galaxy, but it was difficult to see how,” said team member Sylvain Veilleux, an astronomy professor at UMCP. “With the discovery of powerful molecular outflows of cold gas in galaxies with active black holes, we began to uncover the connection.” 

“The black hole is ingesting gas as fast as it can and is tremendously heating the accretion disk, allowing it to produce about 80 percent of the energy this galaxy emits,” said co-author Marcio Meléndez, a research associate at UMCP. “But the disk is so luminous some of the gas accelerates away from it, creating the X-ray wind we observe.” 

tidal_disruption_art_as
In this artist’s rendering, a thick accretion disk has formed around a supermassive black hole following the tidal disruption of a star that wandered too close. Stellar debris has fallen toward the black hole and collected into a thick chaotic disk of hot gas. Flashes of X-ray light near the center of the disk result in light echoes that allow astronomers to map the structure of the funnel-like flow, revealing for the first time strong gravity effects around a normally quiescent black hole. Credits: NASA/Swift/Aurore Simonnet, Sonoma State University

The accretion disk wind and associated molecular outflow of cold gas could be the final pieces astronomers have been looking for in the puzzle explaining supermassive black hole feedback. Watch this video animation of the workings of supermassive black hole feedback in quasars

Black-hole-powered galaxies called blazars are the most common sources detected by NASA's Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy's center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar. Credits: M. Weiss/CfA
Black-hole-powered galaxies called blazars are the most common sources detected by NASA’s Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy’s center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar.
Credits: M. Weiss/CfA

When the supermassive black hole’s most active, it clears cold gas and dust from the center of the galaxy and shuts down star formation in this region. It also allows shorter-wavelength light to escape from the accretion disk of the black hole astronomers can study to learn more. We’ll keep you updated on any additional discoveries. 

What’s the conclusion?

Astrophysicists conclude F11119 could be an early evolutionary phase of a quasar, a type of active galactic nuclei (AGN) with extreme emissions across a broad spectrum. Computer simulations show the supermassive black hole should eventually consume the gas and dust in its accretion disk and then its activity should lessen. Leaving a less active galaxy with little gas and a comparatively low level of star formation. 

Blazar 3C 279's historic gamma-ray flare can be seen in these images from the Large Area Telescope (LAT) on NASA's Fermi satellite. Both images show gamma rays with energies from 100 million to 100 billion electron volts (eV). For comparison, visible light has energies between 2 and 3 eV. Left: A week-long exposure ending June 10, before the eruption. Right: An exposure for the following week, including the flare. 3C 279 is brighter than the Vela pulsar, normally the brightest object in the gamma-ray sky. The scale bar at left shows an angular distance of 10 degrees, which is about the width of a clenched fist at arm's length. Credits: NASA/DOE/Fermi LAT Collaboration
Blazar 3C 279’s historic gamma-ray flare can be seen in these images from the Large Area Telescope (LAT) on NASA’s Fermi satellite. Both images show gamma rays with energies from 100 million to 100 billion electron volts (eV). For comparison, visible light has energies between 2 and 3 eV. Left: A week-long exposure ending June 10, before the eruption. Right: An exposure for the following week, including the flare. 3C 279 is brighter than the Vela pulsar, normally the brightest object in the gamma-ray sky. The scale bar at left shows an angular distance of 10 degrees, which is about the width of a clenched fist at arm’s length.
Credits: NASA/DOE/Fermi LAT Collaboration

Astrophysicists and scientists look forward to detecting and studying feedback mechanisms connected with the growth and evolution of supermassive black holes using the enhanced ability of ASTRO-H. A joint space partnership between Japan’s Aerospace Exploration Agency (ISAS/JAXA) and NASA’s Goddard Space Flight Center, Suzaku’s successors expected to lift the veil surrounding this mystery even more and lay the foundation for one day understanding a little more about the universe and its mysteries.

Watch an animation made by NASA’s Goddard Space Flight Center showing how black hole feedback works in quasars here.

Journey across the cosmos with NASA

Learn more about the universe you live in with the ESA here

Read and learn more about supermassive black holes feedback mechanisms

Read and learn what astronomers have discovered concerning AGN here

Read more about galaxy IRAS F11119+3257

Discover ASTRO-H here

Learn about the discoveries of the Suzaku X-ray Satellite. 

Discover Japan’s Aerospace Exploration Agency here

Discover NASA’s Goddard Space Flight Center

Learn more about the European Space Agency’s Herschel Infrared Space Observatory here. 

Learn what astronomers have discovered about the Monster of the Milky Way.  

 

Initial Atmospheric Study of Two Earth-Sized Exoplanets

Data shows at least one of two exoplanets studied orbits within the habitable zone of host red dwarf star in system TRAPPIST-1

This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)
This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)

Space news (the search for Earth 2.0: the first atmospheric study of Earth-sized exoplanets; TRAPPIST-1 system) – searching for possible atmospheres surrounding exoplanets TRAPPIST-1b and TRAPPIST-1c 40 light-years from Earth toward the constellation Aquarius – 

This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

Astronomers using the Hubble Space Telescope to search for suitable exoplanets to act as a cradle for a new human genesis recently sampled the atmospheres of two exoplanets orbiting a red dwarf star 40 light-years from Earth. They used Hubble’s Wide Field Camera 3 to observe TRAPPIST-1b and TRAPPIST-1c in near-infrared wavelengths to look for signs of an atmosphere. They discovered these two exoplanets probably don’t have the fluffy, hydrogen-dominated atmospheres found around larger, gaseous exoplanets.  

This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.
This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.

The image seen at the top of the page is an artist’s portrayal of TRAPPIST-1b and 1c, two Earth-sized exoplanets shown passing in front of their host red dwarf star. Astronomers used the Hubble Space Telescope to look for hints of atmospheres surrounding these distant worlds and detected signs increasing the chances of habitability.  

This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in colour.
This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in color. Credit: ESO

“The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.” 

Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis' work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope
Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis’ work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope

Julien de Wit of the Massachusetts Institute of Technology in Cambridge and a team of astronomers used spectroscopy to decipher the light, revealing clues to the chemical composition of an atmosphere surrounding these candidates. By taking advantage of a rare double-transit of both exoplanets across the face of their host star, they collected starlight passing through any gas envelope surrounding these exoplanets. This event only occurs every two years, but it allowed for a simultaneous measurement of atmospheric characteristics. The exact composition’s still a mystery at this point, further observations are required to determine more clues. This is an exciting and promising start. 

This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

“These initial Hubble observations are a promising first step in learning more about these nearby worlds, whether they could be rocky like Earth, and whether they could sustain life,” says Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington. “This is an exciting time for NASA and exoplanet research.” 

Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.
Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.

Estimates put the age of the host red dwarf star at around 500 million years, which is young for a star with a potential lifespan of trillions of years. Red dwarf stars burn a lot cooler, but completely consume their supply of hydrogen, unlike more massive types of stars. The most common star in the cosmos, astronomers think 20 out of 30 near-Earth suns could be red dwarfs. The numbers indicate searching nearby red dwarfs for an exoplanet with the right ingredients for habitability is a good place to begin our search. 

Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, "For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”
Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, “For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”

The team and other astronomers plan on making follow-up measurements of these two exoplanets using the Hubble Space Telescope, the Kepler Space Telescope, the TRAPPIST telescope at ESO’s La Silla Observatory, and other assets to look for thinner gas layers containing heavier atoms than hydrogen as in Earth’s atmosphere.  

“With more data, we could perhaps detect methane or see water features in the atmospheres, which would give us estimates of the depth of the atmospheres,” said Hannah Wakeford, the paper’s second author, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

AAEAAQAAAAAAAAb9AAAAJGFjNDRlNjYzLWFjYWYtNDU5NC05MTdkLWViYmEzNzJmZmE3ZA
Hannah Wakeford. Credits: Linked

Toward the future

In the years ahead, using assets like NASA’s James Webb Space Telescope, astronomers should be able to determine the exact composition of any atmospheres surrounding these exoplanets and others. Finding the signatures of water vapor and methane, or even carbon dioxide and ozone is a significant step toward possible habitability for lifeforms. The power of Webb should also allow planetary scientists to measure the surface and atmospheric temperature and pressure of each exoplanet. Both key factors to determining if these exoplanets orbiting red dwarf TRAPPIST-1 are possible cradles for the genesis of life. 

“Thanks to several giant telescopes currently under construction, including ESO’s E-ELT and the NASA/ESA/CSA James Webb Space Telescope due to launch for 2018, we will soon be able to study the atmospheric composition of these planets and to explore them first for water, then for traces of biological activity. That’s a giant step in the search for life in the Universe,” says Julien de Wit. 

Julien De Witt: Credits: Linked
Julien De Witt: Credits: Linked

“These Earth-sized planets are the first worlds that astronomers can study in detail with current and planned telescopes to determine whether they are suitable for life,” said de Wit. “Hubble has the facility to play the central atmospheric pre-screening role to tell astronomers which of these Earth-sized planets are prime candidates for more detailed study with the Webb telescope.” 

Read about a recent discovery about supermassive black holes changing current theories.

Read and learn about the new space technology being developed.

Read about the first observation of a supernova shockwave.

Read the official study here.

Check out NASA’s interactive exploration of the Exoplanet Zoo.

Learn more about NASA’s plans for the James Webb Space Telescope

Take the space journey of NASA here

Discover the Hubble Space Telescope. 

Read more about NASA’s plans for K2

Voyage across the cosmos on board the telescopes of the ESA here

Learn more about astronomy at the Massachusetts Institute of Technology

Read and learn more about TRAPPIST-1 and its planets here

Learn more about plans for the ESA’s E-ELT

Discover more about the work of NASA’s Space Telescope Science Institute here

Learn about the outstanding work being done by NASA’s Science Mission Directorate

Take a tour of NASA’s Goddard Space Flight Center here

 

NASA’s Explorers Program Selects Five Proposals to Explore the Cosmos

New programs selected will study neutron star-black hole binary systems, the expansion of space and galaxies in the early cosmos, the star formation cycle of the Milky Way and more

The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in 2012, is an Explorer mission that allows astronomers to study the universe in high energy X-rays. Credits: NASA/JPL-Caltech
The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in 2012, is an Explorer mission that allows astronomers to study the universe in high energy X-rays.
Credits: NASA/JPL-Caltech

Space news (October 29, 2015) – NASA Headquarters, Washington, D.C. –

NASA’s Explorers Program was designed in the spirit of the first explorers who traveled across the deep, dark and mysterious oceans and lands in search of the unknown. Thousands of years ago, archaeologists believe ancient humans used the stars, ocean currents and waves to navigate across the seas to new lands. Today, astronauts and scientists taking part in NASA’s Explorers Program travel across space-time to stellar objects in the sky using scientific instruments and spacecraft ancient humans would perceive as God-like. 

NASA’s Explorers Program began with the launch of the first spacecraft designed by engineers and scientists working for the Army Ballistic Missile Agency on January 31, 1958, making it the oldest continuously running low-cost NASA program in history. Fittingly called “Explorer”, since this first spacecraft over 90 space missions to the stars have been designed and launched as part of the Explorers Program. Space missions to the stars that have made startling discoveries about Earth’s magnetosphere and gravity field, the composition of the solar wind and solar plasma erupting from the surface of the Sun. They have traveled to other planets in the solar system and studied radio and gamma-ray astronomy, and in the future will enable the human journey to the beginning of space and time.

NASA recently announced five less-expensive Explorers Program missions designed to the fill the scientific and technical gaps their more involved and expensive space missions. The selected space missions will examine polarized X-ray emissions emitted by binary star systems composed of a neutron star and black hole and the expansion of spacetime during the early moments of the universe. They’ll also take a closer look at the formation of galaxies during the first moments of the cosmos and the birth and life cycle of stars in the Milky Way.

Located in the Goddard Space Flight Center in Greenbelt, MD, the Explorers Program provides an opportunity for human robotic-envoys to make frequent trips into space for scientific explorations of the solar system and cosmos. Relatively low-cost, small to medium size space missions requiring fewer resources and time compared to larger missions to get off the drawing board and into space.

The Explorers Program brings out some of the most creative ideas for missions to help unravel the mysteries of the Universe,” said John Grunsfeld, NASA’s Associate Administrator for Science at NASA Headquarters, in Washington. “The program has resulted in great missions that have returned transformational science, and these selections promise to continue that tradition.”

Now, each of the three selected Small Explorers mission proposals will receive $1 million to conduct an 11-month mission concept study, while the two Missions of Opportunity proposals receive $250,000 to conduct an 11-month mission implementation concept study. 

During the months ahead, NASA scientists will conduct concept studies and detailed evaluations of each proposal selected. After this, they’ll select one mission of each type to proceed to construction and launch, by 2020 at the earliest. In the end, the total cost for this part of the Explorers Program is capped at just around $190 million for the two missions selected: $125 million for each Small Explorers mission and $65 million for each Mission of Opportunity.

The three Small Explorers Program missions selected are:

SPHEREx

SPHEREx explores the origin and evolution of the cosmos and galaxies in the sky and the possibility planets around other stars could harbor life.

James Bock of the California Institute of Technology in Pasadena, California is the main scientist on this mission.

Imaging X-ray Polarimetry Explorer (IXPE)

IXPE studies the processes leading to X-ray emission in neutron stars, pulsar wind nebulae, and stellar and supermassive black holes using X-ray polarimetry, the measurement, and interpretation of the polarization of electromagnetic waves. 

Martin Weisskopf of NASA’s Marshall Space Flight Center in Huntsville, Alabama is the main scientist on this project.

Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS)

PRAXyS uses X-ray polarimetry to study the geometry and behavior of X-ray sources emitted from supermassive black holes, pulsars, magnetars and supernovae.

The two Missions of Opportunity proposals selected are:

Gal/Xgal U/LDB Spectroscopic/Stratospheric THz Observatory (GUSTO)

GUSTO is an observatory held aloft by a balloon designed to detect high-frequency radio emission from sources in our Milky Way and the Large Magellanic Cloud in order to study the life cycle of interstellar material.

Christopher Walker of the University of Arizona in Tucson is the main scientists on this mission.

LiteBIRD Cosmic Microwave Background Polarization Survey

LiteBIRD is a Japanese space mission with US contributions designed to map polarized fluctuations in the Cosmic Microwave Background in order to search for signs of gravitation waves created during inflation in an effort to better understand the events that occurred during the first moments of the cosmos. 

Adrian Lee of the University of California at Berkeley is a main scientist on this mission.

For more information on NASA’s Explorers Program, go here.

To learn more about NASA’s mandate to travel to the stars and beyond visit here.

Learn more about the Goddard Space Flight Center here.

Discover and explore the Marshall Space Flight Center here

Learn more about the supermassive black hole astronomers believe resides at the center of the Milky Way – the Monster of the Milky Way.

NASA’s New Horizons spacecraft recently arrived at Pluto and its moons. Learn more about what they found?

Read about and learn the things astronomers have discovered during their search for the missing link in black hole evolution.