Europa Spacecraft

Set to blast off sometime in the 2020s

This artist’s rendering shows NASA’s Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. This view shows the spacecraft configuration, which could change before launch, as of early 2016.
The mission would place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of the giant planet’s moon Europa — a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life. The highly capable, radiation-tolerant spacecraft would enter into a long, looping orbit around Jupiter to perform repeated close flybys of Europa.
The concept image shows two large solar arrays extending from the sides of the spacecraft, to which the mission’s ice-penetrating radar antennas are attached. A saucer-shaped high-gain antenna is also side mounted, with a magnetometer boom placed next to it. On the forward end of the spacecraft (at left in this view) is a remote-sensing palette, which houses the rest of the science instrument payload.
The nominal mission would perform at least 45 flybys of Europa at altitudes varying from 1,700 miles to 16 miles (2,700 kilometers to 25 kilometers) above the surface.
This view takes artistic liberty with Jupiter’s position in the sky relative to Europa and the spacecraft. Credits: NASA/JPL/ESA

Space news (The search for life beyond Earth) – An artist’s rendition of the Europa spacecraft orbiting Jupiter

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons which ended in 2003. NASA will announce today, Tuesday, May 26, the selection of science instruments for a mission to Europa, to investigate whether it could harbor conditions suitable for life. The Europa mission would conduct repeated close flybys of the small moon during a three-year period.
Numerous linear features in the center of this mosaic and toward the poles may have formed in response to tides strong enough to fracture Europa’s icy surface. Some of these features extend for over 1,500 kilometers (900 miles). Darker regions near the equator on the eastern (right) and western (left) limb may be vast areas of chaotic terrain. Bright white spots near the western limb are the ejecta blankets of young impact craters.
North is to the top of the picture and the sun illuminates the surface from the left. The image, centered at 0 latitude and 10 longitude, covers an area approximately 2,500 by 3,000 kilometers. The finest details that can discerned in this picture are about 2 kilometers across (about 1,550 by 1,860 miles). The images were taken by Galileo’s camera when the spacecraft was 94,000 kilometers (58,000 miles) from Europa.
Image Credit: NASA/JPL/University of Arizona

NASA’s Jet Propulsion Laboratory released this artists rendering of the Europa spacecraft, which is set to head to Jupiter sometime in the 2020s. The Europa Mission spacecraft configuration in early 2016 is shown in this image. The final spacecraft configuration at launch could easily be different, so stay tuned here for more news. The position of Jupiter in the sky relative to Europa and the spacecraft are also off in this drawing

This is an artist’s concept of a plume of water vapor thought to be ejected off the frigid, icy surface of the Jovian moon Europa, located about 500 million miles (800 million kilometers) from the sun. Spectroscopic measurements from NASA’s Hubble Space Telescope led scientists to calculate that the plume rises to an altitude of 125 miles (201 kilometers) and then it probably rains frost back onto the moon’s surface. Previous findings already pointed to a subsurface ocean under Europa’s icy crust.
Image credit: NASA/ESA/K. Retherford/SWRI

Two large solar arrays are shown extending from the sides of the Europa spacecraft to which the ice-penetrating radar antennas are attached in this artist’s rendition. On the side of the craft, a saucer-shaped high gain antenna is depicted next to a magnetometer boom. On the forward section is a remote-sensing palette with the remaining science instruments.

Jupiter’s moon Europa has a crust made up of blocks, which are thought to have broken apart and ‘rafted’ into new positions, as shown in the image on the left. These features are the best geologic evidence to date that Europa may have had a subsurface ocean at some time in its past.
Combined with the geologic data, the presence of a magnetic field leads scientists to believe an ocean is most likely present at Europa today. In this false color image, reddish-brown areas represent non-ice material resulting from geologic activity. White areas are rays of material ejected during the formation of the Pwyll impact crater. Icy plains are shown in blue tones to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are ridges and fractures in the crust, some of which are more than 1,850 miles long. These images were obtained by NASA’s Galileo spacecraft during Sept. 7, 1996, Dec. 1996 and Feb. 1997 at a distance of 417,489 miles.
Image Credit: NASA/JPL/University of Arizona

The Europa Mission profile has a very capable, radiation-resistant spacecraft traveling to Jupiter, where it enters into a long, looping orbit of the giant planet in order to perform at least 45 repeated flybys of Europa at altitudes ranging from 1700 miles to 16 miles (2700 kilometers to 25 kilometers) above its surface. Planetary scientists want to take a closer look at the evidence for an ocean of liquid water beneath its icy shell. An ocean of liquid water that could be the habitat of alien lifeforms we want to get to know better. 

Join the human journey to the beginning of space and time by joining the people helping NASA scientists look for possible planetary bodies between Neptune and Alpha Centauri.

Learn more about NASA plans to handle a possible future asteroid impact on Earth around Sept. 20, 2020, of a body estimated at around 300 to 800 ft in diameter.

Travel into the heart of a cosmic storm over 200,000 light-years away in one of many large satellite galaxies orbiting the Milky Way, the Large Magellanic Cloud.

Learn more about NASA’s Europa Mission here.

Explore NASA’s Jet Propulsion Laboratory.

Learn more about Jupiter and its moons here.

Explore Europa.

Learn more about the Large Magellanic Cloud.

Advertisements

Planetary Scientists Suggest Three Landing Sites for Mars 2020

One of the oldest regions of the Red Planet discovered, an ancient Martian lake, or the site of an ancient hot spring first explored by NASA’s Spirit rover

mars2020_landingsites_gusevjezerosyrtis
NASA’s Mars 2020 rover’s expected to land at one of the three sites noted on this image of the Red Planet. Credits: NASA

Space news (The Journey to Mars: Mars 2020; possible landing sites) – Northeast Syrtis: Jerero crater; or Columbia Hills, on the Red Planet –

Planetary scientists and other scientists attending the third landing site workshop hosted by NASA in order to determine the best place for its Mars 2020 rover to land recommend three places. NASA’s been using the Mars Reconnaissance Orbiter to search for suitable sites since about 2006 and to help in the identification, study, and verification of possible future landing sites for coming manned missions during most recent history. Data and observations provided by the MRO also helped participants narrow down the choices to three during the workshop.

golombek
Dr. Matt Golombek, just one of the rocket geniuses working at NASA’s Jet Propulsion Laboratory. Credits: NASA/JPL

“From the point of view of evaluating potential landing sites, the Mars Reconnaissance Orbiter is the perfect spacecraft for getting all the information needed,” said the workshop’s co-chair, Matt Golombek of NASA’s Jet Propulsion Laboratory, Pasadena, California. “You just can’t overstate the importance of MRO for landing-site selection.”

people-8
Leslie Tamppari, another genius working at NASA’s Jet Propulsion Laboratory. Credits: NASA/JPL

“Missions on the surface of Mars give you the close-up view, but what you see depends on where you land. MRO searches the globe for the best sites,” said MRO Deputy Project Scientist Leslie Tamppari of JPL.

people-96
NASA’s Jet Propulsion is famous for employing the experience, skills, and knowledge of geniuses, but this is getting to be ridiculous. Credits: NASA/JPL

“Whether it is looking at the surface, the subsurface or the atmosphere of the planet, MRO has viewed Mars from orbit with unprecedented spatial resolution, and that produces huge volumes of data,” said MRO Project Scientist Rich Zurek of JPL.“These data are a treasure trove for the whole Mars scientific community to study as we seek to answer a broad range of questions about the evolving habitability, geology, and climate of Mars.”

The Journey to the Red Planet

The human journey to the beginning of space and time will be making a stop on Mars sometime in the 2030s if everything goes as planned with NASA’s Journey to Mars. Mars 2020 is expected to launch aboard the Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida around July 2020. After a journey of millions of miles across the solar system to the Red Planet, the Mars 2020 rover will land at one of three possible sites.

Northeast Syrtis

mro_hirise_syrtis_major_esp_015942_1980-br2
NASA’s Mars 2020 rover could be landing here to look for evidence one-celled life flourished in water accumulated on the surface of the Red Planet. Credits: NASA/MRO/HIRISE

Images of the first possible landing site in the Northeast part of Syrtis Major show Early Noachian bedrock planetary scientists would like to have a closer look at for signs of possible life. An excellent place for study and exploration of the past of the Red Planet, scientists are currently studying whether it’s safe for Mars 2020 to land. There could be too many boulders or even steep slopes unidentified in the initial analysis of images of this region making landing problematic at best. There’s also always the possibility of something we haven’t thought of. If the site is safe, it will be considered for the final choice, and possibly even for the rovers planned by Europe and NASA sometime around 2018.

This part of the Red Planet was once warmed by volcanoes, so planetary scientists want to look for ancient hot springs and even surface ice melt where liquid water could have flowed. Liquid water’s one of the catalysts-of-life planetary scientists look for in the search for extraterrestrial life. The layered terrain of Northeast Syrtis could hold a record of ancient simple life forms that existed on Mars during its early history. At the very least it should tell us more about interactions between water and minerals over successive parts of the Red Planet when it was young. This site we should definitely take a look at.

Jezero Crater

080716_jezerocrater_hr-br2
NASA scientists plan on using instruments on the Mars 2020 rover to look into the possibility simple, one-celled life could have evolved and flourished in the water of a lake they think existed on the surface of the Red Planet in this region. Credits: NASA/MRO/HIRISE

Rewind time 3.5 billion years in Jezero crater, to when river channels spilled over the crater wall and formed a lake. Planetary scientists see evidence water from this lake carried clay minerals from the lake bed after this body of water dried up. Scientists want to explore the crater for signs microbial life once lived here during events such as this when Jezero crater was a little wetter. For the remains of ancient life in the lakebed sediments.

Columbia Hills, Mars

mars_spirit_rover_gusev_crater_longhorn_rock_pia06770-br2
Scientists think simple, one-celled life could have developed and flourished in the waters of a shallow lake they believe formed here billions of years ago. Credits: NASA/MRO/HIRISE

After additional study planetary scientists and geochemists agree mineral springs once bubbled up from the rocks of Columbia Hills in Gusev crater on the Red Planet. Originally, the Spirit rover found no clear signs water flowed over or existed in the rocks of this region of Mars, but the discovery hot springs once existed here has scientists thinking a shallow lake may have once formed for a time. Warm, inviting waters microbial life could have evolved in, exobiologists are keen to examine soils and lakebed sediments of Gusev crater for their remains.

The Final Landing Site of the Mars 2020 rover

 

mars2020_3_landing_sites_slideshow_shareable
NASA’s shortlisted the possible landing sites to the three regions seen in the slideshow above. Credits: NASA/MRO/HIRISE

 

Possible landing sites of NASA’s Mars 2020 rover may change as the mission goes forward, the science mission and even engineering considerations of achieving their goals could change as they learn more. Ultimately, NASA will decide on a landing site with geology indicating a wetter past that also meets all criteria. Stay tuned to the human journey to the beginning of space and time during the months and years ahead to learn more. 

Learn about NASA’s desire to find private firms and individuals to form space technology partnerships with.

Read and learn about the plasma jets of active supermassive black holes.

Help NASA classify young star systems by becoming a Disk Detective.

Learn more about NASA’s Journey to Mars.

Learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Discover the Mars 2020 rover.

Learn more about the discoveries of the Mars Reconnaissance Orbiter.

Discover the Spirit rover.

NASA Establishes Translational Research Institute

To study ways to protect future astronauts as they prepare and one day travel to the other planets and throughout the solar system

iss036e006520
Enter a captionVisual Impairment Intracranial Pressure (VIIP) Syndrome was identified in 2005. It is currently NASA’s leading spaceflight-related health risk and is more predominant among men than women in space. Here, NASA astronaut Karen Nyberg of NASA uses a fundoscope to image her eye while aboard the International Space Station.Credits: NASA

Space news (NASA initiatives: The Transitional Research Institute (NTRI); researching and developing innovative approaches to decrease risks for humans associated with traveling and living in space) – Texas Medical Center Innovation Institute in Houston, Texas –

hrp-parabolic-flight-research-jsc2014e068503
Astronauts need to be tested and readied for space, a dangerous and hazardous environment for humans to work and live in. Credits: NASA

During the next few decades human beings will travel to parts of the solar system never visited before and the journey is expected to be dangerous, yet awe-inspiring. In order to reduce the risks associated with traveling and living in space, NASA has announced the formation of a partnership with Baylor College of Medicine in Houston. Plans are to operate a new institute charged with researching and developing innovative approaches designed to help keep astronauts alive and healthy during long-term voyages to Mars and beyond. 

spaceradiationgenderillustration59459-jpg

Men and women react differently to the environment called space and research can differ between the two. This diagram shows key differences between men and women in cardiovascular, immunologic, sensorimotor, musculoskeletal, and behavioral adaptations to human spaceflight. Credits: NASA

 

hhp-exercise-physiology-jsc2011e204363_alt
Astronauts need to be in shape to handle the rigors and hazards associated with living and traveling in space. Biomechanical Engineer Renita Fincke monitors Biomechanical Engineer Erin Caldwell as she performs a squat exercise to generate a computational biomechanical model in the Exercise Physiology and Counter Measures Project in Building 261. Photo Date: October 25, 2011.

Called the NASA Transitional Research Institute (NTRI), the new institute will implement a bench-to-spaceflight strategy. Their main goals to produce new treatments, countermeasures, and technologies with practical applications towards known spaceflight health risks. Medical problems like visual impairment intracranial pressure (VIIP) Syndrome, which was identified in 2005, and is currently NASA’s number one spaceflight-related health risk for astronauts. Plans are for the work to be done at the Texas Medical Center Innovation Institute in Houston, Texas.

1c6dc60
Marshall Porterfield is the new director of NASA’s Space Life and Physical Sciences Research and Applications Division. He’ll be leading the charge to protect astronauts as they prepare to head to Mars. Credit: Linked

“It’s fitting on the 47th anniversary of humanity’s first moon landing that we’re announcing a new human spaceflight research institute that will help reduce risks for our astronauts on the next giant leap – our Journey to Mars,” said Marshall Porterfield, NASA’s director of Space Life and Physical Sciences Research and Applications.

Time to get to work

Astronauts will be happy to hear this news and it has the potential to enable mankind’s journey to Mars and beyond to the beginning of space and time. The NASA Transitional Research Institute will help form relationships between scientists and medical laboratories and institutes looking to reduce health risks and performance barriers for humans traveling and living in space. It will also keep astronauts healthier during their space missions during the decades ahead. 

Learn about the Curiosity rover discovering evidence suggesting the Red Planet was once a much wetter world.

Discover how astronomers measure distances to objects on the other side of the Milky Way.

Read about the recent launch of NASA’s OSIRIS-REx to an expected rendezvous with asteroid Bennu.

You can learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Learn more about the NASA Human Research Program.

Learn more about the work of the professionals at the Baylor College of Medicine.

Discover the Texas Medical Center Innovation Institute.

Learn more about NASA’s plans to travel to send astronauts to Mars here.