MACS 0647-JD could be the most distant galaxy viewed so far during the human journey to the beginning of space and time

Hubble Views Most Distant Galaxy Ever

MACS 0647-JD could be the most distant galaxy viewed so far during the human journey to the beginning of space and time
Astronomers looking at images of MACS 0647-JD believe it’s only about 600 light-years wide

The first galaxies

Astronomy news (November 28, 2013) – The Hubble Space Telescope, along with the light magnifying ability of the effect called gravitational lensing, has provided the first views of the most distant galaxy seen during the human journey to the beginning of space and time. The astronomers of the Cluster Lensing and Supernova Survey with Hubble (CLASH) recently discovered three gravity-lensed images of a galaxy that existed over 13.7 billions years ago taken using Hubble’s new panchromatic imaging capabilities. Designated MACS 0647-JD, this ancient star city is currently the most distant galaxy located to date using the Hubble Space Telescope and gravitational lensing.

Astronomers used the Hubble Space Telescope and gravitational lensing to look at MACS 0647-JD
Astronomers used the Hubble Space Telescope to help view MACS 0647-JD

The CLASH program

The astronomers of CLASH used the Hubble Space Telescope to look at 25 distant galaxy clusters during the period from November 2010 to July 2013. They were looking for light which had been magnified due to the effect known as gravitational lensing as predicted by Einstein’s General Theory of Relativity. They wanted to detect additional Type Ia supernovae, map the distribution of dark matter in galaxy clusters, detect the most distant galaxies ever and study the internal structure and evolution of the galaxies in and behind these clusters.

The three gravity-lensed images taken by Hubble are of a small galaxy, now designated MACS 0647-JD, which could have been one of the first galaxies to exist in the universe. Astronomers’ analysis of the images suggests this small galaxy was less than 600 light-years across, which may indicate it was in the first stages of galaxy formation. In fact, this smaller galaxy may have been just one building block in the construction of a larger galaxy, and during the past 13.7 billions years could have been part of dozens, hundreds and even thousands of merging events with other galaxies.

Astronomers look at other possibilities

The astronomers of the Cluster Lensing and Supernova Survey with Hubble recently used the ability of NASA’s Spitzer Space Telescope to help rule out other possible identities of the three images they found. Next, astronomers will use the Spitzer Space Telescope, and other telescopes, to confirm the existence of the galaxy and try to get a better estimate of its age.

Astronomers hope to use the data they obtain from the study of galaxies like MACS 0647-JD to learn more about the early universe
Astronomers hope to use the James Webb Space Telescope to look even further back in time and space

Can NASA astronomers detect extraterrestrial moons orbiting distant suns? Read this article to find out

Read about the latest discovery in the search for life beyond Earth

Read about the latest images of the solar system sent back by the Cassini spacecraft

The Earth’s Movements: Spaceshipearth1’s Orbit


The Earth is moving at several different velocities at this very moment


The combination of the Earth’s movements helps to create the seasons and environment of Spaceshipearth1

The Earth’s orbit around Sol and other things

A little seasoning anyone!

All motion is relative according to Einstein’s theories of space and time

Astronomy answers and questions – The Earth beneath you and the night sky above you are both moving relative to each other and you, and the universe around you. The Earth not only spins counterclockwise on its axis but also orbits Sol about once every 365 spins on its axis, give or take a few minutes, in a counterclockwise direction. Speeding through space and time at an impressive 100,000 km/hr (60,000 miles/hr), around 100 times faster than a speeding bullet, faster than the launch speed for any known spacecraft and certainly faster than Superman, the Earth’s orbit isn’t a perfect circle. In fact, the distance of the Earth to Sol during its transit differs significantly at different times, due to this non-circular orbit, but on average the distance between Earth and Sol is about 150 million kilometers (93 million miles). This distance astronomers call an astronomical unit or AU, and this unit is used by astronomers as a measuring stick of sorts, only on a bigger scale than the mile or kilometer.

Up and down has no meaning

The axis of the Earth during its orbit is also tilted about 23 1/2 degrees from the line perpendicular to the flat plane traced out by the Earth’s orbit around Sol. This flat plane astronomers call the ecliptic plane and in reality, this axis tilt has no meaning in Einstein’s spacetime and is only useful in relation to the ecliptic plane. In Einstein’s universe, the notion of tilt by itself has no meaning in spacetime, where up and down are related to away from the center of the Earth (or any body with mass) and toward the center of mass, respectively.

The Earth’s axis also continues to point in the same general direction throughout Earth’s orbit of Sol. This direction is toward Polaris, often called the North Star by travelers and navigators, and lies within 1 degree of the north celestial pole, which makes it useful for navigating on the surface of Earth. This direction closely marks the direction of due north in the night sky and the altitude of Polaris is nearly equal to the latitude of an observer on the surface of Earth. Navigators and star gazers have used these facts for thousands of years to determine direction and location on the Earth’s surface and travel from one destination to another.

The changing position of Earth during the 365 days it takes the Earth to complete one orbit also results in the night sky above your head changing nightly. Sol appears to move against a background of distant stars in the 88 constellations in the Milky Way above you. The 12 constellations along the ecliptic plane star gazers refer to as the constellations of the Zodiac, but a thirteenth constellation, Ophiuchus lies partially on the ecliptic plane, as well.

Earth’s movements help create seasons

The combination of the rotation of the Earth on its tilted axis and orbit around Sol also helps create the seasons we experience on Spaceshipearth1. In future articles, we’ll talk about the seasons of Earth, the meaning this has for life on Earth, and how this relates to the study of the movements of the exo-planets humans have, so far, viewed during the human “Journey to the Beginning of Space and Time”.

Check out my newest astronomy site at

Learn how NASA astronomers are planning on detecting extraterrestrial moons orbiting distant suns

Read about the latest news on life beyond Earth

Take a look at the latest natural color images taken by the Cassini spacecraft

The Moving Universe

The Earth is moving relative to everything else in the universe

Everything on your “Journey to the Beginning of Space and Time” is moving relative to everything else in the universe

The Earth rotates on its axis

The solar system is moving through the Milky Way

Astronomy questions and answers – Staring upward at the night sky above you get the notion you’re stationary in the universe, but nothing could be further from the truth. The Earth beneath you is spinning on its axis at 1000 km/hr, orbiting Sol at 100,000 km/hr, the Milky Way Galaxy at 800,000 km/hr while the solar system is moving relative to the local stars at 70,000 km/hr. In fact, the universe around us could be moving through a relative space and time of some unknown kind unimaginable to the human consciousness, and we would have no way of detecting this relative motion. We are all travelers in a sense on spaceshipearth1, which is the only habitable planet we know of for humankind that exists in the universe.

The Milky Way is moving through the universe

Everything appears to be moving relative to everything else we view as we look outward into space and time, which makes traveling through space and time a hazardous activity at the best of times. The universe you’ll experience on your “Journey to the Beginning of Space and Time” isn’t the universe you experience on Earth. The relative motions of everything in the universe mean we’ll need to explain a few things to you about the way things work in the universe. In future articles, we’ll talk about the Earth’s rotation and orbit around Sol, and how this affects the planet, we’ll explain the Earth’s motion in the Milky Way Galaxy, and the motion of our solar system in relation to the nearby stars in the night sky. This will give you a base upon which to stand as we take you further out into the cosmos to explain the relative universe you’ll experience during your journey. Toward this goal, we’ll explain the meaning of Einstein’s General and Special Relativity for your trip and the way you’ll experience things during your journey.

Check out my newest astronomy site at

Learn why astronomy binoculars are a popular choice with amateur astronomers

Read about the Anasazi Indians

Read about astronomers viewing a supernova they think might have given birth to a black hole