Traveling Across the Tarantula Nebula on a Runaway Star

hs-2010-14-a-web_print (1)
This image of the 30 Doradus nebula, a rambunctious stellar nursery, and the enlarged inset photo show a heavyweight star that may have been kicked out of its home by a pair of heftier siblings. In the inset image at right, an arrow points to the stellar runaway and a dashed arrow to its presumed direction of motion. The image was taken by the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA’s Hubble Space Telescope. The heavyweight star, called 30 Dor #016, is 90 times more massive than the Sun and is traveling at more than 250,000 miles an hour. In the wider view of 30 Doradus, the homeless star, located on the outskirts of the nebula, is centered within a white box. The box shows Hubble’s field of view. The image was taken by the European Southern Observatory’s (ESO) Wide Field Imager at the 2.2-meter telescope on La Silla, Chile. Credits: NASA/ESA/Hubble

Traveling at 250,000 mph would be a windy, visually spectacular ride to hell 

Space news (Astrophysics: stellar nursery dynamics; runaway stars) – 170,000 light-years from Earth, near the edge of the Tarantula Nebula – 

hs-2010-14-b-full_jpg
Hubble/WFPC2 and ESO/2.2-m Composite Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

If you want to travel through the galaxy, hitch a ride on a runaway star like the one astronomers have been tracking since it came screaming out of 30 Doradus (Tarantula Nebula) in 2006. Data collected by the newly installed Cosmic Origins Spectrograph on the Hubble Space Telescope suggests a massive star, as much as 90 times the mass of Sol, was knocked out of the nebula by gravitational interactions with even more massive suns. Traveling at around 250,000 mph, voyaging through the cosmos on this runaway star would be an adventure to write home about.  

hs-2010-14-c-large_web
ESO 2.2-m WFI Image of the Tarantula Nebula. Credits: NASA/ESA/Hubble

The trail leads back to a star-forming region deep within the Tarantula Nebula called R136, where over 2,400 massive stars near the center of this huge nebula produce an intense wind of radiation. Astronomers think interactions with some of the 100 plus solar mass stars detected in this stellar nursery resulted in this runaway star being flung over 375 light-years by its bigger siblings.  

hs-2010-14-d-web_print
Massive Star is Ejected from a Young Star Cluster. Credits: NASA/ESA/Hubble

These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region,” says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. “Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters.”   

walbornq75sm
Nolan Walborn. Credits: NASA/ESA/Hubble Heritage Site

Astrophysicists studying the runaway star and the region in the Tarantula region where the trail ended believe it’s likely a massive, blue-white sun at least ten times hotter than Sol and only a few million years old. It’s far from home and in a region of space where no clusters with similar stars are found. It’s also left an egg-shaped cavity in its wake with glowing edges pointing in the direction of the center of 30 Doradus and the region of R136. A flaming trail you would see behind the star as you traveled across the cosmos and onto eternity.  

hs-2010-14-e-web_print
Compass/Scale Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

 “It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster’s most massive stars have not yet exploded as supernovae,” says COS team member Danny Lennon of the Space Telescope Science Institute. “This implies that the star must have been ejected through dynamical interaction.” 

This runway star continues to scream across the cosmos, nearing the outskirts of 30 Doradus a star-forming region in the Large Magellanic Cloud, it will one day end its existence in a titanic explosion or supernova, and possibly leave behind one of the most mysterious and enigmatic objects discovered during the human journey to the beginning of space and time, a black hole.  

hs-2010-14-f-web_print
Hubble Observations of Massive Stars in the Large Magellanic Cloud. Credits: NASA/ESA/Hubble

Imagine riding this runaway star until it contracted into a black hole and left our universe altogether. Where would we travel? To a random location in spacetime? To another reality or universe? The possibilities abound and far exceed our ability to imagine such a reality. Scientists tell us such a journey wouldn’t be possible, but they’re just stumbling around in the dark looking for ideas to grasp. For handholds on the dark cliff we climb as we search for answers to the mysteries before us.  

What’s next?

Astronomers continue to study the Tarantula Nebula and the star-forming region R136 looking for signs of impending supernovae among the zoo of supermassive stars within. They also continue to track this runaway star and two other blue hot, supermassive stars outside the boundary of 30 Doradus that appear to have also been ejected from their host systems. We’ll update you with any news on it, and other runaway stars as it continues to scream across the cosmos. 

You can follow the space journey of NASA here

Experience the space voyage of the ESA

Learn more about the Tarantula Nebula here

Read about the discoveries of the Hubble Space Telescope

Explore NASA’s Space Telescope Institute here

Discover everything astronomers know about the star-forming region R136

Discover the mysteries of the Large Magellanic Cloud here

Read about the discoveries of the Chandra X-ray Observatory

Read and learn more about ancient navigators “The Incredible Polynesian Navigators Followed the Stars“.

Learn what astronomers are discovering about the first black holes to exist in the universe.

Read about astronomers observe the shock wave of a supernova in visible light for the first time.

Advertisements

The Search for the Missing Link in Black Hole Evolution

Space scientists think they have found a black hole family member they thought should exist; an intermediate-mass black hole

A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.
A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.

Space news (June 09, 2015) – 100 million light-years away in the direction of the constellation Camelopardalis – 

Mysterious celestial objects space scientists study to better understand the universe, black holes could hold the keys to unlocking the nature of reality. In fact, a celestial object just discovered may turn out to be the key to a long sought after question about how black holes evolve and alter the surrounding environment. 

Space scientists conducting a study of ultraluminous x-ray sources (ULXs) looking for intermediate-mass black holes using NASA’s Chandra X-ray Observatory believe they have found a candidate. An interesting object, called NGC 2276-3c, located in an arm of spiral galaxy NGC 2276, appears to have the right characteristics.  

“Astronomers have been looking very hard for these medium-sized black holes,” said co-author Tim Roberts of the University of Durham in the UK. “There have been hints that they exist, but the IMBHs have been acting like a long-lost relative that isn’t interested in being found.” 

Space scientists studying black holes have observed objects residing at the center of galaxies with masses millions and even billions of times that of the sun. They have also observed objects with characteristics of smaller black holes, with masses about five to thirty times that of the sun. 

NGC 2276-3c is a middle-class black hole, with a mass about 50,000 times that of the sun, which could grow over the next few billions of years. In fact, space scientists think its home galaxy could at the moment be interacting with elliptical galaxy NGC 2300, which could account for its asymmetrical shape. 

How did space scientists locate and study NGC 2276-3c? Researchers observed the object almost at the same time using both the Chandra X-ray Observatory and European Very Long Baseline Interferometry Network (VLBI). Using the X-ray and radio data obtained, along with known facts concerning the relationship between radio and X-ray luminosities for sources powered by black holes, they estimated the mass of the object to be around 50,000 solar masses. This puts the black hole in the range of mass expected for an IMBH. 

“We found that NGC2276-3c has traits similar to both stellar-mass black holes and supermassive black holes,” said co-author Andrei Lobanov of the Max Planck Institute for Radio Astronomy in Bonn, Germany. “In other words, this object helps tie the whole black hole family together.” 

During the study, space scientists also determined NGC 2276-3c has a characteristic seen in many supermassive black holes, a powerful radio jet extending up to 2,000 light years from the black hole. A region of the radio jet extending for about 1,000 light years, also seems to be missing young stars, which they think could mean the radio jet cleared out a cavity in the surrounding gas and prevented the formation of new stars. Powerful evidence to suggest IMBHs could alter their surrounding environments in amazing ways. 

NGC 2276-3c’s location in the spiral arm of its home galaxy is also making space scientists ask questions. Was it formed in the galaxy, or did it come from the center of a dwarf galaxy that collided and merged with NGC 2276 in the past? 

A recent study by a team of researchers led by Anna Wolter of the National Institute of Astrophysics in Milan, Italy seems to support the merger theory. It concluded that new stars are forming at the rate of about five to fifteen solar masses each year in NGC 2276. A high rate of new star formation they believe was possibly triggered by a possible collision with another galaxy in the past, which points to the formation of this IMBH during a merger between galaxies.   

What’s next?

Now astronomers will do more research on NGC 2275-3c and the radio jet extending from it, in order to look for clues to the effects supermassive black hole seeds existing during the first days of the universe could have had on their surroundings.  

You can learn more about NASA’s flagship X-ray telescope, the Chandra X-ray Observatory here

Learn more about NASA’s space mission to the stars here

Read about space scientists on the trail of a cosmic mystery.  

Learn more about the physical things astronauts deal with.

Learn about the ancient astronomy knowledge of ancient Peruvians.

  

Turbulence Could be a Reason Some Galaxy Clusters Don’t Form Huge Numbers of Stars

Turbulence created by supermassive black holes near the center of galaxies within galaxy clusters could be the culprit 

Chandra observations of the Perseus and Virgo galaxy clusters suggest turbulence may be preventing hot gas there from cooling, addressing a long-standing question of galaxy clusters do not form large numbers of stars. Image Credit: NASA/CXC/Stanford/I. Zhuravleva et al
Chandra observations of the Perseus and Virgo galaxy clusters suggest turbulence may be preventing hot gas there from cooling, addressing a long-standing question of galaxy clusters do not form large numbers of stars.
Image Credit: NASA/CXC/Stanford/I. Zhuravleva et al

Space news ( December 18, 2014) Deep within the Perseus and Virgo galaxy clusters – 

NASA astronomers studying the birth and death of stars in huge galaxy clusters recently viewed the Perseus and Virgo galaxy clusters, using the Chandra X-ray Observatory, looking for clues to the mystery surrounding the lack of stars in these galaxy clusters.

The Chandra X-ray Observatory (formerly the Advanced X-ray Astrophysics Facility, or AXAF) was built around a high-resolution grazing incidence X-ray telescope which will make astrophysical observations in the 0.09 to 10.0 keV energy range.
The Chandra X-ray Observatory (formerly the Advanced X-ray Astrophysics Facility, or AXAF) was built around a high-resolution grazing incidence X-ray telescope which will make astrophysical observations in the 0.09 to 10.0 keV energy range.

Space scientists believe clues suggest turbulence within Perseus and Virgo could be a cause of the lack of stars seen during our journey. Turbulence which could be preventing hot gas within these behemoths from cooling and ultimately forming more stars.

The hot gasses within Perseus and Virgo are believed to be one of the heaviest components of these galaxy clusters. Over a long period of time, the hot gasses near the centers of these galaxy clusters should cool to the point where stars form at an amazing rate, according to the latest theories.  But this picture isn’t the one NASA astronomers are seeing during our journey, though, and this has them wondering and searching for answers.

“We knew that somehow the gas in clusters is being heated to prevent it cooling and forming stars. The question was exactly how,” said Irina Zhuravleva of Stanford University in Palo Alto, California, who led the study that appears in the latest online issue of the journal Nature. “We think we may have found evidence that the heat is channeled from turbulent motions, which we identify from signatures recorded in X-ray images.”

What’s causing turbulence within Perseus and Virgo?

Space scientists have previously recorded data indicating supermassive black holes, believed to be located near the center of large galaxies in the middle of galaxy clusters, jet huge quantities of energetic particles into the surrounding hot gas.

Powerful jets that space scientists believe create giant cavities in the hot gas and transfer energy that generates turbulence, which then disperses keeping the gas hot for billions of years.

“Any gas motions from the turbulence will eventually decay, releasing their energy to the gas,” said co-author Eugene Churazov of the Max Planck Institute for Astrophysics in Munich, Germany. “But the gas won’t cool if turbulence is strong enough and generated often enough.”

What is next for space scientists?

Space scientists newest data indicates this scenario appears to have unfolded within the Perseus and Virgo galaxy clusters.

“Our work gives us an estimate of how much turbulence is generated in these clusters,” said Alexander Schekochihin of the University of Oxford in the United Kingdom. “From what we’ve determined so far, there’s enough turbulence to balance the cooling of the gas.

Some space scientists involved in the study think there could be other forces at work creating turbulence, interactions between galaxies within galaxy clusters could also be a major factor.

Evidence appears to support a “feedback” model involving black holes near the center of galaxies within the Perseus and Virgo galaxy clusters.

Space scientists need to collect more data on each galaxy cluster to estimate the turbulence in the hot gas better. This will give them a better picture of what’s really going on and why galaxy clusters don’t form large numbers of stars?

You can view an interactive image, podcast, and video with more information concerning this research here.

You can find more information on the Chandra X-Ray Space Telescope here.

For more information on NASA’s Chandra space mission visit here.

Learn more about Neptune-size exoplanets.

Learn about NEOWISE’s one year mission.

Learn more about life during the first days of the universe.

Cradle for a New Human Genesis

    The search for a new home for human life has started

Astronomers are looking for blue planets inside their home stars life zone
Planets with water are the goal of astronomers

Astronomy will be the next great science

Astronomy News – The search for planets capable of acting as a cradle for a new human genesis has begun. Astronomers are searching the night sky above you for planets circling distant stars within what space scientists refer to as a stars life-zone or habitable-zone. This zone is at an orbital distance from a star allowing for the formation of the elements necessary for Earth-based life to exist. In the search for planets capable of supporting Earth-based life, astronomers are mainly looking for water.

Only looking for planets with the elements we know can support Earth-based life could be putting human-made limitations on the search for habitable planets and the creation of life that will prevent us from seeing the whole picture. Life-on-Earth has always shown itself to be adaptable, unpredictable and totally uncontrollable, and the environments life could evolve in are probably beyond current human imagination. Space scientists conducting computer simulations of planetary systems indicate that the variables that determine the life-zone of a star and its suitability for human life are just being studied and discussed. Water could exist in a usable form for the creation of life during specific periods of time on a planet’s surface for Earth-like planets close to a Jupiter-size planet orbiting in a highly elliptical orbit. A description that fits many of the exoplanets discovered, so far, space scientists note.

We could find that human life is more adaptable than we first thought

Planets with the necessary ingredients to support human-based life are hard to find

A highly perturbed orbit could result in an Earth-like planet experiencing long time-periods of freezing and heating temperatures, with a period of ideal weather for the creation of life, squeezed in between. Hardly the ideal situation for human life and this simulation is only one of the possible exotic habitats we could find on our “Journey to the Beginning of Space and Time”. Human life could be walking on planets in the centuries ahead where the length of a day varies wildly, the seasons are unrecognizable, and the year just seems to go on forever.

The crazy zoo-of-planets astronomers are discovering in the night sky is threatening to break the human-made shackles we have attempted to put upon them. The environmental conditions on one or some of these planets could one day provide the elements for a new human genesis that could shatter the foundations of belief systems across planet Earth. Environments capable of supporting human evolution and the development of higher life forms? Astronomers and space scientists have taken another step forward to discovering an answer to this question and astrobiologists are currently continuing the search for a second-Earth for humankind.

Astronomy buffs need to check out the Planetary Zoo

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion

Journey to the Small Near-Earth Asteroid 25143 Itokawa

What do you think a little asteroid dust could tell us about the universe?

Astronomers are currently studying asteroid 25143 Itokawa
Hayabusa has returned from its mission to asteroid 25143 Itokawa

Astronomy gurus watched as it came back to Earth

Astronomy News – The return capsule of Japan Aerospace Exploration Agency’s asteroid-hunting Hayabusa spacecraft splashed down safely near Australia on June 13. This marks the return of a space traveller that was launched in 2003 in order to journey to the small near-Earth asteroid 25143 Itokawa to bring back a sample of the asteroid’s surface. Hayabusa has been designed and engineered to fire a projectile into the surface of asteroid 25143 Itokawa and hopefully kick up dust that can be collected by Hayabusa’s onboard collection container. The only problem is space scientists don’t know yet if Hayabusa was able to accomplish its mission, but they remain hopeful the projectile was able to fire and the collection container store some dust for them to study. Any dust they find could still be Earth dust that somehow entered the collection container, so any material they find in the collection container will still have to be verified to be true asteroid dust.

Astronomy and asteroid hunting is fun
Asteroid 25143 Itokawa is a small near-Earth asteroid that will be remembered for all time

Hayabusa’s mission was a success, even if the projectile didn’t fire and the collection container didn’t collect any dust because Japanese space scientists were able to conduct several other groundbreaking experiments. Stay tuned to “Journey to the Beginning of Space and Time” in the days and weeks ahead in the century of the environment for new developments on this front.

Astronomy will be serious business during the next century

 

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion

Red and Orange Fills September’s Night Sky

Journey to Red and Orange stars in September’s night sky

The colors of astronomy
Color like this only grows and expands the further you travel on your Journey to the Beginning of Space and Time

Fall is in full bloom in the Northern Hemispheres of planet Earth and lovers of the reds, oranges, and bright reds on the leaves of fall will enjoy the rich, warm and colorful hues in the night sky of September and October.

Astronomy News – If you’re heading out into the wild to enjoy Mother Nature’s bounty at this time of year? After a day walking through the forest watching the leaves on the trees turn color, from drab green to mixed shades of yellow, orange, and red. Take the time to lay back on the cold ground or your sleeping bag and check out the colors in the night sky. Even better, set up your binoculars or time machine to the stars, and enjoy the colors in the night sky by taking a journey to the beginning of space and time.”

Stargazers have witnessed the colorful displays in the night sky for generations and our ancestors surely spent many a night staring upwards in wonder at the various colors they could see in the night sky. It was 19th-century Irish astronomer John Birmingham, who first made note of the colorful hues of light in the night sky. His ideas and the thoughts of Danish astronomer Hans Schjellerup, who had compiled a catalog of red stars in 1866, were mentioned in Birmingham’s work “The Red Stars: Observations and Catalog”. This catalog contains a total of 658 red and orange stars colorful enough to delight the human senses and make your imagination dance a lively step.

Reading the introduction of Birmingham’s catalog of red and orange stars, one notes he mentions a region of space and time he refers to as “The Red Region”. This region includes parts of the Milky Way Galaxy, between Aquila, Lyra, and Cygnus, that are filled with orange and red stars that will make the eyes dance and entice the human imagination to create possibilities beyond anything we as humans have imagined.

The colors of astronomy in September are a highlight amateur astronomers will love

September is the perfect time for you to board your time machine to the stars and journey to the beginning of space and time to experience the Red Region. The Red Region will be well above the southern horizon once the sun goes down. This region of space and time has eye-gems for stargazers to view in September, with reds and oranges that will make lovers of fall smile, and turn up their color sensitivity. The colorful stars in the Red Region warm sequentially through spectral classes: G (yellow), K (orange), M (red) and rare carbon class C (deep red). Astronomers have subdivided star classes from 0 to 9, with a G9 star being a little closer to orange than yellow, and a K5 star having a color somewhere between orange and red.

All-star gazers will see varying hues of red, orange, and yellow during their journey to the beginning of space and time that will depend on each star gazers own particular biology. In fact, we all view color slightly differently, so individual star gazers shouldn’t rely on a star’s spectral class for a visual clue to a star’s true color. Take, for example, the strikingly colorful, double star Albireo (Beta Cygni) in Cygnus. Stargazers through the centuries have described its magnitude 3.1 K3 primary star as yellow, topaz, gold and orange. Its magnitude 5.1 B9 (blue-white) secondary star (34″ away) on the other hand, has been described as deep-blue, azure, sapphire and even green.

The perception of color for humans is subjective and depends on varying individual parameters that can also be a product of physiological and psychological effects, such as the strong contrasting colors of a double star, like Albireo. The colors star gazers view through their time machine to the stars can also be obscured by dust and pollutants in the air, which will redden a star’s color. Stars that are low on the horizon, in comparison to higher stars, will also appear redder to viewers, just like the sun turns redder as it falls toward the horizon.

Orange, red, and yellow hues abound in September

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion

Black Holes in Unusual Places

Black holes and humans have more in common than we first thought, we can both be a little off-center

Black holes are being found in unusual places
Large black holes like this one are found at the center of galaxy M31

Black holes are one of astronomy’s greatest mysteries

Astronomy News – Astronomers have discovered a rather unusual black hole –

Black holes are unusual celestial objects typically found at the center of galaxies, according to space scientists and astronomers, but space scientists at the University of Utrecht in the Netherlands think they have found a black hole a little off-center. Astronomers typically find black holes by looking for strong x-ray sources near the places they think black holes should exist. Friction heats matter falling into a strong gravity source, such as a black hole, creating copious amounts of x-rays, which space scientists use to locate possible black holes. Astronomers at the University of Utrecht in the Netherlands believe they have found a black hole in a less typical location in one nondescript galaxy.

Black holes are unusual celestial objects typically found at the center of galaxies, according to space scientists and astronomers, but space scientists at the University of Utrecht in the Netherlands think they have found a black hole a little off-center. Astronomers typically find black holes by looking for strong x-ray sources near the places they think black holes should exist. Friction heats matter falling into a strong gravity source, such as a black hole, creating copious amounts of x-rays, which space scientists use to locate possible black holes. Astronomers at the University of Utrecht in the Netherlands believe they have found a black hole in a less typical location in one nondescript galaxy.

The black hole in question appears to be located about 10,000 light-years from the center of the galaxy in question. What’s this 1-billion-solar-mass black hole doing so far from the center of the galaxy? Space scientists postulate, using the available facts, that large black holes, like the one in question, could be created during the collision of two smaller black holes. This would eject the bigger black hole out of the galaxy’s center at high-speed, space scientists believe, and could be one-way black holes could be relocated to another galactic address.

This black hole is slightly off-centre

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion