Ancient Dust Falling onto Mar’s Atmosphere from Oort Cloud Comet Contains Metal Ions

Artist’s concept of Comet Siding Spring approaching Mars, shown with NASA’s orbiters preparing to make science observations of this unique encounter. Image Credit: NASA/JPL
Artist’s concept of Comet Siding Spring approaching Mars, shown with NASA’s orbiters preparing to make science observations of this unique encounter.
Image Credit: NASA/JPL

Comet Siding Spring sprinkles ancient metallic dust onto Mars atmosphere 

Space news (November 23, 2014) Comet Siding Spring seeds Mars with ancient metallic dust –

NASA and European space scientists recently observed a large comet flying past a planet for the first time. On October 19, 2014, three spacecraft, two American and one European, observed and gathered data as Comet Siding Spring flew past Mars. You can watch a YouTube video here of the artists rendering of the flyby.

Comet C/2013 A1 Siding Spring arrived from a very distant region of the solar system called the Oort Cloud. At around 2:27 p.m. EDT, this traveler from the outer regions of the solar system was only about 87,000 miles (139,500 kilometers) from the Red Planet. It was at this time the comet was observed by three spacecraft as it deposited ancient debris on its atmosphere. This is the first direct measurement of dust from an Oort Cloud comet and an opportunity scientists and astronomers have been waiting for.

Five images of comet C/2013 A1 Siding Spring taken within a 35-minute period as it passed near Mars on Oct. 19, 2014, provide information about the size of the comet's nucleus. These observations by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter suggest that the nucleus is smaller than 1.2 miles (2 kilometers) across.
Five images of comet C/2013 A1 Siding Spring taken within a 35-minute period as it passed near Mars on Oct. 19, 2014, provide information about the size of the comet’s nucleus. These observations by the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter suggest that the nucleus is smaller than 1.2 miles (2 kilometers) across.

Oort Cloud comets are thought to be leftover material from the birth of the solar system. Space scientists have an opportunity to test the present theory on the evolution of the solar system and possibly life on Earth. Theories persist that the ingredients of life could have been deposited on Mars in the distant past and then this life traveled to Earth and took root. The data collected during this encounter between Comet C/2013 A1 Siding Spring and Mars could help determine if this is possible.

Space scientists gathered information on the comet’s nucleus and the effects of the comet’s passage on the Martian atmosphere. The data was collected using NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) and Mars Reconnaissance Orbiter (MRO) spacecraft, in conjunction with radar instruments on the European Space Agency’s (ESA’s) Mars Express.

These three plots are spectrograms showing the intensity of radar echo in the Martian far-northern ionosphere at three different times on Oct. 19 and 20, 2014. The middle plot reveals effects attributed to dust from a comet that passed near Mars that day. The data are from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), an instrument on the European Space Agency's Mars Express orbiter.
These three plots are spectrograms showing the intensity of radar echo in the Martian
far-northern ionosphere at three different times on Oct. 19 and 20, 2014. The middle plot reveals effects attributed to dust from a comet that passed near Mars that day. The data are from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), an instrument on the European Space Agency’s Mars Express orbiter.

Data collected indicates comet debris containing sodium, iron and magnesium metal ions, along with at least five others, fell on the atmosphere of Mars as the comet flew past the planet. Readings indicate this added a temporary layer of strong metal ions to the ionosphere of Mars. Planetary and atmospheric space scientists are now studying whether this could have resulted in the development of a similar layer in the atmosphere of a primordial Earth. They also want to take a look at the possibility the sprinkling of comet dust in the atmosphere of Mars could have long-term consequences for the planet.

“This historic event allowed us to observe the details of this fast-moving Oort Cloud comet in a way never before possible using our existing Mars missions,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s Headquarters in Washington. “Observing the effects on Mars of the comet’s dust slamming into the upper atmosphere makes me very happy that we decided to put our spacecraft on the other side of Mars at the peak of the dust tail passage and out of harm’s way.”

NASA and European space scientists will now continue to monitor Mar’s atmosphere after the passage of Comet C/2013 A1 Siding Spring for continued and additional effects and developments. They also hope to get further opportunities in the future to observe Oort Cloud comets flying past planets within the solar system.

For more information on MAVEN, MRO or any of NASA’s missions to Mars go here.

You can learn more about the Mars Express spacecraft here.

Read about astronauts monitoring their body weight while in orbit

Read about icy geysers detected on Saturn’s moon Enceladus

Read about how you can take part in NASA’s asteroid-hunting contest

 

Advertisements

MAVEN Looks for Clues to Mar’s Missing Atmosphere

Maven is improving our understanding of Mars
An artist’s conception of MAVEN in orbit around Mars

Where did Mar’s thicker atmosphere go?

This shot shows water ice clouds at the top that indicate a storm front on the Red Planet

Mars has always been a mystery

Astronomy News – Space scientists looking at the atmosphere of the Red Planet have a bit of a mystery on their hands as the facts would seem to indicate that Mars should have a much more prominent atmosphere. The formation of an atmosphere thick enough for liquid water to flow on the planet’s surface would have made the Red Planet a very promising place for the formation of life in our solar system. Planet scientists that have been studying Mars and the data collected by instruments they have focused on the Red Planet and are planning on journeying to the Red Planet to delve into the mystery of Mar’s atmosphere using MAVEN (Mars Atmosphere and Volatile Evolution Mission), sometime in the future. They want to see if they can find any clues as to where Mar’s atmosphere might have gone and the possible reasons it’s no longer present on Mars. They also want to see if they can determine a timeline for the disappearance of the Red Planet’s thick atmosphere, which could give them an idea whether Mar’s had time to develop life forms.

Planet scientists looking at the surface of Mars see features that lead them to believe that the surface of the Red Planet has been a cold and barren place for billions of years. This is hardly the environment for Earth-based life to develop, but surface features resembling water-channels of some kind and minerals scientists know will form in the presence of water have been found on the surface of Mars. These facts lead planet scientists to the possibility that Mars once had a much thicker atmosphere and was warm enough for liquid water to flow along the surface of Mars. The only problem is Mars currently has a very thin atmosphere unable to protect any liquid water that forms on the surface of Mars from the radiation of the sun and consequently any water would have been scoured from the planet’s surface, long ago. This environment would be the end-of-the-road for any known Earth-based life form, but it’s possible any Martian life forms that existed during the time when Mar’s thicker atmosphere went missing could have decided to go underground in order to survive. NASA plans on sending MAVEN out to the Red Planet to see if they can find any clues to the mystery of where Mar’s thicker atmosphere went, sometime in 2013, if NASA’s current plans stay on target.

Evidence exists suggesting Mars once had a lot more water

What are the possible reasons Mar’s no longer has a much thicker atmosphere? Space scientists at this point believe that Sol could be the main culprit in the disappearance of the Red Planet’s atmosphere, that Sol’s breath, or solar wind, is the possible force responsible for Mars no longer having a much thicker atmosphere possibly capable of supporting Earth-based life. They think it’s possible the electrically charged ions and electrons in the solar wind could have slowly stripped away Mar’s thicker atmosphere in its early days, after Mars lost its global magnetic field, which would have normally shielded the thicker atmosphere of the Red Planet from the force of Sol’s solar wind, just as Earth’s global magnetic field protects our atmosphere from the solar wind. Sol’s solar wind isn’t the only possibly culprit in the disappearance of Mar’s thicker atmosphere and NASA’s planning on sending MAVEN to the Red Planet within the next two years to take a look at what remains of the upper atmosphere of Mars, the ionosphere and the way the atmosphere of the Red Planet interacts with Sol and its solar wind.

Check out my newest astronomy work at http://astronomytonight.yolasite.com/, and then let me know what you think?

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion