X-ray Light Source CX330 Detected in Bulge of Milky Way

Most isolated young star discovered launching jets of material into surrounding gas and dust

An unusual celestial object called CX330 was first detected as a source of X-ray light in 2009. It has been launching “jets” of material into the gas and dust around it. Credits: NASA/JPL-Caltech
An unusual celestial object called CX330 was first detected as a source of X-ray light in 2009. It has been launching “jets” of material into the gas and dust around it.
Credits: NASA/JPL-Caltech

Space news (astrophysics: massive, young stars in star-forming regions; unusual, isolated young star baffles astronomers) – approximately 27,000 light-years from Earth in an isolated region of the bulge of the Milky Way – 

704250main_chandra-telescope_full
NASA’s Chandra X-ray Observatory first detected unusual stellar object CX330. Credits: NASA/Chandra

Astronomers surveying the universe looking for unusual celestial objects to study to add to human knowledge and understanding have found something they haven’t seen before. Unusual celestial object CX 330 was first noticed in data obtained during a survey of the bulge of the Milky Way in 2009 by NASA’s Chandra X-ray Observatory as a source of X-ray light. Additional observations of the source showed it also emitted light in optical wavelengths, but with so few clues to go on, astronomers had no idea what they were looking at. 

During more recent observations of CX 330 during August of 2015, astronomers discovered it had recently been active, launching jets of material into gas and dust surrounding it. During a period from 2007 to 2010, it had increased in brightness by hundreds of times, which made scientists curious to examine previous data obtained from the same region of the bulge. 

Using the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist's concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception. Credits: NASA/Spitzer
Using the unique orbit of NASA’s Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist’s concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception. Credits: NASA/Spitzer

Looking at data obtained by NASA’s Wide-field Infrared Survey Explorer (WISE) in 2010, they realized the surrounding gas and dust was heated to the point of ionization.  Comparing this data to observations taken with NASA’s Spitzer Space Telescope in 2007, astronomers determined they were looking at a young star in an outburst phase, forming in an isolated region of the cosmos.

cbritt
Chris Britta Credits: Texas Tech University

“We tried various interpretations for it, and the only one that makes sense is that this rapidly growing young star is forming in the middle of nowhere,” said Chris Britta postdoctoral researcher at Texas Tech University in Lubbock, and lead author of a study on CX330 recently published in the Monthly Notices of the Royal Astronomical Society.

By combining this data with observations taken by a variety of both ground and space-based telescopes they were able to get an even clearer picture of CX330. An object very similar to FU Orionis, but likely more massive, compact, and hotter, and lying in a less populated region of space. Launched faster jets of outflow that heated a surrounding disk of gas and dust to the point of ionization, and increased the flow of material falling onto the star.

tom_maccarone
Tom Maccarone Credits: Texas Tech University

“The disk has probably heated to the point where the gas in the disk has become ionized, leading to a rapid increase in how fast the material falls onto the star,” said Thomas Maccarone, study co-author and associate professor at Texas Tech.

The fact CX 330 lies in an isolated region of space, unlike the previous nine examples of this type of star observed during the human journey to the beginning of space and time, tweaks the interest of astronomers. The other nine examples all lie in star-forming regions of the Milky Way galaxy with ample material for new stars to form from, but the closest star-forming region to this young star is over 1,000 light-years away.

Joel Green Credits: NASA/Space Telescope Science Institute
Joel Green Credits: NASA/Space Telescope Science Institute

“CX330 is both more intense and more isolated than any of these young outbursting objects that we’ve ever seen,” said Joel Green, study co-author and researcher at the Space Telescope Science Institute in Baltimore. “This could be the tip of the iceberg — these objects may be everywhere.”

We really know nothing about CX 330. More observations are required to determine more. It’s possible all young stars go through a similar outburst period as observed in the case of CX 330. The periods are just too brief in cosmological time for astronomers to observe with current technology. The real clue’s the isolation of this example as compared to previous models. 

How did CX 330 become so isolated? One idea often floated is the possibility it formed in a star-forming region, before being ejected to a more isolated region of space. This seems unlikely considering astronomers believe this young star’s only about a million years old. Even if this age’s wrong, this star’s still consuming its surrounding disk of dust and gas and must have formed near its current location. It just couldn’t have traveled the required distance from a star-forming region to its current location, without completely stripping away its surrounding disk of gas and dust. 

Astronomers are learning more about the formation of stars studying CX 330, that’s for sure. Using two competing ideas, called “hierarchical” and “competitive” models, scientists search for answers to unanswered questions concerning CX 330. At this point, they favor the chaotic and turbulent environment of the “hierarchical” model, as a better fit for the theoretical formation of a lone star.

What’s next?

It’s still possible material exists nearby CX 330, such as intermediate to low-mass stars, that astronomers haven’t observed, yet.  When last viewed in August 2015, this young star was still in an outburst phase. During future observations planned with new telescopes in different wavelengths, we could get a better picture of events surrounding this unusual celestial object. Stay tuned to this channel for more information.

For people wondering if planets could form around this young star? Some astronomers are hoping planets will form from the disk of CX 330, they’ll be able to examine closer for the chemical signature of the scars left by the outbursts observed. Unfortunately, at the rate this star’s consuming its surrounding disk of gas and dust, having enough left over for the formation of planets seems unlikely. 

“You said you like it hot, right!” If CX 330’s a really massive star, which seems likely. It’s short, violent lifespan would be a truly hot time for any planet and inhabitants. 

Help NASA discover and classify young planetary systems by becoming a Disk Detective.

Read about China’s recent rejoining of the human journey to the beginning of space and time.

Read about Japan’s new X-ray satellite Hitomi.

For more information on the travel plans to CX 330, contact NASA.

Learn more about NASA’s Wide-field Infrared Survey Explorer (WISE) here.

Discover NASA’s Chandra X-ray Observatory.

For more information of NASA’s Spitzer Space Telescope visit.

Learn more about the work being done by NASA’s Jet Propulsion Laboratory.

Discover astronomy at Texas Tech University.

Discover the Space Telescope Science Institute.

 

Advertisements

Chandra Detects X-ray Emissions of Comets PanSTARRS and ISON

Produced when heavy atoms in solar wind strike lighter atoms in comets’ atmosphere 

Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements. Image credit: X-ray: NASA/CXC/Univ. of CT/B.Snios et al, Optical: DSS, Damian Peach (damianpeach.com)
Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.
Image credit: X-ray: NASA/CXC/Univ. of CT/B.Snios et al, Optical: DSS, Damian Peach (damianpeach.com)

Space news (planetary dynamics: Oort Cloud comets; PanSTARRS & ISON) – 90 & 130 million miles from Earth, respectively, observing x-ray emissions as solar wind particles strike comets’ atmosphere – 

Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun - the solar wind - strikes the comet's atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.
Astronomers used Chandra to observe Comet ISON and Comet PanSTARRS in 2013, when these comets were relatively close to the Earth. The graphic shows the comets in optical images taken by an astrophotographer, with insets showing the X-ray images from Chandra. The X-ray emission is produced when a wind of particles from the Sun – the solar wind – strikes the comet’s atmosphere. The Chandra data was used to estimate the composition of the solar wind, including the amount of carbon and nitrogen, finding values that agree with independent measurements.

Thousands of years ago, ancient sky watchers observed terrible, fiery balls of fire that appeared suddenly in the sky. Hairy stars resembling fiery swords that appeared unpredictably, ancient astronomers and societies interpreted these terrifying, fear inducing travelers as harbingers of doom predicting impending disaster or even success in a future endeavor. Often connecting their appearance to famine, war, and plague, to the death of a beloved or fall of an empire or warlord, throughout history comets filled us with fear and even during modern times continue to entrance and fill us with awe. 

Comet ISON comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Image Credit: ESA/NASA/SOHO/SDO/GSFC
Comet ISON comes in from the bottom right and moves out toward the upper right, getting fainter and fainter, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA’s Solar Dynamics Observatory.
Image Credit: ESA/NASA/SOHO/SDO/GSFC

Recently, astronomers working with NASA’s Chandra X-ray Observatory detected x-ray emissions produced as particles in the solar wind struck the atmospheres’ of Comets ISON and PanSTARRS. Two long-period comets originating in the Oort Cloud far beyond the orbit of the planets, solar scientists use them as laboratories to study the composition of the stream of exotic particles flowing from the Sun called the solar wind. Astrophysicists determined x-ray emissions were produced as heavy particles in the solar wind struck lighter particles in the atmospheres’ of Comets ISON and PanSTARRS. X-ray emissions with varying shapes indicating differences in the solar wind and atmospheres’ of these comets at the time of the observations.  

This image from NASA's Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. It is likely that the comet did not survive the trip. Credits: NASA/SDO
This image from NASA’s Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. It is likely that the comet did not survive the trip.
Credits: NASA/SDO

Observations of Comet ISON detected a greenish hue attributed to gasses like cyanogen, which contains oxygen and nitrogen, streaming from its nucleus. Chandra data obtained shows this comet has a well-developed, parabolic shape indicative of a dense atmosphere. In comparison, observations of Comet PanSTARRS show a more diffuse x-ray spectrum, indicating it has less gas and more dust in its atmosphere. Observations that agree with independent measurements made by NASA’s Advanced Composition Explorer and other instruments. Planetary scientists plan to use the detailed computer simulations they developed during these studies to help analyze the data obtained by Chandra of Comets ISON and PanSTARRS to investigate interactions between the solar wind and other comets, planets, and even interstellar gas.  

Twelve NASA spacecraft assets had an opportunity to observe Comet ISON, including the Heliophysics solar observatories; Solar Dynamic Observatory, STEREO and SOHO. Credits: NASA
Twelve NASA spacecraft assets had an opportunity to observe Comet ISON, including the Heliophysics solar observatories; Solar Dynamic Observatory, STEREO and SOHO.
Credits: NASA

Learn more about the role planetary scientists suspect comets and asteroids played during the opening moments of the birth of the solar system and planets.

Read and learn about viewing the ghostly glow of streaking Orionid meteorites.

Learn about what planetary scientists discovered during the recent visit of NASA’s Deep Impact spacecraft to comet Hartley 2.

After perihelion comet, ISON’s changed in ways planetary scientists are trying to determine at this time. Watch this NASA video on the ultimate fate of comet ISON.

Join NASA’s journey to the beginning of space and time here

Watch this NASA-sponsored tour of  Comet ISON

Discover more about comet PanSTARRS here

Learn more about NASA’s Chandra X-ray Observatory.