Pluto Shows Planetary Scientists Geophysical and Atmospheric Surprises

Exotic ice floes and distinct layers of haze above dwarf planet’s surface

New Horizons discovers flowing ices in Pluto’s heart-shaped feature. In the northern region of Pluto’s Sputnik Planum (Sputnik Plain), swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth. Credits: NASA/JHUAPL/SwRI
New Horizons discovers flowing ices in Pluto’s heart-shaped feature. In the northern region of Pluto’s Sputnik Planum (Sputnik Plain), swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth.
Credits: NASA/JHUAPL/SwRI

Space news (July 29, 2015) – 1.25 million miles (2 million kilometers) from Earth and headed into the Kuiper Belt

NASA space scientists looking at LORRI images and data sent back to Earth by the New Horizons spacecraft ten days after closest approach to the dwarf planet Pluto received a nice surprise. Exotic ices flowing across the surface of the dwarf planet Pluto as glaciers do on Earth and possibly Mars. Indicating geological activity planetary scientists had dreamed of but didn’t truly expect to find, and the possibility even bodies at extreme distances from the Sun could be crucibles for the ingredients of life.

“We knew that a mission to Pluto would bring some surprises, and now — 10 days after closest approach — we can say that our expectation has been more than surpassed,” said John Grunsfeld, NASA’s associate administrator for the Science Mission Directorate. “With flowing ices, exotic surface chemistry, mountain ranges, and vast haze, Pluto is showing a diversity of planetary geology that is truly thrilling.”

Photo caption: The sheet of ice visible here on the plain informally called Sputnik Planum appears to have flowed, and could still be moving, as glaciers do on Earth. This plain rests within the western half of Pluto's noted heart-shaped feature called Tombaugh Regio and could be rich in nitrogen, carbon monoxide, methane ices, and other compounds.
Photo caption: The sheet of ice visible here on the plain informally called Sputnik Planum appears to have flowed, and could still be moving, as glaciers do on Earth. This plain rests within the western half of Pluto’s noted heart-shaped feature called Tombaugh Regio and could be rich in nitrogen, carbon monoxide, methane ices, and other compounds.

“We’ve only seen surfaces like this on active worlds like Earth and Mars,” said mission co-investigator John Spencer of SwRI. “I’m really smiling.”

“At Pluto’s temperatures of minus-390 degrees Fahrenheit, these ices can flow like a glacier,” said Bill McKinnon, deputy leader of the New Horizons Geology, Geophysics, and the Imaging team at Washington University in St. Louis. “In the southernmost region of the heart, adjacent to the dark equatorial region, it appears that ancient, heavily cratered terrain has been invaded by much newer ice deposits.”

Space scientists combined four New Horizon images taken by LORRI with color data from the Ralph Instrument to produce this stunning global view of Pluto taken at a distance of 280,000 miles (450,000 kilometers) from the spacecraft.
Space scientists combined four New Horizon images taken by LORRI with color data from the Ralph Instrument to produce this stunning global view of Pluto taken at a distance of 280,000 miles (450,000 kilometers) from the spacecraft.

Detailed analysis of LORRI images taken of Pluto’s surface reveals a global pattern of ice floe zones varying according to latitude. The darkest surface terrains are found near the equator region, with mid-toned terrains being mainly located in mid-latitudes, and lighter colored terrains covering the North Polar Region.

Mountain Ranges Viewed on Pluto’s Sputnik Planum

Planetary scientists have named the two peaks of the mountain range Hillary Montes (Hillary Mountains) for Sir Edmund Hillary, who along with legendary mountain guide Tenzing Norgay summited Mount Everest in 1953. Rising over 1 mile (1.6 kilometers) above the surface of the planet, image climbing to the top of these peaks, a feat humankind could one day attempt and achieve. This would truly be an inspiring moment during the human journey to the beginning of space and time.

This LORRI image shows the surface terrain of Pluto are much more complicated than planetary scientists first thought. Notice the polygonal shape of many of the plains viewed, two magnificent mountain ranges, and cratered terrain that looks like ice has recently been deposited.
This LORRI image shows the surface terrain of Pluto is much more complicated than planetary scientists first thought. Notice the polygonal shape of many of the plains viewed, two magnificent mountain ranges and cratered terrain that looks like ice has recently been deposited.

“For many years, we referred to Pluto as the Everest of planetary exploration,” said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado. “It’s fitting that the two climbers who first summited Earth’s highest mountain, Edmund Hillary, and Tenzing Norgay, now have their names on this new Everest.”

View a video here of a simulated flyover of Sputnik Planum and Pluto’s recently viewed mountain range called Hillary Montes.

Seven hours after reaching its point of closest approach to Pluto, New Horizons looked back at the dwarf planet through its Long Range Reconnaissance Imager (LORRI) just in time to view sunlight beaming through its atmosphere highlight gasses rising as high as 80 miles (130 kilometers) from its surface. Subsequent analysis of images revealed two distinct gas layers, one at around 30 miles (50 kilometers), and the other at 50 miles (80 kilometers).

“My jaw was on the ground when I saw this first image of an alien atmosphere in the Kuiper Belt,” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “It reminds us that exploration brings us more than just incredible discoveries — it brings incredible beauty.”

Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. Credits: NASA/JHUAPL/SwRI
Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image was taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame.
Credits: NASA/JHUAPL/SwRI

“The hazes detected in this image are a key element in creating the complex hydrocarbon compounds that give Pluto’s surface its reddish hue,” said Michael Summers, New Horizons co-investigator at George Mason University in Fairfax, Virginia.

Planetary scientists believe the hazes detected in the LORRI images form through a process in which sunlight breaks up methane gas particles, which have been detected in the atmosphere of Pluto. This process leads to the formation of more complex hydrocarbon gasses, like ethylene and acetylene, which have been detected by New Horizons.  These heavier compounds fall to the lower regions of Pluto’s atmosphere, where they condense into ice particles that form the hazes viewed. The ice particles are then struck by ultraviolet sunlight, which converts them into the dark hydrocarbons covering the surface of the dwarf planet.

This theory is different than first thoughts on the possibility of this process occurring, in fact, space scientists had previously calculated temperatures would be too warm for such hazes to form above the altitude of 20 miles (30 kilometers). It appears they’ll have to devise a new theory for how the hazes detected could form so far from the surface of Pluto.

Presently around 7.6 million miles (12.2 million kilometers) from Pluto and flying deeper into the Kuiper Belt, New Horizons will continue to send data back to Earth through this year and 2016. All involved in the mission expect to discover more and more about dwarf planets, the Kuiper Belt, and the Solar System as the human journey to the beginning of space and time heads into unseen territory searching for the unknown.

Learn more about NASA’s space mission here.

Learn more about NASA’s New Horizons mission and discover dwarf planet Pluto and its moons here.

Read about NASA’s New Horizons of the Human Journey to the Beginning of Space and Time

Learn about the search for the missing link in black hole evolution

Read about clear skies and hot water vapor detected on Neptune-size exoplanets

Pluto

Considered the ninth planet for nearly 75 years, the second biggest dwarf planet discovered in the solar system. Pluto was originally given the name of the Greek god of the underworld by 11-year-old Venetia Burney.

This is the most detailed view to date of the entire surface of the dwarf planet Pluto, as constructed from multiple NASA Hubble Space Telescope photographs taken from 2002 to 2003. The center disk (180 degrees) has a mysterious bright spot that is unusually rich in carbon monoxide frost. Pluto is so small and distant that the task of resolving the surface is as challenging as trying to see the markings on a soccer ball 40 miles away. Credit: NASA, ESA, and M. Buie (Southwest Research Institute). Photo No. STScI-PR10-06a
This is the most detailed view to date of the entire surface of the dwarf planet Pluto, as constructed from multiple NASA Hubble Space Telescope photographs taken from 2002 to 2003. The center disk (180 degrees) has a mysterious bright spot that is unusually rich in carbon monoxide frost. Pluto is so small and distant that the task of resolving the surface is as challenging as trying to see the markings on a soccer ball 40 miles away. Credit: NASA, ESA, and M. Buie (Southwest Research Institute). Photo No. STScI-PR10-06a

Space & Astronomy Wiki – the planets in the solar system –

The furthest of the original nine planets in the solar system from Sol at 3.7 billion miles (5.9 billion km) or 39.5 AU, Pluto is the second biggest dwarf planet behind Eris, which is about 28 percent more massive.

In 2005, this image from NASA's Hubble Space Telescope was used to identify two new moons orbiting Pluto. Pluto is in the center. The moon Charon is just below it. The newly discovered moons, Nix and Hydra, are to the right of Pluto and Charon. Credits: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST
In 2005, this image from NASA’s Hubble Space Telescope was used to identify two new moons orbiting Pluto. Pluto is in the center. The moon Charon is just below it. The newly discovered moons, Nix, and Hydra are to the right of Pluto and Charon.
Credits: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST

Orbited by moons Charon, Nix, Styx, Kerberos, and Hydra, Pluto was discovered on February 18, 1930, by Clyde W. Tombaugh. Charon is almost 50 percent the size of Pluto and is believed to be the result of a collision between a planet-sized object and the dwarf planet early in the history of the solar system.

heic1512b

If the icy surface of Pluto's giant moon Charon is cracked, analysis of the fractures could reveal if its interior was warm, perhaps warm enough to have maintained a subterranean ocean of liquid water, according to a new NASA-funded study.
If the icy surface of Pluto’s giant moon Charon is cracked, analysis of the fractures could reveal if its interior was warm, perhaps warm enough to have maintained a subterranean ocean of liquid water, according to a new NASA-funded study.

With only 12, 173 miles (19, 591 km) between Pluto and Charon, astronomers and space scientists consider the pair to be a double planet system. The entire Pluto system is part of the distant Kuiper Belt, a distant disk-like region beyond the orbit of Neptune full of icy bodies formed during the early history of the solar system.

darksideimage
NASA’s New Horizons spacecraft took this image of Pluto’s dark side with the Sun on the other side of this distant, lonely wanderer. Sunlight filters through and illuminates complex layers of atmospheric haze. Credit: NASA/New Horizons/JHUAPL/SwRI

A day on Pluto is about 153 hours long, which is the time it takes the dwarf planet to spin once on its axis, and a year, the time it takes this distant object it orbit the Sun, takes about 248 Earth years.

The structure of Pluto is not very well understood at present. Nevertheless, spectroscopic observation from Earth in the 1970s has revealed that the planet surface is covered with methane ice. Surface temperature is -230 degrees C, and the frozen methane exhibits a bright coloration. However, with the exception of the polar caps, the frozen methane surface is seen to change to a dark red on the basis of observation of eclipse by its moon Charon. Image Credit: Lunar and Planetary Institute
The structure of Pluto is not very well understood at present. Nevertheless, spectroscopic observation from Earth in the 1970s has revealed that the planet surface is covered with methane ice. Surface temperature is -230 degrees C and the frozen methane exhibits a bright coloration. However, with the exception of the polar caps, the frozen methane surface is seen to change to a dark red on the basis of observation of eclipse by its moon Charon.
Image Credit: Lunar and Planetary Institute

What are planetary scientists saying?

Some planetary scientists think Pluto could have an ocean hidden beneath its icy surface, but this cold and distant body isn’t thought to be a place life could exist. Scientists estimate this dwarf planet has three times as much water in the form of ice as contained within the oceans of Earth.

How big is Pluto’s atmosphere? This is not a typical question one finds in planetary science. Earth’s atmosphere has an equivalent thickness – the thickness if you compress the atmosphere to uniform pressure and density – of about 10 kilometers, or six miles. Compare this with the radius of Earth, 6,370 kilometers, and you see that the razor-thin thickness of Earth’s atmosphere is about 0.17% of its radius. Even if you consider the “outer limit” of Earth’s neutral atmosphere, what we call the exobase, that reaches about 600 kilometers altitude, the atmosphere’s equivalent thickness is only 10% of Earth’s radius—still very thin. So the volume of Earth’s atmosphere is tiny compared to Earth’s volume. Michael E. Summers is a professor of Planetary Science and Astronomy at George Mason University, and specializes in the study of the chemistry and dynamics of planetary atmospheres. He is a New Horizons co-investigator and member of the atmospheres science theme team.
How big is Pluto’s atmosphere? This is not a typical question one finds in planetary science. Earth’s atmosphere has an equivalent thickness – the thickness if you compress the atmosphere to uniform pressure and density – of about 10 kilometers or six miles. Compare this with the radius of Earth, 6,370 kilometers, and you see that the razor-thin thickness of Earth’s atmosphere is about 0.17% of its radius. Even if you consider the “outer limit” of Earth’s neutral atmosphere, what we call the exobase, that reaches about 600 kilometers altitude, the atmosphere’s equivalent thickness is only 10% of Earth’s radius—still very thin. So the volume of Earth’s atmosphere is tiny compared to Earth’s volume.
Michael E. Summers is a professor of Planetary Science and Astronomy at George Mason University and specializes in the study of the chemistry and dynamics of planetary atmospheres. He is a New Horizons co-investigator and member of the atmospheres science theme team.

The surface is also covered by frozen methane and nitrogen gas, which thaws as Pluto nears the Sun, forming a thin atmosphere composed primarily of nitrogen, carbon monoxide, with a little methane thrown in.

krunmacula_context-20160609-sml
NASA’s New Horizons spacecraft took this enhanced-color image of the southeastern region of Pluto’s great plains of ice called Sputnik Planum. At lower right these plains border rugged, dark highlands that rise 1.5 miles above them. Credit: NASA/JHUAPL/SwRI

NASA’s New Horizons spacecraft is the only human envoy to be sent to the Pluto system.

For more information on Pluto go here.

Follow New Horizons as it writes space history here.

Follow NASA’s New Horizons spacecraft as it closes in on Pluto and Charon and prepares to write space history.

Read about the search for the missing link in black hole evolution.

Learn how your firm or private institution can become a leader in the human journey to the beginning of space and time.

NASA’s Space Mission Shows ‘New Horizons’ of Pluto and Charon

The human journey to the beginning of space and time stops at Pluto and its largest moon Charon

pluto-new-horizons-art

Space news (July 7, 2015) – 4.7 billion km (2.9 billion miles) from Earth and 24 million miles (39 million km) from dwarf planet Pluto and closing

NASA’s New Horizons spacecraft is operating according to plans and is ready to view a new dawn for the human journey to the stars!

NASA’s New Horizons spacecraft is presently accelerating across the solar system toward dwarf planet Pluto and its biggest moon Charon after nine years voyaging across the solar system. Expectations are for a smooth and historic pass by the former ninth planet and it’s family of five known moons at approximately 7:49 a.m. EDT on July 14, 2015.

Watch this video of Pluto and it’s biggest moon Charon taken on June 22, 2015.

Space scientists are looking forward to a better view of terrain types on the surface of the planet and Charon as New Horizons flies past. They especially want to look at a mysterious dark region viewed on its pole that seems to be a little unusual.

This system is just amazing,” said Alan Stern, New Horizons Principal Investigator, from the Southwest Research Institute, Boulder, Colorado. “The science team is just ecstatic with what we see on Pluto’s close approach hemisphere: Every terrain type we see on the planet—including both the brightest and darkest surface areas —are represented there, it’s a wonderland!

“And about Charon—wow—I don’t think anyone expected Charon to reveal a mystery like dark terrains at its pole,” he continued. “Who ordered that?”

“The unambiguous detection of bright and dark terrain units on both Pluto and Charon indicates a wide range of diverse landscapes across the pair,” said science team co-investigator and imaging lead Jeff Moore, of NASA Ames Research Center, Mountain View, California. “For example, the bright fringe we see on Pluto may represent frost deposited from an evaporating polar cap, which is now in the summer sun.

First Color Images of Pluto and Charon

First discovered on February 18, 1930, by astronomer Clyde Tombaugh, while working at the Lowell Observatory in Flagstaff, Arizona, the New Horizons spacecraft carries the ashes of the discoverer of Pluto to their historic up close meeting.

Charon first emerged from the shadow of Pluto on June 22, 1978, when discovered by US Naval Observatory astronomer James W. Christy and his colleague Robert Harrington.

There’s only on average 12,000 miles between Pluto and its moon Charon, which is over fifty percent of the size of the dwarf planet. Many astronomers and space scientists call this pair a double planet because of their close proximity in both distance and size.

This first color image of the dwarf planet Pluto and its moon Charon was taken on April 9, 2015, by the Ralph color imager on New Horizons, when it was about 71 million miles away. 

The Ralph imager on New Horizons took the first color image, seen here, of Pluto and Charon on April 9, 2015. Clearly visible are Pluto and Texas-sized Charon, the smaller dot. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The Ralph imager on New Horizons took the first color image, seen here, of Pluto and Charon on April 9, 2015. Clearly visible are Pluto and Texas-sized Charon, the smaller dot.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
This is the first movie created by New Horizons to reveal color surface features of Pluto and its largest moon Charon. “It’s a bit unusual to see so much surface detail at this distance,” said New Horizons co-investigator William McKinnon of the Geology and Geophysics Investigation Team, Washington University in Saint Louis. “What’s especially noteworthy is the level of detail in both bodies. It’s certainly whetting our appetite for what’s to come.” The images were taken between June 23 and June 29, 2015, as New Horizons’ distance to Pluto decreased from a distance of 15 million to 11 million miles (24 million to 18 million kilometers). Six high-resolution black-and-white images from New Horizons’ LORRI instrument were combined with color data from the Ralph instrument to produce the movie.
This is the first movie created by New Horizons to reveal color surface features of Pluto and its largest moon Charon. “It’s a bit unusual to see so much surface detail at this distance,” said New Horizons co-investigator William McKinnon of the Geology and Geophysics Investigation Team, Washington University in Saint Louis. “What’s especially noteworthy is the level of detail in both bodies. It’s certainly whetting our appetite for what’s to come.”
The images were taken between June 23 and June 29, 2015, as New Horizons’ distance to Pluto decreased from a distance of 15 million to 11 million miles (24 million to 18 million kilometers). Six high-resolution black-and-white images from New Horizons’ LORRI instrument were combined with color data from the Ralph instrument to produce the movie.

It’s exciting to see Pluto and Charon in motion and in color,” says New Horizons Principal Investigator Alan Stern of the Southwest Research Institute (SwRI), Boulder, Colorado. “Even at this low resolution, we can see that Pluto and Charon have different colors—Pluto is beige-orange while Charon is gray. Exactly why they are so different is the subject of debate.

Even though the latest images were made from more than 30 million miles away, they show an increasingly complex surface with clear evidence of discrete equatorial bright and dark regions—some that may also have variations in brightness,” says New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute, Boulder, Colorado. “We can also see that every face of Pluto is different and that Pluto’s northern hemisphere displays substantial dark terrains though both Pluto’s darkest and its brightest known terrain units are just south of, or on, its equator. Why this is so is an emerging puzzle.

We’re squeezing as much information as we can out of these images, and seeing details we’ve never seen before,” said New Horizons Project Scientists Hal Weaver, from the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. “We’ve seen evidence of light and dark spots in Hubble Space Telescope images and in previous New Horizons pictures, but these new images indicate an increasingly complex and nuanced surface. Now, we want to start to learn more about what these various surface units might be and what’s causing them. By early July, we will have spectroscopic data to help pinpoint that.

Pluto and its largest moon Charon seen from New Horizons on July 1, 2015. The inset shows Pluto enlarged; features as small as 100 miles (160 kilometers) across are visible. Credits: NASA/JHUAPL/SWRI
Pluto and its largest moon Charon as seen from New Horizons on July 1, 2015. The inset shows Pluto enlarged; features as small as 100 miles (160 kilometers) across are visible.
Credits: NASA/JHUAPL/SWRI

High Noon on Dwarf Planet Pluto

What would high noon on Pluto be like? You might think it would be a dark time, considering its distance from the Sun, but there’s more light present than you think. The light present for a brief moment during dawn and dusk on Earth would be like high noon on this distant body.

Want to experience high noon on dwarf planet Pluto? NASA has created a unique and entertaining interactive widget allowing users to experience this moment here. This new tool tells users the exact time you need to go outside to view high noon on this distant and mysterious object in space. 

The new tool also allows you to set reminders allowing you to schedule a session with your family or friends. Taking your children, wife, and interested friends along on your journey to Pluto’s, the best way to introduce people to the human journey to the beginning of space and time.

New Horizons Views Dwarf Planet‘s Four Small Moons

New Horizons recently provided this view of the two smallest and faintest of the five moons of Pluto; Nis, Styx, Hydra, Kerberos and the largest Charon as seen below. The mission is now within view of the entire family of this dwarf planet and in a few days time, we’ll get a close-up view of each member.

New Horizons is now on the threshold of discovery,” said mission science team member John Spencer, of the Southwest Research Institute in Boulder, Colorado. “If the spacecraft observes any additional moons as we get closer to Pluto, they will be worlds that no one has seen before.

The images of Kerberos and Styx above were taken using New Horizons Long Range Reconnaissance Imager (LORRI) between April 25 – May 1. If you look closely, Kerberos is also visible in the second image

Pluto and its largest moon Charon seen from New Horizons on July 1, 2015. The inset shows Pluto enlarged; features as small as 100 miles (160 kilometers) across are visible. Credits: NASA/JHUAPL/SWRI
Pluto and its largest moon Charon as seen from New Horizons on July 1, 2015. The inset shows Pluto enlarged; features as small as 100 miles (160 kilometers) across are visible.
Credits: NASA/JHUAPL/SWRI
These images, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI), show four different “faces” of Pluto as it rotates about its axis with a period of 6.4 days. All the images have been rotated to align Pluto's rotational axis with the vertical direction (up-down) on the figure, as depicted schematically in the upper left.From left to right, the images were taken when Pluto’s central longitude was 17, 63, 130, and 243 degrees, respectively. The date of each image, the distance of the New Horizons spacecraft from Pluto, and the number of days until Pluto closest approach are all indicated in the figure. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
These images, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI), show four different “faces” of Pluto as it rotates about its axis with a period of 6.4 days. All the images have been rotated to align Pluto’s rotational axis with the vertical direction (up-down) on the figure, as depicted schematically in the upper left.From left to right, the images were taken when Pluto’s central longitude was 17, 63, 130, and 243 degrees, respectively. The date of each image, the distance of the New Horizons spacecraft from Pluto, and the number of days until Pluto closest approach are all indicated in the figure.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
These images are displayed at four times the native LORRI image size, and have been processed using a method called deconvolution, which sharpens the original images to enhance features on Pluto. Deconvolution can occasionally introduce
These images are displayed at four times the native LORRI image size and have been processed using a method called deconvolution, which sharpens the original images to enhance features on Pluto. Deconvolution can occasionally introduce “false” details, so the finest details in these pictures will need to be confirmed by images taken from closer range in the next few weeks. All of the images are displayed using the same brightness scale.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

These images allowed space scientists to confirm the positions of the objects seen as an exact match for the predicted positions of Kerberos and Styx in relation to the Sun, the planets, and all mass bodies in the solar system.

For more information and facts concerning NASA‘s New Horizon mission go here

To learn more about NASA’s space mission go here.

Read about the missing link in black hole evolution.

Learn more about NASA’s search for business and private partners to enable the human journey to the stars.

Learn how to calculate the orbits of asteroids in the Main Asteroid Belt.

Uranus

British astronomer William Herschel discovered Uranus accidentally on March 13, 1781, with his telescope while surveying all stars down to those about 10 times dimmer than can be seen by the naked eye. One
British astronomer William Herschel discovered Uranus accidentally on March 13, 1781, with his telescope while surveying all stars down to those about 10 times dimmer than can be seen by the naked eye. One “star” seemed different, and within a year Uranus was shown to follow a planetary orbit.

The seventh planet from the Sun at 2.9 billion km (1.8 billion miles) or 19.19 AU, Uranus is a world tinted blue due to more methane in its mainly hydrogen and helium atmosphere than a similar gas giant like Mighty Jupiter or Spectacular Saturn.

Space & Astronomy Wiki – the planets in the solar system –

A year on Uranus, the amount of time it takes the planet to orbit the Sun, takes about 84 Earth-years to complete, but a day is only 17 hours in length. 27 moons of various sizes orbit this planet, which is just about the same in size as Neptune, moons name after characters from the works of Shakespeare and Alexander Pope.

Although it’s not as apparent looking at Uranus through a telescope, this light blue world does have a ring system, composed of narrow and dark inner rings and brightly colored outer rings. As you look at this far off world through a telescope, you’ll notice it’s tipped on its side, compared to the other planets. Some planetary space scientists believe this orientation could be due to a collision over 4.5 billions years ago, when the solar system was being formed.

This distant world has only been visited by one man made spacecraft, Voyager 2 flew by Uranus, and the other outer planets, before heading off out of the solar system. The majority of the facts we have concerning this amazing world are due to this flyby, and unfortunately humans presently have no missions to Uranus planned for the future.

You can learn more about Uranus here.

Learn more about planets found in star systems composed of four suns.

Read about the Rosetta spacecraft’s historic decade long voyage to a meeting with comet 67P/Churymov-Gerasimenko.

Learn more about calculating the possibility of intelligent life existing in the universe.

Mercury

The innermost planet to the Sun

The innermost planet in our solar system, NASA's MESSENGER and Mariner 10 were the first to get a close up look at Mercury
The innermost planet in our solar system, NASA’s MESSENGER and Mariner 10 were the first to get a close-up look at Mercury

Mercury is the smallest of the first eight planets, with a radius around 2440 km, which is only slightly bigger than the Moon. A desolate, cratered terrestrial world with no Earth-like atmosphere, active volcanoes, moons, or life, Mercury has a rocky surface much like the Moon and is the second densest of the planets at 5.43 g/cm3

Space and Astronomy Wiki – the planets in the solar system –

Mercury is the fastest moving planet, traveling through the solar system almost 50 km (31) miles per seconds faster than any other planet. Every day is 59 Earth days long and a year – the time it takes the planet to orbit the Sun – takes only 88 days, a combination resulting in daylight temperatures reaching 800 degrees Fahrenheit (420 degrees Celsius) and a brisk night at around -290 degrees Fahrenheit (-180 degrees Celsius).

Mercury was visited by Mariner 10 during 1974-1975 and MESSENGER orbited the planet three times between 2008-2009, before going into orbit in March 2011 for an extended analysis. On Thursday, April 30, 2015, MESSENGER ended its mission by creating a new crater on the surface of Mercury.

You can learn more facts & figures about Mercury here.

Learn more about the things MESSENGER taught us about Mercury.

Learn more about the ancient sky watchers of the American Southwest.

Learn about the search for life near Jupiter.

Cassini Spacecraft Shows Us Views of the Solar System in Natural Color

Cassini Spacecraft blasts off on its mission to Saturn
Cassini Orbiter blasts off on its mission to Saturn

NASA spacecraft shows us the solar system as it would be seen by human eyes

A breakdown of the onboard instrumentation of the Cassini Orbiter
A breakdown of the onboard instrumentation of the Cassini Orbiter

Astronomy news (2013/12/19) – NASA revealed to the world an image of stunning Saturn taken by the Cassini spacecraft at the Newseum in Washington on Tuesday showing the giant planet as our eyes would view it.

The spectacular image, seen below, is a panoramic composed of 141 wide-angle images, showing us a view 404,880 miles (651,591 kilometers) across of Earth, Venus, Mars, and Saturn and its moons and inner ring system. The image includes all of Saturn’s rings, including the E ring, which is the second ring from the outer edge of the planet’s rings (the distance between the Earth and the Moon would easily fit within the width of the E ring). “In this one magnificent view, Cassini has delivered to us a universe of marvels,” said Carolyn Porco, Cassini’s imaging team lead at the Space Science Institute in Boulder, Colo. “And it did so on a day people all over the world, in unison, smiled in celebration at the sheer joy of being alive on a pale blue dot.”

A real color image taken of Saturn, with Earth, Mars, Venus and a few moons visible
A real color image of Saturn, with Earth, Mars, Venus and a few moons visible

Join the Wave at Saturn Campaign

This spectacular image of Saturn and its moons and rings is part of NASA’s “Wave at Saturn” campaign, which invited people around the United States and the world to take part in a celebration and party on July 19. NASA asked people to take the time to find Saturn in the sky in their part of the world. To say hello to Cassini and the ringed planet by waving across the solar system and loading any pictures they take onto the Internet to be shared with the world. A fun and social way to join the human journey to the beginning of space and time.

The image above shows Earth as the bright blue dot located to the lower right of Saturn. Venus isn’t easily seen in this image and is the bright dot located to the upper left of the giant planet, while Mars is the faint red dot to the left and above Venus. Viewers with good eyes should be able to view seven of Saturn’s moons in the image, including amazing Enceladus just to the left. Take a closer look and you should see icy plumes flying out from Enceladus’s south pole region, which provides the fine, grain-sized icy dust that makes up the E ring.

Saturn’s E-Ring is Visible

Saturn’s E ring appears like a halo surrounding the planet and its inner rings, and the best view of this area is provided by light shining from behind the planet. Astronomers studying Saturn and its rings used enhanced computer programs to improve the contrast and color balance of the pictures. This allowed them to pick out detailed data and evidence which made it possible to trace out the full orbits of smaller moons like Anthe and Methone, for the first time in the history of the human journey to the beginning of space and time. “This mosaic provides a remarkable amount of high-quality data on Saturn’s diffuse rings, revealing all sorts of intriguing structures we are currently trying to understand,” said Matt Hedman, a Cassini participating scientist at the University of Idaho in Moscow. “The E ring shows patterns that likely reflect disturbances from such diverse sources as sunlight and Enceladus’ gravity.”

The astronomers in charge of Cassini usually don’t try to use the instrument to image Earth very often because an unobstructed view of the sun will damage sensitive equipment on the spacecraft. Astronomers had to wait until the sun was hidden behind Saturn, in relation to Cassini, which occurred on July 19, before taking images of Earth and its moon, and the backlit panoramic picture above. “With a long, intricate dance around the Saturn system, Cassini aims to study the Saturn system from as many angles as possible,” said Linda Spilker, Cassini project scientist based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Beyond showing us the beauty of the Ringed Planet, data like these also improve our understanding of the history of the faint rings around Saturn and the way disks around planets form — clues to how our own solar system formed around the sun.”

Cassini has been exploring Saturn and its local region for nine years to date, and NASA has indicated the spacecraft will continue its mission until at least 2017. We will bring you more images of Saturn and data concerning the planet as long as the human journey to Saturn continues.

To view the image, visit: http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA17172.

A new version of the collage of photos shared by the public, with the Saturn system as the backdrop, is available at http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA17679.

More information about Cassini is available at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

Watch this YouTube video on Cassini and mission results here. https://www.youtube.com/watch?v=X5zcrEze8L4.

Watch this YouTube video on the picture Cassini took of the Earth and Moon https://www.youtube.com/watch?v=d-PlmiKs6Mk.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion

2014: The Journey Ahead

Find a good viewing spot on the night of April 14/15 and watch as the Full Moon falls far into the Earth’s shadow
Find a good viewing spot on the night of April 14/15 and watch as the Full Moon falls far into the Earth’s shadow

 

Looking ahead to next year

Astronomy questions and answers – 2014 is expected to be a banner year for the human journey to the beginning of space and time. This year we are treated to a total eclipse of the Moon for the first time since December 2011. Find a good viewing spot on the night of April 14/15 and watch as the Full Moon falls far into the Earth’s shadow. Skywatchers and astronomers across North America can watch the entire show from the comfort of their favorite dark sky viewing spot. The partial phases of the eclipse will get started around 1:58 a.m. eastern standard time. Watch during the next hour, or so, as the Moon darkens as totality nears. Totality lasts from about 3:06 to 4:25 and the Moon should look orange-red during this period as sunlight filters through the Earth’s atmosphere. The show should finish around 5:33 a.m, with a wrap up of the partial phases.

The Moon once again falls into the Earth’s shadow on the morning of October 8, 2014. The partial phases of this celestial event get started around 5:14 a.m. eastern standard time, with totality occurring at 6:24 a.m. The Moon will spend about an hour immersed in the shadow of Earth, before reappearing like a phantom at 7:24 a.m. Skywatchers and astronomers located in western North America will have the best seat for the show while people on the East Coast will get a partial show.

No total eclipse of the sun in 2014

October 23 skywatchers and astronomers across North America will be treated to a partial eclipse of the closest star to Earth
October 23 skywatchers and astronomers across North America will be treated to a partial eclipse of the closest star to Earth

There will be no total eclipse of the sun during 2014, but on the afternoon of October 23 skywatchers and astronomers across North America will be treated to a partial eclipse of the closest star to Earth. Viewers in the majority of the United States of America should see the Moon block over 40 percent of the Sun’s disk from view while people in the northern states and lower Canada should see the Moon cover over 60 percent. The best view of this partial solar eclipse will be in the far northern regions of Canada, with about 81 percent coverage of the Sun’s disk.

Planet hunters should enjoy the show during 2014

Mighty Jupiter reigns supreme in the sky during the month of January 2014
Mighty Jupiter reigns supreme in the sky during the month of January 2014

Planet hunters can book a seat for the dramatic appearance of Mars in the sky during spring of 2014. The Red Planet reaches opposition April 8, and will shine at magnitude -1.3 and appear big (15”) and bright when viewed through a telescope. Mighty Jupiter reigns supreme in the sky during the month of January 2014 and will peak early during this month. Saturn will also be spectacular to view both a few months before and after opposition on May 10, 2014, while beautiful and serene Venus will dazzle skywatchers before dawn during late winter and spring.

Meteorite hunters look forward to potentially great 2014

People watching the Quadrantids during January won’t have to deal with much light from the Moon
Viewers planning to look at the Perseids during August will have to deal with the light from the Moon

Meteorite hunters can also look forward to a potentially great year of viewing one their favorite celestial bodies. Viewers planning to look at the Perseids during August will have to deal with the light from a Moon which will be almost full, but people watching the Quadrantids during January won’t have to deal with much light from this source. The other expected meteorite showers during 2014 should all be free from interfering light from the moon. All-in-all 2014 should be a memorable year for astronomers and backyard skywatchers taking part in the human journey to the beginning of space and time.

Watch this YouTube video on the expected lunar eclipse in 2014 https://www.youtube.com/watch?v=9P5sQ0iSc0w.

Watch this YouTube video on the expected partial solar eclipse on October 23 https://www.youtube.com/watch?v=dnolE2bcGUg.

Watch this YouTube video on the 2014 Quadrantids meteorite shower https://www.youtube.com/watch?v=wViXDdbRC7Y.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion