The Next Generation of Electric Aircraft

A more energy efficient, light-weight electric engine for larger, commercial aircraft 

Dr. Rodger Dyson, NASA Glenn Hybrid Gas Electric Propulsion technical lead., and the science boys of NASA's Glenn Research Center are using Plum Brook Station's newest test bed to design and engineer the next generation of aviation propulsion. Credits: NASA
Dr. Rodger Dyson, NASA Glenn Hybrid Gas Electric Propulsion technical lead., and the science boys of NASA’s Glenn Research Center are using Plum Brook Station’s newest test bed to design and engineer the next generation of aviation propulsion. Credits: NASA

Space news (new aeronautics technology: Glenn Research Center; NASA’s Electric Aircraft Testbed (NEAT) – 6,400-acre site near Sandusky, Ohio, home to four world-class test facilities –  

The drive to create more energy efficient, light-weight electric engines for quieter cars that emit less carbon’s heading upward into the friendly skies. Engineers and scientists working at NASA’s Glenn Research Center are conducting the first tests of a new electric aircraft engine in their Electric Aircraft Testbed (NEAT) at Plum Brook Station. A new electric engine capable of powering a small aircraft carrying up to two people into the skies and possibly one day even larger commercial aircraft carrying travelers around the world. The successors of this amazing new technology could one-day power manned flight to the planets in the solar system and the stars beyond. 

Engineers conduct the first test of an electric aircraft engine in NASA’s Electric Aircraft Testbed (NEAT) at Plum Brook Station. Credits: NASA
Engineers conduct the first test of an electric aircraft engine in NASA’s Electric Aircraft Testbed (NEAT) at Plum Brook Station.
Credits: NASA

“As large airline companies compete to reduce emissions, fuel burn, noise and maintenance costs, it is expected that more of their aircraft systems will shift to using electrical power,” said Dr. Rodger Dyson, NASA Glenn Hybrid Gas-Electric Propulsion technical lead.  

Dr. Rodger Dyson, NASA Glenn Hybrid Gas-Electric Propulsion technical lead. Credits: NASA
Dr. Rodger Dyson, NASA Glenn Hybrid Gas-Electric Propulsion technical lead. Credits: NASA

What’s next?

The team of engineers he leads hope to spark a change in the commercial aircraft industry and manned space flight that will make a significance difference in aviation and aeronautics. 

“What we’re hoping to learn now is how to make it more efficient and light-weight,” said Dyson. “Next year we’re going to upgrade the size of these motors — we’ll use the same technology to test the higher-power stuff next.” 

“We look forward to making a difference in aviation,” said Dyson. 

Read about the X-57 Electric Propulsion Aircraft being assembled by engineers and scientists at NASA.

Read and learn more about China’s long march to the stars.

Learn how astronomers study the stars?

Learn more about NASA’s Glenn Research Center

Join the voyage of NASA across the cosmos here

Discover NASA’s Plum Book Station

 

 

 

Advertisements

Seven University Teams Selected to Design Prototypes for 2017 X-Hab Academic Innovation Challenge

Proposals selected advance development of 3D printer technology and printing capabilities, develop and improve long-term plant growth and water recycling systems, and design new conceptual habitats

nasa-xhab-logo_0 

Space news (new space technology: deep space habitats; the 2017 X-Hab Academic Innovation Challenge) – NASA’s Advanced Exploration Systems (AES) division headquarters – 

x-hab2017selections
This map shows the relative location and project of each of the seven teams selected for 2017 challenge. Credits: NASA

NASA and partner the National Space Grant Foundation recently announced the selection of seven university teams to design and build the prototypes proposed as part of the 2017 X-Hab Academic Innovation Challenge. The teams selected have the 2016 – 2017 academic year to develop their proposal into functional, working prototypes astronauts could use around the International Space Station. At the same time, they’ll gain valuable hands-on design and engineering skills and experience necessary to achieve their goals in the years ahead. During the school year, teams selected complete scheduled reviews of engineering designs and conduct three proposal status meetings with NASA officials before submitting finished prototypes in May 2017. 

“The X-Hab challenge allows NASA to access new ideas and emerging concepts while providing undergraduate and graduate students with the opportunity to gain hands-on experience in technology development,” said Tracy Gill, who leads the X-Hab activity from NASA’s Kennedy Space Center in Florida. “We are particularly excited to see returning teams that are successfully continuing to build on the designs and lessons learned from prior years.” 

Seven university teams were selected to design, engineer and build useful, handy prototypes astronauts could use on a daily basis to make life in space and on the International Space Station easier to manage. Each team receives a grant up to $30,000, which is managed by the National Space Grant Foundation on behalf of NASA and the American people. To support each team’s work on designing and developing useful prototypes to make life in space, and on Earth, easier to manage during the decades ahead. 

The seven university teams selected to complete the 2017 X-Hab Academic Innovation Challenge are: 

Being able to recycle the material you used to construct necessary tools during a long space journey or while colonizing Mars is a neat trick. Students at the University of Connecticut are working on developing a recycling plan for integrated 3-D printer technology that will be used during future space missions. It will be capable of both manufacturing and recycling polymer parts and will address the form, fit, and function of polymer parts being refitted during their entire lifespan. The ability to reuse the material used to construct items made by integrated 3-D printer technology will save space, energy, and other resources, which will reduce the number of resupply missions required during long space missions. 

Engineers and designers have only scratched the surface of possible uses of the integrated 3-D printer technology on the International Space Station. The Young geniuses at the University of Maryland are working on new technology designed and engineered to utilize 3-D printing to make strong, rigid parts for the pressurized spacesuits astronauts need to work and live in space. They plan on using mostly additive manufacturing technologies to design and engineer low-friction bearings, rotary seals and pressure seals for state-of-the-art spacesuits. This technology could help develop other applications for deep space exploration and the eventual colonization of Mars. 

Medical professionals studying the physical and medical problems associated with long term space travel and living on Mars say the build up of CO2’s a problem for astronauts. A team of student innovators and inventors at the University of Colorado are working on developing technology to reduce the levels of CO2 during space voyages of the future. They’re working on improving the processes used to remove CO2 concentrations, which can adversely affect astronaut performance and health during future space missions. Necessary technology for the success any trip to the Red Planet and the survival of future colonists planning on living on Mars. 

x-hab-2017-aether_univcolo

Preparing food grown during a long space journey or while colonizing the Red Planet’s going to be an adventure in itself. Designer, engineers, and scientists of the Pratt Institute in Brooklyn, New York are planning on perfecting their Mars Transit Habitat design. This time, they plan on using elements from their design for a kitchen and sleeping pod for a Mars transit habitat concept not requiring redesigned as their template for a kitchen and sleeping pod concept for a Mars surface habitat. Unfortunately, the astronauts heading into space and living on Mars won’t find any Star Trek Food Replicators in the Pratt Institute’s kitchen designs. Guess they’ll have to make do with instant coffee and pre-packaged, processed foods.  

The Pratt Institute's Mars Transit Habitat Concept. Credits: The Pratt Institute
Normally we spend over one third of our lives on Earth sleeping and eating. Will it be different living on a spacecraft in space? The Pratt Institute’s Mars Transit Habitat Concept is a step in the direction of eating and sleeping comfortably during our trips across the solar system and beyond.
Credits: The Pratt Institute

Making sure internal systems of all habitat systems and modules needed to ensure a successful trip to Mars are compatible and interchangeable will make the trip and life on the Red Planet easier. Design geniuses from Oklahoma State University in Stillwater are working on constructing the communications, controls and environmental systems needed to integrate NASA’s Stafford Deep Space Habitat (SDSH) and Martian Reconfiguration Habitat (ReHAB). This team has also been working on systems for NASA’s Multi-purpose Logistics Module (MPLM) and the Organics and Agricultural Sustainment Inflatable System (OASIS). All the internal systems of the individual components sent to Mars will need to be completely compatible. It will make implementation, maintenance, and repair of systems easier for astronauts heading into space and colonizing Mars. 

Eating the right amount of food during a long space journey through the solar system or to Mars is a problem for astronauts. You can’t just take along all the foodstuffs you need to ensure you get the required amount of calories and vitamins. Ingenious engineers and designers from Ohio State University in Wooster are working on perfecting previous improvements they made to NASA’s Vegetable Production System (Veggie) on the International Space Station. Presently, they’re working on eliminating air bubbles in the water column between the water reservoir and plants while keeping root oxygen levels sufficient for growth, which improves water capillary transport. They’re also evaluating the feasibility of recycling plant biomass to use as soil, which will reduce the need to launch it into space. Fresh vegetables to consume during a long space trip to Mars is a thumbs up to the team. 

The Ohio State University's passive water delivery system. Credits: The Ohio State University
The Ohio State University’s passive water delivery system is designed to provide water to grow vegetables to keep astronauts healthy during long periods or trips in space.
Credits: The Ohio State University

Wastewater treatment during long-term space travel or on Mars isn’t going to be the simple flush and forget it’s on Earth. A team of engineers and designers from the University of Michigan are working on a next generation system to clean and recycle the limited amount of water that will be available during any space trip. They’ll also work on designs for wastewater treatment systems usable in low gravity environments, like the surface of the Moon or the Red Planet. The water isn’t going to be the freshest in the solar system, but it will be wet, and wonderful to drink during a long journey across the solar system. 

What’s next?

The seven teams in this challenge submitted proposals early in 2016 that were selected by officials. During the 2016-2017 academic year, each team will work towards a number of milestones on the road to designing, manufacturing, assembling, and testing proposed systems and concepts. They’ll work shoulder to shoulder with scientists and engineers of NASA’s Human Exploration and Operations Mission Directorate, the Space Life and Physical Sciences Research and Applications and Advanced Exploration Systems divisions. Together they’ll advance technology in additive manufacturing, advanced life support systems, and space habitation and food production systems. Just seven groups of big kids playing with their new toys and dreaming of the things they can do with them. 

Learn about changes to a theory concerning active supermassive black holes.

Read about one of the brightest cosmic events ever recorded during the human journey to the beginning of space and time.

Learn how astronomers study the formation of new stars.

Watch this YouTube video made by NASA astronauts about living and working in space.

Learn more about living in space here

Read and learn what NASA has learned about living and working in space.

Read about NASA’s plans to travel to and live on Mars

Read and discover 3-D printer technology here

Discover the work being done by the National Space Grant Foundation

Take the space journey of NASA here

Learn more about the Red Planet

Learn more about the 2017 X-Hab Academic Innovation Challenge here

How do Astronomers Study the Formation of Stars?

By using supercomputers to simulate the birth and evolution of individual stars and star clusters in the Milky Way  

klein_pleiades_simulation (1)
Simulation of star formation region using specially created computer code and a state-of-the-art supercomputer. Credits: NASA Ames/David Ellsworth/Tim Sandstrom

Space news (astrophysics: studying star formation; 3-D computer simulations) – NASA Advanced Supercomputing laboratory located at NASA’s Ames Research Center – 

How do astronomers study the formation of stars? Astronomers use complex computer code, run on one of the fastest, most powerful supercomputers on Earth to simulate the processes involved in the formation of individual stars and star clusters in the Milky Way. Using simulations capturing a mix of gas, dust, magnetic fields, gravity and other physical phenomena, astrophysicists study the birth and evolution of young, nearby stars and star clusters.  

The image above was created using state-of-the-art Orion2 computer code written by geniuses at the University of California, Berkeley, and Lawrence Livermore National Laboratory and simulated on the powerful, ultra-fast Pleiades supercomputer located at NASA Advanced Supercomputing complex. Considered the seventh most powerful supercomputer in the US, it was necessary to achieve results closely matching data obtained through observations made with the Hubble Space Telescope. 

“Our simulations, run on Pleiades and brought to life by the visualization team at the NAS facility at Ames, were critical to obtaining important new results that match with Hubble’s high-resolution images and other observations made by a variety of space and Earth-based telescopes,” said Richard Klein, adjunct professor at UC Berkeley and astrophysicist at LLNL. “A key result, supported by observation, is that some star clusters form like pearls in a chain along elongated, dense filaments inside molecular clouds—so-called “stellar nurseries.” 

klein
Richard Klein. Credits: The University of California, Berkeley Department of Astronomy.

The video simulation here shows the evolution of a massive cloud of gas and dust over a period of 700,000 years. Astrophysicists used the computing power of the Pleiades supercomputer, operating using the Orion2 code to create this amazing cosmic tapestry. The gravitational collapse of the cloud results in the birth of a stellar object called an infrared dark cloud (IRDC) filament. Protostars begin to form within the cloud, highlighted by bright orange regions strewn across the body of the central and bordering filaments. 

“Without NASA’s vast computational resources, it would not have been possible for us to produce these immense and complex simulations that include all the output variables we need to get these new results and compare them with observations,” Klein explained. “The ORION2 simulations incorporate a complex mix of gravity, supersonic turbulence, hydrodynamics (motion of molecular gas), radiation, magnetic fields, and highly energetic gas outflows. The science team conducted many independent tests of each piece of physics in ORION against known data to demonstrate the code’s accuracy.” 

SpectraLogicWrap_big
The Pleiades supercomputer. Credits: Ames Research Facility/NASA Advanced Supercomputing facility.

The team’s back at work trying to devise even better simulations of star formation by improving the resolution and zooming into the action. “Higher resolution in the simulations will enable us to study the details of the formation of stellar disks formed around protostars. These disks allow mass to transfer onto the protostars as they evolve, and are thought to be the structures within which planets eventually form,” said Klein.  

Klein_R_SC15_big
Dr. Richard Klein talking about a simulation of star formation. Credits: NASA/Ames Research Facility/NASA Advanced Supercomputing

More work to do

They’ll need additional time on Pleiades and lots of extra storage during the next few years to tweak their simulations. The team seems to be on the trail of a real breakthrough in understanding and knowledge concerning the processes leading to star formation in the Milky Way. They appear to have their collective eye on the bigger picture. “Understanding star formation is a grand challenge problem. Ultimately, our results support NASA’s science goal of determining the origin of stars and planets, as part of its larger challenge of figuring out the origin of the entire universe.” 

You can learn more about the formation of stars here

Join the space voyage of NASA

Learn everything about the Ames Research Center here

Discover the NASA Advanced Supercomputing facility

Learn about astronomy at the University of California, Berkeley here.  

Discover the Lawrence Livermore National Laboratory.  

Read and learn about the star navigation skills of the amazing Polynesian islanders.

Read about the Kepler Space Telescope observing a shockwave from a supernova.

Read about a proto-planetary nebula with a unique shape.

NASA Selects Eight Teams of Young, Ambitious University Students

15-114

NASA architects, engineers and scientists are already busy creating sustainable, space-based living quarters, work spaces and laboratories for next-generation human space exploration, including our journey to Mars. This 2011 version of the deep space habitat at the Desert Research and Technology Studies (Desert RATS) analog field test site in Arizona features a Habitat Demonstration Unit, with the student-built X-Hab loft on top, a hygiene compartment on one side and airlock on the other.
Credits: NASA

To be the cutting edge of innovation in engineering and design of new deep space habitats 

Space news (New space technology: deep space habitats; 2016 X-Hab Academic Innovation Challenge) – NASA’s Advanced Exploration Systems (AES) division headquarters – 

157750main_jsc2006e39969_small

In one scenario of the Desert Research and Technology Studies in the Arizona desert, a test subject returns to a mock way station. Credit: NASA

NASA engineers, scientists, and systems designers are hard at work creating the next-generation habitats needed to travel and live in space and one day inhabit Mars. Deep within NASA’s Desert Research and Technology Studies (Desert RATS) test site in Arizona, they have assembled the 2011 version of the deep space habitat. A futuristic space habitat featuring a Habitat Demonstration Unit with X-Hab loft, a second story habitation designed and built by a team from the University of Wisconsin-Madison as part of the 2011 X-Hab Academic Innovation Challenge. 

 

x-hab-2016-webpromo_0
The 2016 X-Hab Student Academic Challenge has selected eight university teams to design, engineer and build a next-generation space habitation. Credit: NASA/NSPF

The X-Hab Academic Challenge program’s designed and implemented to help get graduate and undergraduate level university students directly involved in the development of deep space technology capable of allowing humans to live and travel in space and eventually colonize Mars. Students are encouraged to develop and implement skills and knowledge in all areas and disciplines, team up with industry and experts and actively engage the world in a conversation concerning their work. All in an effort to improve and develop science knowledge, technical ability, leadership qualities and project skills of students selected and encourage further studies in space industry disciplines. 

umd-xhab

Cutaway of inflatable airlock highlighting doors, support structures and suitports.
Credits: University of Maryland
The 2016 X-Hab Academic Challenge is the sixth event and this year NASA scientists and engineers are working with graduate and undergraduate students from eight American universities on new technology projects to enable astronauts to travel into deep space and the Red Planet. Earlier in the year, student teams submitted proposals, which were selected after extensive analysis by NASA. During the 2015-2016 academic year, each team will design, engineer, build and test all project systems and concepts hand in hand with scientists and engineers from NASA’s Human Exploration and Operations Mission Directorate. NASA staff will work with student teams selected on next-generation life support systems, space habitats and deep space food production systems needed for the success of future manned missions to Mars. 

osu-xhab

Organics and Agricultural Sustainment Inflatable System (OASIS) Habitat Interior
Credits: Oklahoma State University

“These strategic collaborations lower the barrier for university students to assist NASA in bridging gaps and increasing our knowledge in architectural design trades, capabilities, and technology risk reduction related to exploration activities that will eventually take humans farther into space than ever before,” said Jason Crusan, director of NASA’s Advanced Exploration Systems (AES) division. 

 

20150128_crusan_bio
Official portrait of Jason Crusan at NASA Headquarters in Washington, DC on Wednesday, Jan. 28, 2015. Credit: NASA

The teams and projects selected as part of NASA’s X-Hab Academic Innovation Challenge are listed below. 

AES’s In-space Manufacturing division sponsorships are: 

The University of Puerto Rico at Mayaguez is working on the development of new low-power technology required for the manufacture of metals in zero-gravity environments 

AES’s Beyond Earth Habitation division sponsorships are: 

The University of Maryland, College Park is working on next-generation airlocks that are inflatable 

Students from Pratt Institute, Brooklyn, New York are working on habitat designs to keep astronauts safe and warm during their trip to the Red Planet

Oklahoma State University, Stillwater students are doing studies on deep space habitats suitable for a trip to the Red Planet 

AES’s Life Support Systems division sponsorships are: 

Students from the University of South Alabama, Mobile are working on a new concentration swing frequency response device 

AES’s Space Life and Physical Sciences division sponsorships are:  

Students from Utan State University, Logan are designing new experimental plant systems for microgravity environments 

The team from Ohio State University, Columbus is working on improving water delivery in modular vegetable production systems needed to provide astronauts with food during their journey and life on Mars 

The team from the University of Colorado-Boulder, Boulder is working on improving the performance of the Mars OASIS Space Plant Growth System 

The X-Hab Academic Innovation Challenge is led by NASA and the National Space Grant Foundation in an effort to enable the human journey to the beginning of space and time. The program supports space science research efforts to develop sustainable and cost-effective robotic and human space technology to make our journey possible. It also helps train and develop highly skilled scientists, engineers, and technicians needed to design and implement technology developed to travel and live in space. 

Partners in space exploration

NASA lends its scientists, engineers and space exploration technology, and experience to the X-Hab Academic Innovation Challenge. The National Space Grant Foundation administers the grants provided by NASA, which range from $10,000 to $30,000, to fund the building, development and final evaluation of each project selected and completed during the 2015-2016 academic year. 

Find more information on previous X-Hab Academic Innovation Challenges here

Join the conversation and space journey of NASA

Find out more about the work of the National Space Grant Foundation here

Read about a runaway star NASA astronomers have been following across the Tarantula Nebula.

Learn more about the colonization of the Pacific Ocean by Polynesian islanders and their star navigation skills tens of thousands of years ago.

Read about the Kepler Space Telescope recently capturing a supernova shockwave in visible light for the first time.

 

 

NASA’s Chandra Detects X-rays Emitted by Distant Supermassive Black Hole

Discovery shows distant supermassive black holes with relativistic jets could be more common than astronomers first thought 

This main panel graphic shows Chandra’s X-ray data that have been combined with an optical image from the Digitized Sky Survey. (Note that the two sources near the center of the image do not represent a double source, but rather a coincidental alignment of the distant jet and a foreground galaxy.) The inset shows more detail of the X-ray emission from the jet detected by Chandra. The length of the jet in 0727+409 is at least 300,000 light years. Many long jets emitted by supermassive black holes have been detected in the nearby Universe, but exactly how these jets give off X-rays has remained a matter of debate. In B3 0727+409, it appears that the CMB is being boosted to X-ray wavelengths. Credit: NASA/Chandra
This main panel graphic shows Chandra’s X-ray data that have been combined with an optical image from the Digitized Sky Survey. (Note that the two sources near the center of the image do not represent a double source, but rather a coincidental alignment of the distant jet and a foreground galaxy.)
The inset shows more detail of the X-ray emission from the jet detected by Chandra. 
Credit: NASA/Chandra

Space news (March 06, 2016) – over 11 billion light-years from Earth – 

Astronomers working with NASA’s Chandra X-ray Observatory recently discovered a distant, powerful jet emanating from a quasar called B3 0727+409 while observing another stellar object. The system discovered was interesting because scientists had previously found very few early supermassive black holes with powerful jets giving off X-rays. This discovery has astronomers looking for data to confirm the belief supermassive black holes with powerful jets were more common during the first few billion years after the Big Bang than first thought. 

Astronomers were lucky to detect this quasar since no radio signal has been detected from this object. Normally, they would detect similar quasars using radio observations but will use this opportunity to study how these jets emit X-rays. This question has been a matter of debate among astrophysicists, but in this case, they have a few clues to follow.  

We essentially stumbled onto this remarkable jet because it happened to be in Chandra’s field of view while we were observing something else,” explains co-author Lukasz Stawarz of Jagiellonian University in Poland. 

The light from the jet emanating from quasar B3 0727+409 was emitted when the universe was only 2.7 billion years old, or just over twenty percent of its present age. At this time the intensity of the microwave background microwave radiation (CMB) remaining after the Big Bang was much greater than today. In this case, it looks like the CMB is somehow being boosted to X-ray wavelengths and astronomers think this could be a lead. 

Because we’re seeing this jet when the Universe was less than three billion years old, the jet is about 150 times brighter in X-rays than it would be in the nearby Universe,” said Aurora Simionescu at JAXA’s Institute of Space and Astronautical Studies (ISAS) who led the study.  

Computer simulations show that as electrons in the jet fly from the supermassive black hole at nearly the speed of light, they collide with microwave photons in the CMB and boost their energy into the X-ray band. This is the X-ray signal Chandra detected, but this means the electrons in the jet must continue to move at this speed for its entire length, which is over 300,000 light-years. A finding that has scientists scratching their heads. 

Astronomers have detected many long jets emitted by nearby supermassive black holes, but very few from early quasars with jets emitting X-rays. Astronomers could have missed many similar systems since they weren’t trying to detect them. Now, they’ll follow the breadcrumbs to get a better picture of the early universe and try to understand the evolution of supermassive black holes during the past 13.77 billion years a little better.    

Astronomers look for similar events to study in detail

Scientists have so far identified very few jets distant enough that their X-ray brightness is amplified by the CMB as clearly as in the B3 0727+409 system.” But, Stawarz adds, “if bright X-ray jets can exist with very faint or undetected radio counterparts, it means that there could be much more of them out there because we haven’t been systematically looking for them.” 

Supermassive black hole activity, including the launching of jets, may be different in the early Universe than what we see later on,” said co-author Teddy Cheung of the Naval Research Laboratory in Washington DC. “By finding and studying more of these distant jets, we can start to grasp how the properties of supermassive black holes might change over billions of years.” 

You can take a video tour of B3 0727+409 aboard the Chandra X-ray Observatory here.

We’ll update you as astronomers learn more about relativistic jets and similar systems. 

Read about astronomers observations of newly formed galaxies.

Learn more about the US Congress recently passing legislation recognizing the right of American citizens to own asteroid resources.

Read about swirls of the disk of dust surrounding young, newly-formed stars.

Learn more about NASA’s journey to the stars and future plans here.

You can take the journey of the Chandra X-ray Observatory

Learn more about what astronomers have discovered about supermassive black holes here

Read and discover more about quasar B3 0727+409

Astronomers Witness First Cosmic-moments of Rare, Newborn Supernovae

Three Type Ia supernovae they study in order to measure cosmic distances and lift the veil of mystery surrounding dark energy

This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA's Kepler spacecraft. The light curve shows a star's brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected 'bump' in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast. Credits: NASA Ames/W. Stenzel
This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA’s Kepler spacecraft. The light curve shows a star’s brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected ‘bump’ in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast.
Credits: NASA Ames/W. Stenzel

Space news (astrophysics: supernovae; 3 new candidates) – billions of light-years from Earth –

A team of determined astronomers studying the largest explosions viewed during the human journey to the beginning of space and time recently found three new candidates. Three candidates, they found after viewing 400 galaxies for two years using NASA’s Kepler Space Telescope.

Kepler’s unprecedented pre-event supernova observations and Swift’s agility in responding to supernova events have both produced important discoveries at the same time but at very different wavelengths,” says Paul Hertz, Director of Astrophysics for NASA’s Science Mission Directorate. “Not only do we get insight into what triggers a Type Ia supernova, but these data allow us to better calibrate Type Ia supernovae as standard candles, and that has implications for our ability to eventually understand the mysteries of dark energy.”

In the data they collected over this two year period using NASA’s Kepler Space Telescope, this amazing team of explorers found three new and distant Type Ia supernovae, designated KSN 2011b, KSN 2011c, KSN 2012a. Due to the frequent observations of Kepler in the direction of the three distant supernovae, the data collected even contains the first moments of each tremendous blast. Measurements that will allow scientists to piece together the events leading to these events and the reasons for such a tremendous release of energy.

Astrophysicists believe Type Ia supernovae erupt with the same apparent brightness because in all cases the exploding body is a white dwarf star. It’s this property scientists use as a standard candle to more accurately measure the distance to objects around the cosmos than was previously possibly.

Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen
Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen

Astronomers also believe that every Type Ia supernovae are either the result of two white dwarf stars merging, or a white dwarf gathering so much material from a nearby companion star, it causes a thermonuclear reaction resulting in the white dwarf going supernova.

Our Kepler supernova discoveries strongly favor the white dwarf merger scenario, while the Swift study, led by Cao, proves that Type Ia supernovae can also arise from single white dwarfs,” said Robert Olling, a research associate at the University of Maryland and lead author of the study. “Just as many roads lead to Rome, nature may have several ways to explode white dwarf stars.”

In the case of KSN 2011b, KSN 2011c, and KSN 2012a, astronomers found no evidence to support the existence of material being taken from a companion star. This leads them to believe the cause in these cases is collision and merger between two closely orbiting white dwarf stars. 

Now, astronomers will use NASA’s Kepler Space Telescope and other Earth and space-based telescopes to search for Type Ia supernovae among thousands of galaxies included in the study. This will allow them to determine the distance of stellar objects across the cosmos more accurately. It will also help them delve deeper into the mystery surrounding dark energy and its true nature. 

The search for supernovae continues

The Kepler spacecraft has delivered yet another surprise, playing an unexpected role in supernova science by providing the first well-sampled early time light curves of Type Ia supernovae,” said Steve Howell, Kepler project scientist at NASA’s Ames Research Center in Moffett Field, California. “Now in its new mission as K2, the spacecraft will search for more supernovae among many thousands of galaxies.”

Learn more about supernovae here.

Take the journey of the Kepler Space Telescope here.

Learn more about the search for the identity of dark energy here.

Learn more about the things astronomers are learning about the formation of new stars.

Read about plans of private firm Planetary Resources Inc. to mine an asteroid in the near future.

Discover and learn about the things NASA’s New Horizons mission has told us about Pluto and its system of moons.

Kepler Mission Discovers First Nearly-Earth-Sized Cradle for a New Human Genesis

NASA space scientists have discovered the first nearly Earth-sized exoplanet lying within the habitable zone of its Sun-like parent star 

This artist's concept compares Earth (left) to the new planet, called Kepler-452b, which is about 60 percent larger in diameter. Credits: NASA/JPL-Caltech/T. Pyle
This artist’s concept compares Earth (left) to the new planet, called Kepler-452b, which is about 60 percent larger in diameter.
Credits: NASA/JPL-Caltech/T. Pyle

Space news (July 23, 2015) – 1,400 light-years away in the constellation Cygnus –

Twenty years after proving other planets do exist the human journey to the beginning of space and time draws nearer to finding an Earth-like cradle for a new human Genesis

This artist's concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of star that is similar to our sun. Credits: NASA/JPL-Caltech/T. Pyle
This artist’s concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of a star that is similar to our sun.
Credits: NASA/JPL-Caltech/T. Pyle

NASA’s Kepler spacecraft has discovered the first nearly Earth-sized exoplanet orbiting within the habitable zone of a star much like our own Sun. Called Kepler-452b and roughly 60 percent bigger than our home planet, this exoplanet is the smallest planet found orbiting at a distance from its parent star where liquid water could exist.

On the 20th anniversary year of the discovery that proved other suns host planets, the Kepler exoplanet explorer has discovered a planet and star which most closely resemble the Earth and our Sun,” said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “This exciting result brings us one step closer to finding an Earth 2.0.

A Star Like Our Sun

This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury. Credits: NASA/JPL-CalTech/R. Hurt
This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury.
Credits: NASA/JPL-CalTech/R. Hurt

Kepler-452b’s parent star is an older cousin to the Sun, a G2 type star approximately 20 percent brighter, 1.5 billion years older, and 10 percent bigger than Earth’s home star.

We can think of Kepler-452b as an older, bigger cousin to Earth, providing an opportunity to understand and reflect upon Earth’s evolving environment,” said Jon Jenkins, Kepler data analysis lead at NASA’s Ames Research Center in Moffett Field, California, who led the team that discovered Kepler-452b. “It’s awe-inspiring to consider that this planet has spent 6 billion years in the habitable zone of its star; longer than Earth. That’s substantial opportunity for life to arise, should all the necessary ingredients and conditions for life to exist on this planet.

A Rocky Exoplanet like Earth?

Since Kepler launched in 2009, twelve planets less than twice the size of Earth have been discovered in the habitable zones of their stars. Credits: NASA/N. Batalha and W. Stenzel
Since Kepler launched in 2009, twelve planets less than twice the size of Earth have been discovered in the habitable zones of their stars.
Credits: NASA/N. Batalha and W. Stenzel

Kepler-452b is the twelfth exoplanet the human journey to the beginning of space and time has viewed lying within the habitable zone of its parent star. Data collected by both space and Earth-based telescopes indicates planets of this size are often rocky in nature. Indicating the possibility this exoplanet could have an atmosphere and environment that could act as a cradle for a new human Genesis to begin. 

A New Human Genesis!

Humans traveling across spacetime to Kepler-452b would evolve during a voyage lasting thousands or even hundreds of years. Extended hibernation of some type would certainly make the journey easier, but this kind of technology hasn’t been developed. An alternative solution to extended periods living in space during a voyage unlike any humans have undertaken is probably a necessity.

Once we land on Kepler-452b, learning to survive and live on this foreign planet will evolve us once again. Humans are designed to evolve in order to survive living in different environments. We would likely survive as a species, but doing so would change us in ways we can’t begin to imagine.

521 New Candidates for the Exoplanet Zoo

There are 4,696 planet candidates now known with the release of the seventh Kepler planet candidate catalog - an increase of 521 since the release of the previous catalog in January 2015. Credits: NASA/W. Stenzel
There are 4,696 planet candidates now known with the release of the seventh Kepler planet candidate catalog – an increase of 521 since the release of the previous catalog in January 2015.
Credits: NASA/W. Stenzel

At the same time, NASA released this news it announced the Kepler mission’s discovery of 521 new exoplanet candidates for the exoplanet zoo. 12 of these candidates orbit their parent star within the habitable zone and nine have home stars similar to the Sun in both size and temperature. Great news for the human desire to locate a second Earth to live on. 

We’ve been able to fully automate our process of identifying planet candidates, which means we can finally assess every transit signal in the entire Kepler dataset quickly and uniformly,” said Jeff Coughlin, Kepler scientist at the SETI Institute in Mountain View, California, who led the analysis of a new candidate catalog. “This gives astronomers a statistically sound population of planet candidates to accurately determine the number of small, possibly rocky planets like Earth in our Milky Way galaxy.

NASA space scientists will now take a closer look at each of the exoplanet candidates and specifically the ones lying within the habitable zone of their parent star. There could be a second Earth, a cradle for a new human Genesis, waiting to be discovered. An event that would change the course of human history on planet Earth and the way we view ourselves as cosmic beings.

To learn more about the Kepler mission go here.

To learn more about NASA’s space mission visit here.

Read about NASA’s Europa Orbiter and plans to take a closer look at one of the best places in the solar system to look for life other than Earth.

Learn more about ice geysers erupting from the frozen surface of Saturn’s moon Enceladus helping to create the E ring of the second biggest planet in the solar system.

Learn about the mystery surrounding the existence of ultra-luminous x-ray sources in the cosmos and ways space scientists are beginning to lift the veil of secrecy surrounding these mysterious objects.