Pulsar in Double Star System PSR B1259-63/LS 2883 Punches Opening in Gas Disk Surrounding Companion Star

Launching an accelerating fragment of the thin disk at 7 percent of the speed of light 

This trio of images contains evidence from NASA’s Chandra X-ray Observatory that a clump of stellar material has been jettisoned away from a double star system at incredibly high speeds. This system, known as PSR B1259-63/LS 2883 – or B1259 for short – is comprised of two objects in orbit around one another. The first is a star about 30 times as massive as the Sun that has a disk of material swirling around it. The other is a pulsar, an ultra-dense neutron star left behind when an even more massive star underwent a supernova explosion. Credits: NASA/CXC/PSU/G.Pavlov et al
This trio of images contains evidence from NASA’s Chandra X-ray Observatory that a clump of stellar material has been jettisoned away from a double star system at incredibly high speeds. This system, known as PSR B1259-63/LS 2883 – or B1259 for short – is comprised of two objects in orbit around one another. The first is a star about 30 times as massive as the Sun that has a disk of material swirling around it. The other is a pulsar, an ultra-dense neutron star left behind when an even more massive star underwent a supernova explosion.
Credits: NASA/CXC/PSU/G.Pavlov et al

Space news (July 25, 2015) – 7,500 light-years away in the constellation Centaurus

The majority of lights in the night sky above are double star systems composed of two suns orbiting each other. NASA space scientists using the Chandra X-ray Observatory observed the unusual double star system PSR B1259-63/LS 2883 (B1259 is the short version) three times between December 2011 and February 2014 looking for clues to its nature.

These two objects are in an unusual cosmic arrangement and have given us a chance to witness something special,” said George Pavlov of Penn State University in State College, Pennsylvania, lead author of a paper describing these results. “As the pulsar moved through the disk, it appears that it punched a clump of material out and flung it away into space.” 

Composed of a pulsar and companion star 30 times the mass of the Sun, B1259 is in a weird looking cosmic arrangement that has been kicking up a little dust lately. Recent data indicates the high-energy particle winds created by the combination of rapid rotation and intense magnetic field of the pulsar appears to have punched a hole in the disk of gas surrounding the companion star. A hole composed of gas that has been ejected from the disk at 4 million miles per hour and accelerated from 7 percent of the speed of light to 15 percent between the second and third observation periods. 

“After this clump of stellar material was knocked out, the pulsar’s wind appears to have accelerated it, almost as if it had a rocket attached,” said co-author Oleg Kargaltsev of George Washington University (GWU) in Washington, DC.

The pulsar is an ultra-dense neutron star orbiting its companion star in a highly elliptical orbit that makes its closest approach every 41 months. The companion star is rotating at a speed resulting in a disk of material spinning off, creating the thin disk of gas surrounding the massive sun. The pulsar is expected to pass through the disk of material as it makes its next approach to B1259. NASA scientists expect to view the event and collect data on the unusual nature of this double star system.  

41 months is enough time for NASA scientists to plan their next move and get other telescopes and spacecraft in place to view the event. NASA scientists will collect data on the effects of the stellar winds of the pulsar on the gas disk surrounding the companion star as it passes through. There could be another ejection of gas material as it passes close to B1259, next time, which is an opportunity to learn more about double star systems and the cosmos.

“This just shows how powerful the wind blasting off a pulsar can be,” said co-author Jeremy Hare, also of GWU. “The pulsar’s wind is so strong that it could ultimately eviscerate the entire disk around its companion star over time.”

Study continues

NASA space scientists will next view double star system B1259, later in the year, and sometime in 2016. The next passing of the pulsar through the disk of gas surrounding its companion star could be even more spectacular and unusual in nature. 

You can learn more about the Chandra X-ray Observatory here.

To learn more about double star systems go here.

To learn more about NASA’s space mission visit here. 

Read about NASA’s plans to visit Europa to have a look at the habitability of any watery environments.

Learn more about what NASA space scientists think about the possibility of life during the early moments of the universe.

Learn more about possible plate tectonic forces operating on the surface of Europa.

Advertisements

Journey into the Heart of the Beehive

Bright stars of red and blue highlight the Beehive or Omega Centauri cluster
The bottom photo reminds many of bees moving around in a hive

 The Hubble Space Telescope takes the human “Journey to the Beginning of Space and Time” into the beehive

Astronomy News – We join the human “Journey to the Beginning of Space and Time” as it boards the Hubble Space Telescope to travel 15,800 light years (~ 4850 parsecs) into Centaurus the Centaur to globular cluster Omega Centauri to peer into the beehive and look at individual stars. The beehive as it’s called was first noted by early star-gazer Ptolemy 2,000 years ago, both the largest and brightest globular cluster orbiting the Milky Way, the beehive is about 12 billion years old. Ptolemy didn’t have the Hubble Space Telescope to view Omega Centauri, so in his writings, he refers to the beehive as a single star. In reality, the beehive, or Omega Centauri, is a tightly packed group of about 10 million stars held together by gravity and orbiting a central gravitation mass, of some kind. In fact, the stars in the beehive are on average only about 0.1 light years apart, so close together that astronomers had to use the powerful vision of the Hubble Space Telescope to resolve individual stars.
The view from the Hubble Space Telescope

Hubble gives us the best view of the universe we have ever had

The Hubble Space Telescope’s vision is sharp enough astronomers used the images they have collected over a four-year period of viewing globular cluster Omega Centauri to precisely measure the relative motions of over 100,000 individual stars in the beehive. In an effort to gain insight into the evolution and life cycle of tight groups of stars formed in the early universe, and try to determine if there’s, in fact, an intermediate mass black hole hidden in the beehive. This study was conducted over a four-year period by Jay Anderson and Roeland van der Marel of the Space Telescope Science Institute using Hubble’s Advanced Camera for Surveys and high-speed, sophisticated computer programs to measure the relative motions of individual stars in the beehive.

On a clear night in the southern equatorial region of the night sky, it’s even possible to view the 3.5 magnitude beehive with the naked eye. Globular cluster Omega Centauri will appear as a fuzzy star that early astronomers believed was a single star. Use astronomical binoculars as your time-machine-to-the-stars, or a telescope, and the view becomes a wonder to behold as wide across in your viewfinder as the Full Moon. Using an 8-inch time-machine-to-the-stars you’ll view about 1,000 stars, each a faint pinprick of light, and you should notice that the beehive isn’t completely circular. Globular cluster Omega Centauri, in fact, rotates at a pretty fast speed around its central gravitational mass and astronomers believe this is one reason it’s less than circular.

Check out my latest astronomy website at http://astronomytonight.yolasite.com/.