How do Astronomers Precisely Determine Distances to Objects on the Other Side of the Milky Way Galaxy?

By studying light echoes, rings of x-rays observed around binary star system Circinus X-1

A light echo in X-rays detected by NASA’s Chandra X-ray Observatory has provided a rare opportunity to precisely measure the distance to an object on the other side of the Milky Way galaxy. The rings exceed the field-of-view of Chandra’s detectors, resulting in a partial image of X-ray data. Credits: NASA/CXC/U. Wisconsin/S. Heinz
The image above shows a light echo in x-rays detected by NASA’s Chandra X-ray Observatory which astronomers used to precisely measure the distance to a stellar object across the spiral disk of the Milky Way galaxy. The sizes of the light echoes detected in this image exceed the ability of the detectors, which has resulted in a partial construction of X-ray data. Credits: NASA/CXC/U. Wisconsin/S. Heinz

Space news (astrophysics: measuring distances of objects; light echoes) – 30,700 light-years from Earth in the plane of the Milky Way Galaxy, observing X-rays emitted by a neutron star in double star system Circinus X-1 reflecting off massive, surrounding clouds of gas and dust –

The youngest member of an important class of objects has been found using data from NASA's Chandra X-ray Observatory and the Australia Compact Telescope Array. A composite image shows the X-rays in blue and radio emission in purple, which have been overlaid on an optical field of view from the Digitized Sky Survey. This discovery, described in the press release, allows scientists to study a critical phase after a supernova and the birth of a neutron star.
The youngest member of an important class of objects has been found using data from NASA’s Chandra X-ray Observatory and the Australia Compact Telescope Array. A composite image shows the X-rays in blue and radio emission in purple, which have been overlaid on an optical field of view from the Digitized Sky Survey. This discovery allows scientists to study a critical phase after a supernova and the birth of a neutron star. Credits: NASA/Chandra

Determining the apparent distance of objects tens of thousands of light-years from Earth across the breadth of the Milky Way was a difficult problem to solve during the early days of the human journey to the beginning of space and time. During the years since these early days, astronomers have developed a few techniques and methods to help calculate distances to stellar objects on the other side of the galaxy. 

The most recently measured distance to an object on the other side of the Milky Way used the newest method developed. By detecting the rings from X-ray light echoes around the star Circinus X-1, a double star system containing a neutron star. Astronomers were able to determine the apparent distance to this system is around 30,700 light-years from Earth.

“It’s really hard to get accurate distance measurements in astronomy and we only have a handful of methods,” said Sebastian Heinz of the University of Wisconsin in Madison, who led the study. “But just as bats use sonar to triangulate their location, we can use the X-rays from Circinus X-1 to figure out exactly where it is.”

 Sebastian Heinz of the University of Wisconsin in Madison
Sebastian Heinz of the University of Wisconsin in Madison Credits: University of Wisconsin in Madison.

The rings are faint echoes from an outburst of x-rays emitted by Circinus X-1 near the end of 2013. The x-rays reflected off of separate clouds of gas and dust surrounding the star system, with some being sent toward Earth. The reflected x-rays arrived from different angles over a three month period, which created the observed X-ray rings. Using radio data scientists were able to determine the distance to each cloud of gas and dust, while detected X-ray echoes and simple geometry allowed for an accurate measurement of the distance to Circinus X-1 from Earth.

“We like to call this system the ‘Lord of the Rings,’ but this one has nothing to do with Sauron,” said co-author Michael Burton of the University of New South Wales in Sydney, Australia. “The beautiful match between the Chandra X-ray rings and the Mopra radio images of the different clouds is really a first in astronomy.”

Michael Burton of the University of New South Wales Credits: University of New South Wales
Michael Burton of the University of New South Wales Credits: University of New South Wales

In addition to this new distance measurement to Circinus X-1, astrophysicists determined this binary system’s naturally brighter in X-rays and other light than previously thought. This points to a star system that has repeatedly passed the threshold of brightness where the outward pressure of emitted radiation is balanced by the inward force of gravity. Astronomers have witnessed this equilibrium more often in binary systems containing a black hole, not a neutron star as in this case. The jet of high-energy particles emitted by this binary system’s also moving at 99.9 percent of the speed of light, which is a feature normally associated with a

The jet of high-energy particles emitted by this binary system’s also moving at 99.9 percent of the speed of light, which is a feature normally associated with a relativistic jet produced by a system containing a black hole. Scientists are currently studying this to see if they can determine why this system has such an unusual blend of characteristics.  

“Circinus X-1 acts in some ways like a neutron star and in some like a black hole,” said co-author Catherine Braiding, also of the University of New South Wales. “It’s extremely unusual to find an object that has such a blend of these properties.”

Astronomers think Circinus X-1 started emitting X-rays observers on Earth could have detected starting about 2,500 years ago. If this is true, this X-ray binary system’s the youngest detected, so far, during the human journey to the beginning of space and time.

This new X-ray data is being used to create a detailed three-dimensional map of the dust clouds between Circinus X-1 and Earth. 

What’s next?

Astrophysicists are preparing to measure distances to other stellar objects on the other side of the Milky Way using the latest distance measurement method. This new astronomy tool’s going to come in handy during the next leg of the human journey to the beginning of space and time.

Become a NASA Disk Detective and help classify embryonic planetary systems.

Read about the final goodbye of the Rosetta spacecraft, just before it crashes into the surface of comet 67P/Churyumov-Gerasimenko

Learn more about China’s contributions to the human journey to the beginning of space and time.

Assess NASA’s contribution to the human journey to the beginning of space and time here.

Discover the Milky Way.

You can view the published results of this study in The Astrophysical Journal and online here.

Learn about astronomy at the University of Wisconsin.

Discover astronomy at the University of New South Wales.

Learn more about Circinus X-1.

Learn what NASA’s Chandra X-ray Observatory has shown us about the cosmos here.

Chandra Detects X-ray Emissions of Comets PanSTARRS and ISON

Produced when heavy atoms in solar wind strike lighter atoms in comets’ atmosphere 

Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements. Image credit: X-ray: NASA/CXC/Univ. of CT/B.Snios et al, Optical: DSS, Damian Peach (damianpeach.com)
Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.
Image credit: X-ray: NASA/CXC/Univ. of CT/B.Snios et al, Optical: DSS, Damian Peach (damianpeach.com)

Space news (planetary dynamics: Oort Cloud comets; PanSTARRS & ISON) – 90 & 130 million miles from Earth, respectively, observing x-ray emissions as solar wind particles strike comets’ atmosphere – 

Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun - the solar wind - strikes the comet's atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.
Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.

Thousands of years ago, ancient sky watchers observed terrible, fiery balls of fire that appeared suddenly in the sky. Hairy stars resembling fiery swords that appeared unpredictably, ancient astronomers and societies interpreted these terrifying, fear inducing travelers as harbingers of doom predicting impending disaster or even success in a future endeavor. Often connecting their appearance to famine, war, and plague, to the death of a beloved or fall of an empire or warlord, throughout history comets filled us with fear and even during modern times continue to entrance and fill us with awe. 

Comet ISON comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Image Credit: ESA/NASA/SOHO/SDO/GSFC
Comet ISON comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA’s Solar Dynamics Observatory.
Image Credit: ESA/NASA/SOHO/SDO/GSFC

Recently, astronomers working with NASA’s Chandra X-ray Observatory detected x-ray emissions produced as particles in the solar wind struck the atmospheres’ of Comets ISON and PanSTARRS. Two long-period comets originating in the Oort Cloud far beyond the orbit of the planets, solar scientists use them as laboratories to study the composition of the stream of exotic particles flowing from the Sun called the solar wind. Astrophysicists determined x-ray emissions were produced as heavy particles in the solar wind struck lighter particles in the atmospheres’ of Comets ISON and PanSTARRS. X-ray emissions with varying shapes indicating differences in the solar wind and atmospheres’ of these comets at the time of the observations.  

This image from NASA's Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. It is likely that the comet did not survive the trip. Credits: NASA/SDO
This image from NASA’s Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. It is likely that the comet did not survive the trip.
Credits: NASA/SDO

Observations of Comet ISON detected a greenish hue attributed to gasses like cyanogen, which contains oxygen and nitrogen, streaming from its nucleus. Chandra data obtained shows this comet has a well-developed, parabolic shape indicative of a dense atmosphere. In comparison, observations of Comet PanSTARRS show a more diffuse x-ray spectrum, indicating it has less gas and more dust in its atmosphere. Observations that agree with independent measurements made by NASA’s Advanced Composition Explorer and other instruments. Planetary scientists plan to use the detailed computer simulations they developed during these studies to help analyze the data obtained by Chandra of Comets ISON and PanSTARRS to investigate interactions between the solar wind and other comets, planets, and even interstellar gas.  

Twelve NASA spacecraft assets had an opportunity to observe Comet ISON, including the Heliophysics solar observatories; Solar Dynamic Observatory, STEREO and SOHO. Credits: NASA
Twelve NASA spacecraft assets had an opportunity to observe Comet ISON, including the Heliophysics solar observatories; Solar Dynamic Observatory, STEREO and SOHO.
Credits: NASA

Learn more about the role planetary scientists suspect comets and asteroids played during the opening moments of the birth of the solar system and planets.

Read and learn about viewing the ghostly glow of streaking Orionid meteorites.

Learn about what planetary scientists discovered during the recent visit of NASA’s Deep Impact spacecraft to comet Hartley 2.

After perihelion comet, ISON’s changed in ways planetary scientists are trying to determine at this time. Watch this NASA video on the ultimate fate of comet ISON.

Join NASA’s journey to the beginning of space and time here

Watch this NASA-sponsored tour of  Comet ISON

Discover more about comet PanSTARRS here

Learn more about NASA’s Chandra X-ray Observatory.

How Galaxy CGCG254-021 Got its Tail

A tale of two galactic cities 

z8338

Space news (galaxy formation: galaxy tails; the largest ever) – 680 million light-years from Earth toward the constellation Hercules – 

The ghostly blue, diffuse ribbon of hot gas seen trailing behind galaxy CGCG254-021 in the upper right of this composite image is the longest, largest galaxy tail observed during the human journey to the beginning of space and time. This stunning view was made using X-ray data (blue) collected by NASA’s Chandra Observatory and data (yellow) from the Isaac Newton Group of Telescopes.

NASA's Galaxy Evolution Explorer found a tail behind a galaxy called IC 3418. The star-studded tail can be seen on the left, as detected by the space telescope in ultraviolet light. The tail has escaped detection in visible light, as shown by the image on the right, taken by a visible-light telescope on the ground. This tail was created as the galaxy plunged into gas in a family of galaxies known as the Virgo cluster. The image on the left is a composite of data from the Galaxy Evolution Explorer (far-ultraviolet light is dark blue and near-ultraviolet light is light blue); and the Sloan Digital Sky Survey (visible light is colored green and red). The image on the right is from the Sloan Digital Sky Survey. Other galaxies and stars can be seen scattered throughout the image. Another galaxy called IC 3413, which is part of the Virgo cluster, can be seen to the right of IC 3418 as an oval-shaped blob. The bright large dot at upper right is a star in our Milky Way galaxy. Image Credit: NASA/JPL-Caltech
NASA’s Galaxy Evolution Explorer found a tail behind a galaxy called IC 3418. The star-studded tail can be seen on the left, as detected by the space telescope in ultraviolet light. The tail has escaped detection in visible light, as shown by the image on the right, taken by a visible-light telescope on the ground. This tail was created as the galaxy plunged into gas in a family of galaxies known as the Virgo cluster.
The image on the left is a composite of data from the Galaxy Evolution Explorer (far-ultraviolet light is dark blue and near-ultraviolet light is light blue); and the Sloan Digital Sky Survey (visible light is colored green and red). The image on the right is from the Sloan Digital Sky Survey.
Other galaxies and stars can be seen scattered throughout the image. Another galaxy called IC 3413, which is part of the Virgo cluster, can be seen to the right of IC 3418 as an oval-shaped blob. The bright large dot at upper right is a star in our Milky Way galaxy.
Image Credit:
NASA/JPL-Caltech

Galaxy tails are wispy ribbons of hot gas stripped from a galaxy as it travels through an immense cloud of hot intergalactic gas. In the case of galaxy CGCG254-021, a tail of hot gas estimated at over 250,000 light-years in length, and around 10 million degrees Centigrade, which is half the estimated temperature of the intergalactic gas cloud. 

Astronomers think CGCG254-021’s tail was stripped from the galaxy as it moved through hot gas in galaxy cluster Zwicky 8338. The pressure exerted by this rapid motion stripped gas away from the galaxy, creating the ghostly blue ribbon of hot gas observed. A ribbon astronomers think could be completely free of the galaxy, considering the distance between the two as seen in this image. 

Astronomers have been studying interactions between the ribbon and galaxy CGCG254-021 by examining the characteristics and properties of the galaxy and its ghostly tail. They noted it has a brighter spot they call its head with a tail of diffuse x-ray emission trailing behind. This could indicate the gas in the head in cooler and richer in elements heavier than helium compared to the rest of the ribbon. There’s also a hint of a bow shock at the head of the tail with the galaxy at the front.  

Additional observations by researchers at infrared wavelengths also show galaxy CGCG254-021 has more mass than any other galaxy in galaxy cluster Zwicky 8338. Using the data obtained and models of the evolution of galaxies astrophysicists predicted it recently had the highest rate of new star formation in the cluster. However, they can find no evidence of new stars recently forming within the galaxy. They think this lack of new stars is due to the stripping of gas as it traveled through galaxy cluster Zwicky 8338.  

The foreground galaxy is NGC 4569 of the Virgo cluster. The red filaments at the right of the galaxy show the hydrogen gas that has been removed. The tail represents about 95 per cent of the gas reservoir the galaxy needs to feed the formation of new stars. Credit: CFHT/Coelum
The foreground galaxy is NGC 4569 of the Virgo cluster. The red filaments at the right of the galaxy show the hydrogen gas that has been removed. The tail represents about 95 per cent of the gas reservoir the galaxy needs to feed the formation of new stars. Credit: CFHT/Coelum

What’s next?

Astrophysicists plan on additional observations of galaxy CGCG254-021 and Zwicky 8383 in the future using Chandra, the Newton Group of telescopes, and other assets. They hope to fill in the blanks on how it obtained the largest galaxy tail recorded during the human journey to the beginning of space and time. To learn the story of how this galaxy got its ghostly blue tail. 

Read the PDF on the study of the tail of galaxy CGCG254-021 in galaxy cluster Zwicky 8383.

Read about the five-year journey of NASA’s Juno spacecraft to a recent arrival at Jupiter.

Read about the things astronomers studying the magnetic lines of force emanating from supermassive black holes have discovered

Read and learn about the incredible star navigating skills of the Polynesian islanders who colonized the scattered islands of the Pacific Ocean.

Read a study on the galaxy tail of galaxy NGC 4569 in the Virgo Cluster.

You can learn more about galaxy CGCG254-021 here

Journey across the cosmos and spacetime with NASA

Read and learn about the space discoveries made by NASA’s Chandra X-ray Observatory here

Isaac Newton Group of Telescopes (yellow) in the Canary Island. 

Discover galaxy cluster Zwicky 8338 here

Learn more about the space discoveries made by the National Radio Astronomy Observatory’s Karl Jansky Very Large Array. 

Infrared Echoes Dance Around Cassiopeia A

Stretching over 300 light-years from the supernova remnant 

Credits: NASA/Spitzer
Credits: NASA/Spitzer

Space news (astrophysics: supernovae; Cassiopeia A remnant) – 11,000 light-years from Earth toward the northern constellation Cassiopeia the Queen – 

On the day in 1667 when a brilliant new star appeared in the sky in Cassiopeia the Queen, no written account is left to tell of the stellar event. The supernova remnant left over is called Cassiopeia A. It consists of a neutron star, with the first carbon atmosphere ever detected, and an expanding shell of material that was ejected from the star as it contracted under its own mass. The progenitor star of this supernova remnant was a supermassive star estimated to be between 15 to 20 times as massive as Sol. 

The composite image of the Cassiopeia A supernova remnant seen above was made using six processed images taken over a three year period by NASA’s Spitzer Space Telescope. It shows the largest light echoes ever detected at over 300 light-years in length, which were created as light from the explosion passed through clumps of dust surrounding the supernova remnant. This light illuminated and heated surrounding dust clumps, making them briefly glow in infrared, like a series of colored lights lighting up one after the other. This resulted in an optical illusion in which the dust appears to be traveling away from the remnant at the speed of light. This apparent motion is represented in this image by different dust colors, with dust features unchanged over time appearing gray, and changes in surrounding dust over time represented by blue or orange colors.  

PIA03519_hires
Cassiopeia A supernova remnant. Credits? NASA/Hubble/Spitzer

Supernova remnant Cassiopeia A is the brightest radio emission source in the night sky above the frequency of 1 Gigahertz. It’s expanding shell of material reaches speeds above 5,000 km/s and temperatures as high as 50 million degrees Fahrenheit. First detected by Martin Ryle and Francis Graham-Smith in 1948, since this time it has become one of the most studied supernova remnants during the human journey to the beginning of space and time. 

PIA11748
For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created in this stunning image of Cassiopeia A. Credits: NASA/Spitzer/Chandra/Kitt Peak

The startling false-color image above shows the many brilliant, stunning faces of the supernova remnant Cassiopeia A. Composed of images collected by three of the greatest space observatories in history, in three different wavebands of light. This view highlights the beauty hidden within one of the most violent events ever detected close by in the Milky Way. 

NASA’s Spitzer Space Telescope infrared images used to create this stunning picture show warm dust in the outer shell of the supernova remnant Cassiopeia A highlighted in red. Hubble Space Telescope images added reveal delicate filaments of hot gas around 10,000 degrees Kelvin (18,000 degrees Fahrenheit) in yellow, while x-ray data collected by NASA’s Chandra X-ray Observatory is shown in green and blue. Look a little closer and deeper at the image and one sees hints of older infrared echoes from after the supernova hundreds of years ago.  

Learn more about Cassiopeia A

Take a tour of the cosmos with NASA here

Learn more about the discoveries of the Spitzer Space Telescope

Journey to the beginning of space and time aboard the Hubble Space Telescope

View the cosmos in x-rays aboard NASA’s Chandra X-ray Observatory

Learn more about supernovae here

Read about a recent survey of the infrared sky that revealed millions of supermassive black hole candidates spread across the cosmos.

Learn more about the new space technology being developed by NASA to enable a future trip to Mars and beyond.

Learn and read about the incredible Polynesian islander navigators who used the stars, winds, current and other natural phenomena to colonize the islands of the Pacific Ocean tens of thousands of years ago.

A Cosmic Explosion Brighter than the Core of the Milky Way

SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist's illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy.
SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA’s Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist’s illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy. Credits: NASA/ESA/Chandra/Lick/

Hypernova SN 2006gy was over a hundred times brighter than a typical supernova  

Space news (astrophysics: hypernovae; one of the brightest ever, SN 2006gy) – 240 million light-years toward the constellation Perseus in galaxy NGC 1260 –  

sn2006gy_anim_thm100
Watch this animation of SN 2006gy. Credits: NASA/ESA/Chandra.

It all started in September of 2006 when a fourth-year University of Texas graduate student astronomer working for the Palomar Transient Factory’s (PTF) luminous supernova program Robert Quimby discovered the brightest celestial event up to this date. An exploding star over 100 times brighter than a normal supernova and shining brighter than the core of its host galaxy NGC 1260. 

SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist's illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy.
SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA’s Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist’s illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy. Credits: NASA/ESA/Chandra/Lick/Keck.

“This was a truly monstrous explosion, a hundred times more energetic than a typical supernova,” said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas at Austin. “That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We’ve never seen that before.”  

nsmith
Nathan Smith of the University of California at Berkeley. Credit: University of California at Berkeley/NASA

Teams of astronomers working with the Katzman Automatic Imaging Telescope at the Lick Observatory on Mt. Hamilton in California and M.W. Keck Observatory near the summit of Mauna Kea on the island of Hawaii immediately began observing the event designated supernova SN 2006gy. Analysis of data showed it occurred over 240 million light-years away in galaxy NGC 1260 and took 70 days to reach maximum brightness. Staying brighter than any previously recorded event for over three months, SN 2006gy was still as bright as a normal supernova eight months later. 

SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist's illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy.
SN 2006gy is the brightest stellar explosion ever recorded and may be a long-sought new type of supernova, according to observations by NASA’s Chandra X-ray Observatory (bottom right panel) and ground-based optical telescopes (bottom left). This discovery indicates that violent explosions of extremely massive stars, depicted in the artist’s illustration (top panel), were relatively common in the early universe. These data also suggest that a similar explosion may be ready to go off in our own Galaxy. Credits: NASA/ESA/Chandra/Lick/Keck.

“Of all exploding stars ever observed, this was the king,” said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. “We were astonished to see how bright it got, and how long it lasted.”  

Alex-Filippenko-formal-Dec2012a-small-crop
Alex Filippenko, professor of astronomy for University of California, Berkeley. Credits: University of California, Berkeley.

Astronomers were reasonably sure at this point the progenitor of supernova SN 2006gy was one of the largest, most massive types of stars ever to exist. But they needed to rule out the most likely alternative explanation for the event. The possibility a white dwarf star with a mass slightly higher than Sol went supernova in a dense, hydrogen-rich environment.  

Another team of astronomers using the Chandra X-ray Observatory went to work at this point to rule this possibility out of their equations. If this was the case, they knew X-ray emission from the event should be at least 1,000 times more luminous than the readings they were getting.     

“This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star,” said Dave Pooley of the University of California at Berkeley, who led the Chandra observations. 

The progenitor star for SN 2006gy is thought to have ejected a large volume of mass before the hypernova event occurred. This is similar to events observed by astronomers in the case of Eta Carinae, a nearby supermassive star they’re watching closely for signs of an impending supernova. Only 7,500 light-years toward the constellation Carina, compared to 240 million for galaxy NGC 1260, this star going supernova would be the celestial event of the century on Earth. It would be bright enough to see in the daylight sky.

livio
Mario Livio is an internationally known astrophysicist, a bestselling author, and a popular lecturer. Credits: MarioLivio.com

“We don’t know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case,” said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. “Eta Carinae’s explosion could be the best star-show in the history of modern civilization.” 

The massive star Eta Carinae (almost hidden in the center) underwent a giant explosion some 150 years ago. The outburst spread the material that is visible today in this very sharp Hubble image. Even though Eta Carinae is more than 8,000 light-years away, structures only 15 thousand million kilometre across (about the diameter of our solar system) can be distinguished. Dust lanes, tiny condensations, and strange radial streaks al appear with unprecedented clarity. A huge, billowing pair of gas and dust clouds are captured in this stunning Hubble Space Telescope image of the supermassive star Eta Carinae. Credit: Jon Morse (University of Colorado), and NASA/ESA
The massive star Eta Carinae (almost hidden in the center) underwent a giant explosion some 150 years ago. The outburst spread the material that is visible today in this very sharp Hubble image. Even though Eta Carinae is more than 8,000 light-years away, structures only 15 thousand million kilometre across (about the diameter of our solar system) can be distinguished. Dust lanes, tiny condensations, and strange radial streaks al appear with unprecedented clarity.
A huge, billowing pair of gas and dust clouds are captured in this stunning Hubble Space Telescope image of the supermassive star Eta Carinae.
Credit:
Jon Morse (University of Colorado), and NASA/ESA

So many questions

Astronomers think in the case of hypernova SN 2006gy things might have taken a slightly different pathway than previously recorded supernovae. Some scientists think the massive star that exploded could be much more like the supermassive stars that existed during the early moments of the cosmos. Supermassive stars that exploded in supernovae and spread the elements of creation across the cosmos, rather than collapsing to a black hole as theorized.  

“In terms of the effect on the early universe, there’s a huge difference between these two possibilities,” said Smith. “One [sprinkles] the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole.” 

Why would these supermassive stars be different than other huge stars observed in the Milky Way? The human search for answers to these and other mysterious questions before us continues as we journey backward to the beginning of space and time. 

We’ll update you with any additional data astronomers come across as the journey continues. Until next time, keep dreaming of the possibilities. 

Warren Wong 

Editor and Chief 

The Human Journey to the beginning of space and time. 

Join and enjoy the space journey of NASA.  

Discover the things the ESA is planning here

Learn more about supernovae

Read more about supermassive stars here

Learn more about all of the programs of the Palomar Transient Factory

Learn more about astronomy at the University of California at Berkeley

Discover astronomy at the University of Texas in Austin here

Take the space voyage of the Lick Observatory

Discover the M.W. Keck Observatory here

Discover the things X-ray emissions are telling us aboard the Chandra X-ray Observatory

Read more about a star astronomers nicknamed Nasty 1.

Learn more about Kepler’s recent observation of the shockwave of a supernova in visible light.

Read about the next generation Eye-in-the-sky the Large Synoptic Survey Telescope (LSST).

 

NASA’s Chandra Detects X-rays Emitted by Distant Supermassive Black Hole

Discovery shows distant supermassive black holes with relativistic jets could be more common than astronomers first thought 

This main panel graphic shows Chandra’s X-ray data that have been combined with an optical image from the Digitized Sky Survey. (Note that the two sources near the center of the image do not represent a double source, but rather a coincidental alignment of the distant jet and a foreground galaxy.) The inset shows more detail of the X-ray emission from the jet detected by Chandra. The length of the jet in 0727+409 is at least 300,000 light years. Many long jets emitted by supermassive black holes have been detected in the nearby Universe, but exactly how these jets give off X-rays has remained a matter of debate. In B3 0727+409, it appears that the CMB is being boosted to X-ray wavelengths. Credit: NASA/Chandra
This main panel graphic shows Chandra’s X-ray data that have been combined with an optical image from the Digitized Sky Survey. (Note that the two sources near the center of the image do not represent a double source, but rather a coincidental alignment of the distant jet and a foreground galaxy.)
The inset shows more detail of the X-ray emission from the jet detected by Chandra. 
Credit: NASA/Chandra

Space news (March 06, 2016) – over 11 billion light-years from Earth – 

Astronomers working with NASA’s Chandra X-ray Observatory recently discovered a distant, powerful jet emanating from a quasar called B3 0727+409 while observing another stellar object. The system discovered was interesting because scientists had previously found very few early supermassive black holes with powerful jets giving off X-rays. This discovery has astronomers looking for data to confirm the belief supermassive black holes with powerful jets were more common during the first few billion years after the Big Bang than first thought. 

Astronomers were lucky to detect this quasar since no radio signal has been detected from this object. Normally, they would detect similar quasars using radio observations but will use this opportunity to study how these jets emit X-rays. This question has been a matter of debate among astrophysicists, but in this case, they have a few clues to follow.  

We essentially stumbled onto this remarkable jet because it happened to be in Chandra’s field of view while we were observing something else,” explains co-author Lukasz Stawarz of Jagiellonian University in Poland. 

The light from the jet emanating from quasar B3 0727+409 was emitted when the universe was only 2.7 billion years old, or just over twenty percent of its present age. At this time the intensity of the microwave background microwave radiation (CMB) remaining after the Big Bang was much greater than today. In this case, it looks like the CMB is somehow being boosted to X-ray wavelengths and astronomers think this could be a lead. 

Because we’re seeing this jet when the Universe was less than three billion years old, the jet is about 150 times brighter in X-rays than it would be in the nearby Universe,” said Aurora Simionescu at JAXA’s Institute of Space and Astronautical Studies (ISAS) who led the study.  

Computer simulations show that as electrons in the jet fly from the supermassive black hole at nearly the speed of light, they collide with microwave photons in the CMB and boost their energy into the X-ray band. This is the X-ray signal Chandra detected, but this means the electrons in the jet must continue to move at this speed for its entire length, which is over 300,000 light-years. A finding that has scientists scratching their heads. 

Astronomers have detected many long jets emitted by nearby supermassive black holes, but very few from early quasars with jets emitting X-rays. Astronomers could have missed many similar systems since they weren’t trying to detect them. Now, they’ll follow the breadcrumbs to get a better picture of the early universe and try to understand the evolution of supermassive black holes during the past 13.77 billion years a little better.    

Astronomers look for similar events to study in detail

Scientists have so far identified very few jets distant enough that their X-ray brightness is amplified by the CMB as clearly as in the B3 0727+409 system.” But, Stawarz adds, “if bright X-ray jets can exist with very faint or undetected radio counterparts, it means that there could be much more of them out there because we haven’t been systematically looking for them.” 

Supermassive black hole activity, including the launching of jets, may be different in the early Universe than what we see later on,” said co-author Teddy Cheung of the Naval Research Laboratory in Washington DC. “By finding and studying more of these distant jets, we can start to grasp how the properties of supermassive black holes might change over billions of years.” 

You can take a video tour of B3 0727+409 aboard the Chandra X-ray Observatory here.

We’ll update you as astronomers learn more about relativistic jets and similar systems. 

Read about astronomers observations of newly formed galaxies.

Learn more about the US Congress recently passing legislation recognizing the right of American citizens to own asteroid resources.

Read about swirls of the disk of dust surrounding young, newly-formed stars.

Learn more about NASA’s journey to the stars and future plans here.

You can take the journey of the Chandra X-ray Observatory

Learn more about what astronomers have discovered about supermassive black holes here

Read and discover more about quasar B3 0727+409

Supermassive Black Hole in Small Galaxy NGC 5195 Burps After a Meal

Producing a super powerful blast observed by NASA’s Chandra X-ray Observatory

ngc5195
The main panel of this graphic shows M51 in visible light data from the Hubble Space Telescope (red, green, and blue). The box at the top of the image outlines the field of view by Chandra in the latest study, which focuses on the smaller component of M51, NGC 5195. The inset to the right shows the details of the Chandra data (blue) of this region. Researchers found a pair of arcs in X-ray emission close to the center of the galaxy, which they interpret as two outbursts from the galaxy’s supermassive black hole (see annotated image for additional information). Credits: NASA/Chandra

Space news (February 22, 2016) – 26 million light-years from Earth, deep within the Messier 51 galaxy system – 

Astronomers using NASA’s Chandra X-ray Observatory recently caught the supermassive black hole in galaxy NGC 5195 burping after a meal composed of gas and maybe even stars. This giant black hole is one of the closest to Earth that’s currently erupting violent blasts of X-rays. Studying these violent outbursts presents an opportunity to learn more about the processes creating some of the most energetic events observed in the cosmos. 

“For an analogy, astronomers often refer to black holes as ‘eating’ stars and gas.  Apparently, black holes can also burp after their meal,” said Eric Schlegel of The University of Texas at San Antonio, who led the study. “Our observation is important because this behavior would likely happen very often in the early universe, altering the evolution of galaxies. It is common for big black holes to expel gas outward, but rare to have such a close, resolved view of these events.” 

A smaller companion galaxy, NGC 5195 is currently merging with a larger spiral galaxy NGC 5194 (The Whirlpool). Astronomers believe this ongoing merger was the trigger for the two arcs of X-ray emission they originally detected near its center. The energy released as the supermassive black hole expelled material outward into the cosmos would be sufficient to produce the X-ray arcs detected. Material that was part of the original gas that was funneled toward the supermassive black hole as the two galaxies interacted over millions of years would suffice. 

“We think these arcs represent fossils from two enormous blasts when the black hole expelled material outward into the galaxy,” said co-author Christine Jones of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. “This activity is likely to have had a big effect on the galactic landscape.” 

Astronomers followed up the original observations of these arcs by Chandra using the 0.9-meter telescope at the Kitt Peak National Observatory. They detected a slender region of emission of relatively cool hydrogen gas in an optical image suggesting X-ray emitting gas swept up hydrogen gas from the center of the galaxy. Scientists call this phenomenon by which a supermassive black hole changes its host galaxy “feedback”. 

In the case of the X-ray glowing arcs astronomers observed coming from the region of the supermassive black hole in the center of companion galaxy NGC 5195. Scientists believe the outer arc plowed up enough gas and material to start the formation of new stars over a period of three to six million years. This points to the “feedback” phenomenon being a process of creation in the universe, not just massive destruction.  

“We think that feedback keeps galaxies from becoming too large,” said co-author Marie Machacek of CfA. “But at the same time, it can be responsible for how some stars form. This shows that black holes can create, not just destroy.” 

Astrophysicists also want to study the blasts emanating from near the supermassive black hole because of their location in galaxy NGC 5195. In previously detected active supermassive black holes in other galaxies, rapid outflows haven’t been detected in regions this far out. It could be possible we’re viewing an intermediate stage in the feedback process operating between the black hole and interstellar gas. 

Study continues

Scientists will continue to study the powerful blasts coming from the supermassive black hole at the center of galaxy NGC 5195. This will allow them to gain knowledge on how these massive blasts change the environment of their home galaxy. It will also allow them to study how these powerful blasts would alter the evolution of a galaxy.  

Take a video tour of dwarf galaxy NGC 5195 aboard the Chandra X-ray Observatory here.

Read about the recent observation of gravitational waves by astronomers using the Chandra X-ray Observatory. 

Learn more about the youngest, nearby black hole candidate.

Learn more about mysterious ripples astronomers detected moving across the planet-forming region of a star.

We’ll update you if they detect any after burps from the supermassive black hole. 

You can learn more about NASA and its future plans here

Discover the Chandra X-ray Observatory here

Learn more about galaxy NGC 5195

Learn more about active supermassive black holes