Astronomers Discover Disks Surrounding Supermassive Black Holes Emit X-ray Flares when Corona is Ejected

But why is the Corona ejected?

Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.
Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.

Space news (November 02, 2015) – 

Bizarre and mysterious stellar objects, studying black holes keeps astronomers up all night. One of the more puzzling mysteries of these unique objects are gigantic flares of X-rays (relativistic jets) detected erupting from disks of hot, glowing dust surrounding them. X-ray flares astronomers are presently studying in order to better understand these enigmatic, yet strangely attractive stellar objects.

Astronomers observing supermassive black holes using NASA’s Swift spacecraft and Nuclear Spectroscopic Telescope Array (NuSTAR) recently caught one in the middle of a gigantic X-ray flare. After analysis, they discovered this particular flare appeared to be a result of the Corona surrounding the supermassive black hole – region of highly energetic particlesbeing launched into space. A result making scientists and astronomers rethink their theories on how relativistic jets are created and sustained.

This result suggests to scientists that supermassive black holes emit X-ray flares when highly energized particles (Coronas) are launched away from the black hole. In this particular case, X-ray flares traveling at 20 percent of the speed of light, and directly pointing toward Earth. The ejection of the Corona caused the X-ray light emitted to brighten a little in an effect called relativistic Doppler boosting. This slightly brighter X-ray light has a different spectrum due to the motion of the Corona, which helped astronomers detect this unusual phenomenon leaving the disk of dust and gas surrounding this supermassive black hole.

This is the first time we have been able to link the launching of the Corona to a flare,” said Dan Wilkins of Saint Mary’s University in Halifax, Canada, lead author of a new paper on the results appearing in the Monthly Notices of the Royal Astronomical Society. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.

Astronomers currently propose two different scenarios for the source of coronas surrounding supermassive black holes. The “lamppost” scenario indicates coronas are analogous to light bulbs sitting above and below the supermassive black hole along its axis of rotation. This idea proposes coronas surrounding supermassive black holes are spread randomly as a large cloud or a “sandwich” that envelopes the disk of dust and material surrounding the black hole. Some astronomers think coronas surrounding supermassive black holes could alternate between both the lamppost and sandwich configurations.

The latest data seems to lean toward the “lamppost” scenario and gives us clues to how the coronas surrounding black holes move. More observations are needed to ascertain additional facts concerning this unusual phenomenon and how massive X-ray flares and gamma rays emitted by supermassive black holes are created.

Something very strange happened in 2007, when Mrk 335 faded by a factor of 30. What we have found is that it continues to erupt in flares but has not reached the brightness levels and stability seen before,” said Luigi Gallo, the principal investigator for the project at Saint Mary’s University. Another co-author, Dirk Grupe of Morehead State University in Kentucky, has been using Swift to regularly monitor the black hole since 2007.

The Corona gathered inward at first and then launched upwards like a jet,” said Wilkins. “We still don’t know how jets in black holes form, but it’s an exciting possibility that this black hole’s Corona was beginning to form the base of a jet before it collapsed.”

The nature of the energetic source of X-rays we call the Corona is mysterious, but now with the ability to see dramatic changes like this we are getting clues about its size and structure,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena, who was not affiliated with the study.

Study continues

Astronomers will now continue their study of supermassive black holes in the cosmos in order to remove the veil of mystery surrounding the X-ray flares they emit and other bizarre mysteries surrounding these enigmatic stellar objects. In particular, they would love to discover the reasons for the ejection of Coronas surrounding black holes.

You can learn more about black holes here.

Discover the Swift spacecraft here.

Take the voyage of NASA’s NuSTAR spacecraft here.

Take part in NASA’s mission to the stars here.

Read about ripples in the spacetime astronomers detected moving across the planet-making region of AU Microscopii.

Learn more about climatic collisions between galaxy clusters.

Read about NASA and its partners plans to travel to Mars for an extended stay in the next few decades.

Advertisements

Hubble Survey Links Galaxy Mergers with Presence of Active Galactic Nuclei

That are thought to be the result of huge volumes of heated matter circling around and being consumed by a supermassive black hole

Astrophysicists have wondered since discovering relativistic jets what could power such an awesome display of power. Space scientists using the Hubble Space Telescope just completed the largest survey ever conducted on this question. What they found might surprize you?
Astrophysicists have wondered since discovering relativistic jets what could power such an awesome display of power. Space scientists using the Hubble Space Telescope just completed the largest survey ever conducted on this question. What they found might surprise you?

Space news (August 12, 2015) – Astrophysics; studying galaxies with extremely luminous centers looking for clues to high-speed, radio-signal-emitting jets extending thousands of light-years into space

NASA space scientists working with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope think they have found a possible link between galaxy mergers and the presence of active galactic nuclei (AGN).

With a
With a “panchromatic” grasp of light extending from the ultraviolet through the visible and into the infrared, is an extremely powerful imaging instrument, extending Hubble’s capabilities by seeing deeper into the universe. WFC3 is viewed as an important bridge to the infrared observations that will be carried out with the James Webb Space Telescope (JWST) following its launch in 2013.

“The galaxies that host these relativistic jets give out large amounts of radiation at radio wavelengths,” explains Marco.“By using Hubble’s WFC3 camera we found that almost all of the galaxies with large amounts of radio emission, implying the presence of jets, were associated with mergers. However, it was not only the galaxies containing jets that showed evidence of mergers!”

Active galactic nuclei refer to the luminous center of a small percentage of galaxies viewed during the human journey to the beginning of space and time. Luminous centers space scientists often detect emitting two high-speed jets of plasma in opposite directions at right angles to the disk of matter surrounding the supermassive black hole believed to exist near the center of these galaxies. Powerful, radio-signal-emitting jets astrophysicists call relativistic jets they think could be powered by huge volumes of heated matter circling around and eventually being consumed by the supermassive black hole. Heated matter astrophysicists think could have been provided by the chaos of a recent merger with another galaxy.

How did they conduct the study?

NASA astrophysicists studied a large selection of galaxies with extremely luminous centers looking for signs of a recent merger with another galaxy. Data from several different additional studies was used to enhance the data set. Space scientists in this study looked at five different types of galaxies; two types with relativistic jets, two with luminous cores but no jets, and a set of regular inactive galaxies. 

What did they find?

Galactic Wrecks Far from Earth: These images from NASA's Hubble Space Telescope's ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)
Galactic Wrecks Far from Earth: These images from NASA’s Hubble Space Telescope’s ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)

They found a large percentage of the galaxies viewed showed evidence of mergers with other galaxies, including all those with extremely luminous centers. They also found that a very small percentage of galaxies viewed formed AGNs with powerful radio emissions and even less relativistic jets extending thousands of light-years into space.

“We found that most merger events in themselves do not actually result in the creation of AGNs with powerful radio emission,” added co-author Roberto Gilli from Osservatorio Astronomico di Bologna, Italy. “About 40% of the other galaxies we looked at had also experienced a merger and yet had failed to produce the spectacular radio emissions and jets of their counterparts.”

What’s next?

Astrophysicists looking at the data provided through this survey of galaxies with AGNs believe it could be necessary for galaxies to merge to produce a host supermassive black hole with relativistic jets. They also think additional parameters need to exist for the merger to result in this spectacular and awe-inspiring sight. Possibly the result of two black holes of similar mass merging could power these high-speed jets viewed during the human journey to the beginning of space and time as excess energy is extracted from the black hole’s rotational energy is added to the mix.

“There are two ways in which mergers are likely to affect the central black hole. The first would be an increase in the amount of gas being driven towards the galaxy’s centre, adding mass to both the black hole and the disc of matter around it,” explains Colin Norman, co-author of the paper. “But this process should affect black holes in all merging galaxies, and yet not all merging galaxies with black holes end up with jets, so it is not enough to explain how these jets come about. The other possibility is that a merger between two massive galaxies causes two black holes of a similar mass to also merge. It could be that a particular breed of merger between two black holes produces a single spinning supermassive black hole, accounting for the production of jets.”

What’s next?

Astrophysicists and space scientists will now use both the Hubble Space Telescope and the Atacama Large Millimeter/Submillimeter Array (ALMA) to expand the search for additional galaxies with extremely luminous centers. This will enhance the survey and provide more data on additional parameters to help shed light on galaxies with AGNs. For now, we can only say it appears galaxies viewed exhibiting relativistic jets have merged with other galaxies.

Atacama Large Millimeter/Submillimeter Array (ALMA) to
Atacama Large Millimeter/Submillimeter Array (ALMA)

Learn more about NASA’s mission to the stars here.

Explore NASA’s Hubble Space Telescope here.

Learn more about the current search for life beyond Earth

Discover NASA’s New Horizons Mission to Pluto and moon Charon.

Read about NASA’s search for materials with the right stuff to help enable the human journey to the beginning of space and time.

Hubble Finds the The Biggest Black Hole

This conceptualized drawing of black hole Cygnus x-1 shows the black hole drawing matter from a nearby blue star
This conceptualized drawing of black hole Cygnus x-1 shows the black hole drawing matter from a nearby blue star

The nature of the beast

Astronomy news (November 26, 2013) – Astronomers believe the size of a black hole should be related to the size of the galaxy in which it resides, so the smaller a galaxy, the less massive its black hole should be. The lenticular galaxy NGC 1277 appears to have a black hole near its center with a mass out of proportion to its size, which indicates this theory will have to be looked at again.

Astronomers measured the velocities of stars in orbit around NGC 1277
Astronomers measured the velocities of stars in orbit around NGC 1277

Watch this animation on the possible orbit of the massive black hole in NGC 1277, https://www.youtube.com/watch?v=pFkBKmAj0G4.

NASA astronomers conducting a study of black holes at the Max Planck Institute for Astronomy recently used the Hubble Space Telescope and Hobby-Eberly Telescope in Fort Davis, Texas to measure the velocities of stars in orbit around NGC 1277. The higher the velocity of these stars, the greater the mass of the central object. NGC 1277 is located at a distance of around 250 million light-years, toward the constellation Perseus.

This Hubble image shows lenticular galaxy NGC1277
This Hubble image shows lenticular galaxy NGC1277

Astronomers measured the mass of the object at the center of NGC 1277 to be around 17 billion times the mass of the Sun, which is over four thousand times more massive than the 4 million solar mass black hole at the center of the Milky Way. Until recently, the two most massive central bodies found in any galaxy measured by astronomers reside in galaxies NGC 3842 and NGC 4889. This would make the central object in NGC 1277 the most massive found to date during the current study of black holes by NASA astronomers at the Max Planck Institute for Astronomy.

Astronomers measured the central mass in NGC 1277 to be over 4 times as massive as the one in our own Milky Way
Astronomers measured the central mass in NGC 1277 to be over 4 times as massive as the one in our own Milky Way

NASA astronomers estimate the central mass in NGC 1277 has about 14 percent of the total mass of this smaller galaxy, which when compared to the expected 0.1 percent of the mass of the stellar bulge of the galaxy, could mean astronomers will have to rethink current astrophysical theories on galaxy-black hole systems.

What now?

NASA astronomers at the Max Planck Institute for Astronomy are currently going over the data obtained during their study of NGC 1277, to see if they can come up with a new theory on how the central mass could be so massive as compared to other galaxy-black hole systems studied.

Current ideas include the possibility the black hole at the center of NGC 1277 could have been ejected from nearby galaxy NGC 1275 and then subsequently captured. We’ll keep you updated as more information and data comes in on theories concerning galaxy-black hole systems during the continuing human journey to the beginning of space and time.

The leader of the team surveying black holes at the Max Planck Institute for Astronomy talks about the black hole in NGC 1277, https://www.youtube.com/watch?v=12FJVvqn1YE.

Can NASA astronomers detect extraterrestrial moons orbiting distant suns? Read this article to find out https://spaceshipearth1.wordpress.com/2013/12/31/searching-for-extraterrestrial-moons/.

Read about the latest discovery in the search for life beyond Earth https://spaceshipearth1.wordpress.com/2013/12/25/the-search-for-life-beyond-earth-takes-a-turn-at-jupiter/.

Read about the latest images of the solar system sent back by the Cassini spacecraft https://spaceshipearth1.wordpress.com/2013/12/22/cassini-spacecraft-show-views-of-the-solar-system-in-natural-color/.