Common Chemicals Were Evenly Distributed Across the Early Cosmos

By stars that went supernovae at the end of their life cycles 

This visible light view shows the central part of the Virgo Cluster. The brightest object is the giant elliptical galaxy M87 (left of center). The image spans approximately 1.2 degrees, or about 2.4 times the apparent diameter of a full moon. Credits: NOAO/AURA/NSF Download the image in HD at NASA's Scientific Visualization Studio
This visible light view shows the central part of the Virgo Cluster. The brightest object is the giant elliptical galaxy M87 (left of center). The image spans approximately 1.2 degrees or about 2.4 times the apparent diameter of a full moon.
Credits: NOAO/AURA/NSF
Download the image in HD at NASA’s Scientific Visualization Studio

Space news (astrophysics: creation and distribution of heavier chemical elements; supernovae) – watching as the elements of creation were spread evenly across millions of light-years more than ten billion years ago – 

This illustration depicts the Suzaku spacecraft. Suzaku (originally known as Astro-E2) was launched July 10, 2005, and maintains a low-Earth orbit while it observes X-rays from the universe. The satellite was developed at the Japanese Institute of Space and Astronautical Science (part of the Japan Aerospace Exploration Agency, JAXA) in collaboration with Japanese and U.S. institutions, including NASA. Credit: NASA's Goddard Space Flight Center
This illustration depicts the Suzaku spacecraft. Suzaku (originally known as Astro-E2) was launched July 10, 2005, and maintains a low-Earth orbit while it observes X-rays from the universe. The satellite was developed at the Japanese Institute of Space and Astronautical Science (part of the Japan Aerospace Exploration Agency, JAXA) in collaboration with Japanese and U.S. institutions, including NASA.
Credit: NASA’s Goddard Space Flight Center

Astronomers using Japan’s Suzaku X-ray Satellite to survey hot, x-ray emitting gas in the Virgo Galaxy Cluster over 54 million light-years away have discovered something about the early universe. The survey showed the building blocks of the cosmos needed to make the planets, stars, and living things were evenly distributed across the cosmos over 10 billion years ago.  

Suzaku mapped iron, magnesium, silicon and sulfur in four directions all across the Virgo galaxy cluster for the first time. The northern arm of the survey (top) extends 5 million light-years from M87 (center), the massive galaxy at the cluster's heart. Ratios of these elements are constant throughout the cluster, which means they were mixed well early in cosmic history. The dashed circle shows what astronomers call the virial radius, the boundary where gas clouds are just entering the cluster. Some prominent members of the cluster are labeled as well. The background image is part of the all-sky X-ray survey acquired by the German ROSAT satellite. The blue box at center indicates the area shown in the visible light image. Credits: A. Simionescu (JAXA) and Hans Boehringer (MPE) Download the graphic in HD at NASA's Scientific Visualization Studio
Suzaku mapped iron, magnesium, silicon and sulfur in four directions all across the Virgo galaxy cluster for the first time. The northern arm of the survey (top) extends 5 million light-years from M87 (center), the massive galaxy at the cluster’s heart. Ratios of these elements are constant throughout the cluster, which means they were mixed well early in cosmic history. The dashed circle shows what astronomers call the virial radius, the boundary where gas clouds are just entering the cluster. Some prominent members of the cluster are labeled as well. The background image is part of the all-sky X-ray survey acquired by the German ROSAT satellite. The blue box at center indicates the area shown in the visible light image.
Credits: A. Simionescu (JAXA) and Hans Boehringer (MPE)
Download the graphic in HD at NASA’s Scientific Visualization Studio

A team of astronomers led by Aurora Simionescu of Japan’s Aerospace Exploration Agency (JAXA) in Sagamihara acquired data of the Virgo Galaxy Cluster along four arms extending up to 5 million light-years from its center. Data they used to show the elements of creation were evenly distributed across millions of light-years early in the cosmos. 

Aurora Simionescu of Japan's Aerospace Exploration Agency (JAXA) in Sagamihara Credits Image: NASA/JAXA
Aurora Simionescu of Japan’s Aerospace Exploration Agency (JAXA) in Sagamihara
Credits Image: NASA/JAXA

“Heavier chemical elements from carbon on up are produced and distributed into interstellar space by stars that explode as supernovae at the ends of their lifetimes,” Simionescu said. “This chemical dispersal continues at progressively larger scales through other mechanisms, such as galactic outflows, interactions and mergers with neighboring galaxies, and stripping caused by a galaxy’s motion through the hot gas filling galaxy clusters.” 

Astronomers study the distribution of the elements of creation during the early moments of the cosmos by shifting through the remains of giant stars that explode at the moment of their death supernovae. The core of a giant star born with more than eight times the mass of the Sun collapses near the end of its lifespan and then expands rapidly in an event called a core-collapse supernova. This rapid expansion scatters elements ranging from oxygen to silicon across the surrounding regions, while other types of supernovae spread elements of creation like iron and nickel across the universe. By surveying a vast region of space, like the Virgo Galaxy Cluster, scientists reconstruct how, when and where the elements of creation were created and distributed during the first moments of the universe.  

Astrophysicists believe the overall elemental composition of a large volume of space depends on the mixture of different supernovae types contributing elements. For example, they have determined the overall chemical makeup of the Sun and solar system required a combination of one Type Ia supernovae for every five core-collapse types.  

“One way to think about this is that we’re looking for the supernova recipe that produced the chemical makeup we see on much larger scales, and comparing it with the recipe for our own sun,” said co-author Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California. 

 Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California
Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California. Credits: KIPAC/NASA/Stanford University

Werner led an earlier study using Suzaku that showed iron was distributed evenly throughout the Perseus Galaxy Cluster. The new Suzuka data provided by the study led by Simionescu and her team shows iron, magnesium, silicon and sulfur spread evenly across the Virgo Galaxy Cluster. The elemental ratios obtained during the study are constant across the entire volume of the cluster and roughly consistent with the levels detected in the composition of the Sun and stars in the Milky Way. Extrapolated to the larger cosmos, scientists believe this shows the elements of creation were mixed well during the early moments of the cosmos over ten billion years ago.   

“This means that elements so important to life on Earth are available, on average, in similar relative proportions throughout the bulk of the universe,” explained Simionescu. “In other words, the chemical requirements for life are common throughout the cosmos.” 

Launched on July 10, 2005, the Suzaku mission showed us things about the universe during a space journey lasting over five times its intended lifespan, to become the longest-operating Japanese x-ray observatory in history. A space collaboration between Japan’s Japanese Aerospace Exploration Agency (JAXA) and NASA, the Suzaku X-ray Satellite scanned the x-ray cosmos until retiring from space service on August 26, 2015. Leaving a legacy of revolutionary x-ray discoveries its successor ASTRO-H (HITOMI), Japan’s sixth x-ray astronomy satellite is currently adding to since its launch in February 2016. 

What’s next?

Suzaku provided us with a decade of revolutionary measurements,” said Robert Petre, chief of Goddard’s X-ray Astrophysics Laboratory. “We’re building on that legacy right now with its successor, ASTRO-H, Japan’s sixth X-ray astronomy satellite, and we’re working toward its launch in 2016.” 

Artist concept of Hitomi Credits: Japan Aerospace Exploration Agency (JAXA). Credits: NASA/JAXA
Artist concept of Hitomi
Credits: Japan Aerospace Exploration Agency (JAXA). Credits: NASA/JAXA

Proving the saying, “Old Japanese x-ray satellites don’t retire, they sit back and keep watching the show.” 

Learn more about the birth and evolution of black holes and other stellar objects over 11 billion years ago.

Learn and understand more about the clues the Hubble Space Telescope has uncovered about the formation of the Milky Way galaxy.

Learn more about the things scientists have discovered about the crucible of the building blocks of life on Earth.

Take the space voyage of NASA here

Learn more about JAXA

Learn more about the discoveries of the Suzaku X-ray Satellite here

Read and discover more about HITOMI (ASTRO-H)

Learn more about the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California here

Discover more about the Virgo Galaxy Cluster

 

 

 

Feedback Mechanisms of Actively Feeding Supermassive Black Holes

Can blow star-forming gas 1000 light-years out of core region of host galaxies 

This artist's rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole's accretion disk (inset) that ultimately drives such outflows. Credits: ESA/ATG Medialab
This artist’s rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole’s accretion disk (inset) that ultimately drives such outflows.
Credits: ESA/ATG Medialab

Space news (astrophysics: evolution of galaxies; feedback mechanisms) – about 2.3 billion years ago in a galaxy far, far away and standing in a fierce, 2 million mile per hour (3 million kilometers per hour) outflow of star-forming gas – 

Astrophysicists studying the evolution of galaxies using the Suzaku X-ray satellite and the European Space Agency’s Herschel Infrared Space Observatory have found evidence suggesting supermassive black holes significantly influence the evolution of their host galaxies. They found data pointing to winds near a monster black hole blowing star-forming gas over 1,000 light-years from the galaxy center. Enough material to form around 800 stars with the mass of our own Sol. 

“This is the first study directly connecting a galaxy’s actively ‘feeding’ black hole to features found at much larger physical scales,” said lead researcher Francesco Tombesi, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland, College Park (UMCP). “We detect the wind arising from the luminous disk of gas very close to the black hole, and we show that it’s responsible for blowing star-forming gas out of the galaxy’s central regions.” 

The artist’s view of galaxy IRAS F11119+3257 (F11119) above shows 3 million miles per hour winds produced near the supermassive black hole at its center heating and dispersing cold, dense molecular clouds that could form new stars. Astronomers believe these winds are part of a feedback mechanism that blows star-forming gas from galaxy centers, forever altering the structure and evolution of their host galaxy.  

A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii's 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey. Credits: NASA's Goddard Space Flight Center/SDSS/S. Veilleux
A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii’s 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey.
Credits: NASA’s Goddard Space Flight Center/SDSS/S. Veilleux

Astronomers have been studying the Monster of the Milky Way, the supermassive black hole with an estimated mass six million times that of Sol thought to reside at the center of our galaxy, for years. The monster black hole at the core of F11119 is thought to contain around 16 million times the mass of Sol. The accretion disk surrounding this supermassive black hole is measured at hundreds of times the diameter of our solar system. The 170 million miles per hour (270 million kilometers per hour) winds emanating from its accretion disk push the star-forming dust out of the central regions of the galaxy. Producing a steady flow of cold gas over a thousand light-years across traveling at around 2 million mph (3 million kph) and moving a volume of mass equal to around 800 Suns. 

Astrophysicists have been searching for clues to a possible correlation between the masses of a galaxy’s central supermassive black hole and its galactic bulge. They have observed galaxies with more massive black holes generally, have bulges with proportionately larger stellar mass. The steady flow of material out of the central regions of galaxy F11119 and into the galactic bulge could help explain this correlation. 

“These connections suggested the black hole was providing some form of feedback that modulated star formation in the wider galaxy, but it was difficult to see how,” said team member Sylvain Veilleux, an astronomy professor at UMCP. “With the discovery of powerful molecular outflows of cold gas in galaxies with active black holes, we began to uncover the connection.” 

“The black hole is ingesting gas as fast as it can and is tremendously heating the accretion disk, allowing it to produce about 80 percent of the energy this galaxy emits,” said co-author Marcio Meléndez, a research associate at UMCP. “But the disk is so luminous some of the gas accelerates away from it, creating the X-ray wind we observe.” 

tidal_disruption_art_as
In this artist’s rendering, a thick accretion disk has formed around a supermassive black hole following the tidal disruption of a star that wandered too close. Stellar debris has fallen toward the black hole and collected into a thick chaotic disk of hot gas. Flashes of X-ray light near the center of the disk result in light echoes that allow astronomers to map the structure of the funnel-like flow, revealing for the first time strong gravity effects around a normally quiescent black hole. Credits: NASA/Swift/Aurore Simonnet, Sonoma State University

The accretion disk wind and associated molecular outflow of cold gas could be the final pieces astronomers have been looking for in the puzzle explaining supermassive black hole feedback. Watch this video animation of the workings of supermassive black hole feedback in quasars

Black-hole-powered galaxies called blazars are the most common sources detected by NASA's Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy's center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar. Credits: M. Weiss/CfA
Black-hole-powered galaxies called blazars are the most common sources detected by NASA’s Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy’s center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar.
Credits: M. Weiss/CfA

When the supermassive black hole’s most active, it clears cold gas and dust from the center of the galaxy and shuts down star formation in this region. It also allows shorter-wavelength light to escape from the accretion disk of the black hole astronomers can study to learn more. We’ll keep you updated on any additional discoveries. 

What’s the conclusion?

Astrophysicists conclude F11119 could be an early evolutionary phase of a quasar, a type of active galactic nuclei (AGN) with extreme emissions across a broad spectrum. Computer simulations show the supermassive black hole should eventually consume the gas and dust in its accretion disk and then its activity should lessen. Leaving a less active galaxy with little gas and a comparatively low level of star formation. 

Blazar 3C 279's historic gamma-ray flare can be seen in these images from the Large Area Telescope (LAT) on NASA's Fermi satellite. Both images show gamma rays with energies from 100 million to 100 billion electron volts (eV). For comparison, visible light has energies between 2 and 3 eV. Left: A week-long exposure ending June 10, before the eruption. Right: An exposure for the following week, including the flare. 3C 279 is brighter than the Vela pulsar, normally the brightest object in the gamma-ray sky. The scale bar at left shows an angular distance of 10 degrees, which is about the width of a clenched fist at arm's length. Credits: NASA/DOE/Fermi LAT Collaboration
Blazar 3C 279’s historic gamma-ray flare can be seen in these images from the Large Area Telescope (LAT) on NASA’s Fermi satellite. Both images show gamma rays with energies from 100 million to 100 billion electron volts (eV). For comparison, visible light has energies between 2 and 3 eV. Left: A week-long exposure ending June 10, before the eruption. Right: An exposure for the following week, including the flare. 3C 279 is brighter than the Vela pulsar, normally the brightest object in the gamma-ray sky. The scale bar at left shows an angular distance of 10 degrees, which is about the width of a clenched fist at arm’s length.
Credits: NASA/DOE/Fermi LAT Collaboration

Astrophysicists and scientists look forward to detecting and studying feedback mechanisms connected with the growth and evolution of supermassive black holes using the enhanced ability of ASTRO-H. A joint space partnership between Japan’s Aerospace Exploration Agency (ISAS/JAXA) and NASA’s Goddard Space Flight Center, Suzaku’s successors expected to lift the veil surrounding this mystery even more and lay the foundation for one day understanding a little more about the universe and its mysteries.

Watch an animation made by NASA’s Goddard Space Flight Center showing how black hole feedback works in quasars here.

Journey across the cosmos with NASA

Learn more about the universe you live in with the ESA here

Read and learn more about supermassive black holes feedback mechanisms

Read and learn what astronomers have discovered concerning AGN here

Read more about galaxy IRAS F11119+3257

Discover ASTRO-H here

Learn about the discoveries of the Suzaku X-ray Satellite. 

Discover Japan’s Aerospace Exploration Agency here

Discover NASA’s Goddard Space Flight Center

Learn more about the European Space Agency’s Herschel Infrared Space Observatory here. 

Learn what astronomers have discovered about the Monster of the Milky Way.  

 

Binary Star System V404 Cygni Flares to Life

Forming rings of X-ray light that expand with time, creating a shooting target effect 

rings_full
Rings of X-ray light centered on V404 Cygni, a binary system containing an erupting black hole (dot at center), were imaged by the X-ray Telescope aboard NASA’s Swift satellite from June 30 to July 4. A narrow gap splits the middle ring in two. Color indicates the energy of the X-rays, with red representing the lowest (800 to 1,500 electron volts, eV), green for medium (1,500 to 2,500 eV), and the most energetic (2,500 to 5,000 eV) shown in blue. For comparison, visible light has energies ranging from about 2 to 3 eV. The dark lines running diagonally through the image are artifacts of the imaging system. Credits: Andrew Beardmore (Univ. of Leicester) and NASA/Swift

Space news (astrophysics: binary star systems; black hole/sun-like star systems) – 8,000 light-years away toward the constellation Cygnus, next to flaring 10 solar mass black hole – 

It all started just before 2:32 p.m. on June 15, 2015, when NASA’s Swift X-ray Burst Alert Satellite detected a rising wave of high-speed, extremely-energetic X-rays emanating from the direction of the constellation Cygnus. Additional detections of the same flare ten minutes later by a Japanese experiment on the International Space Station called the Monitor of All-sky X-ray Image (MAXI) and other detectors. Allowed astronomers to determine the outburst detected originated 8,000 light-years away in low-mass X-ray binary V404 Cygni, where previous data indicated a stellar-mass black hole and sun-like star orbited each other. A black hole and sun-like star binary system that up to this point had been sleeping since its last outburst in 1989. 

moon_v404cyg_comp
The Swift X-ray image of V404 Cygni covers a patch of the sky equal to about half the apparent diameter of the full moon. This image shows the rings as they appeared on June 30. Credits: NASA’s Scientific Visualization Studio (left), Andrew Beardmore (Univ. of Leicester); NASA/Swift (right)

Fifteen days later on June 30, a team of scientists from around the world led by Andrew Beardmore of the University of Leicester in the United Kingdom investigated V404 Cygni a little closer using NASA’s Swift X-ray Burst Alert Satellite. Images taken (above) revealed a series of concentric rings of X-ray light centered on a 10 solar mass black hole (dot at the center of image). 

On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box. Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist's illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system. Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole pulls material from a massive, blue companion star toward it. This material forms a disk (shown in red and orange) that rotates around the black hole before falling into it or being redirected away from the black hole in the form of powerful jets.
On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box. Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist’s illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system. Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole pulls material from a massive, blue companion star toward it. This material forms a disk (shown in red and orange) that rotates around the black hole before falling into it or being redirected away from the black hole in the form of powerful jets.

Astronomers believe the x-ray rings are the result of echoing x-ray light from a large flare on June 26, 2016, at 1:40 p.m. EDT. The flare emitted x-rays in all directions. Multiple dust layers at around 4,000 and 1,000 light-years from V404 Cygni reflected some of these x-rays towards Earth. This reflected light travels a greater distance and reaches us slightly later than light traveling a straighter path. The small time difference produced an x-ray echo, formed x-ray rings expanding in spacetime.  

“The flexible planning of Swift observations has given us the best dust-scattered X-ray ring images ever seen,” Beardmore said. “With these observations, we can make a detailed study of the normally invisible interstellar dust in the direction of this black hole.” 

What’s next?

The team is currently watching V404 Cygni, waiting for its next outburst, and preparing Swift to collect additional data to determine exactly what’s going on here. They hope to hit the bulls eye in human understanding of the collection on x-ray sources detected across the cosmos. Regular monitoring of this binary system using a suite of telescopes and instruments could give us clues to how a stellar-mass black hole and sun-like star end up orbiting each other. About the origin and formation of the unusual types of binary systems detected during the human journey to the beginning of space and time. 

Watch this YouTube video on the flaring of V404 Cygni.

You can follow the space journey of NASA here

Learn more about the space voyage of the Swift X-ray Burst Alert Telescope

Discover V404 Cygni

Read about and discover the International Space Station here

Read more about the Japanese experiment Monitor of All-sky X-ray Image (MAXI)

Travel across the Tarantula nebula on a runaway star.

Read about the Kepler Space Telescope’s recent observation of the shockwave from a nearby supernova for the first time in human history.

Take a look and learn more about NASA’s Europa spacecraft.

Advanced Satellite for Cosmology & Astrophysics (ASCA, formally Astro-D)

Study in space exploration collaboration between nations heading into the unknown 

pct_main_asuka
ASCA (ASTRO-D) scientific results included the first imaging of X-ray objects by the scintillation proportional counter on March 17, 1993, and observation of X-rays from the supernova SN1993J recently discovered in the M81 galaxy. Credits: Japanese Aerospace Exploration Agency (JAXA)

Space news (astrophysics & cosmology: x-ray astronomy; spectral resolution of supernovae, accreting binaries, active galactic nuclei, and galaxy clusters) – between 525 – 615 kilometers above the Earth, orbiting every 96 minutes while observing the x-ray universe –  

asuka_f_b
This diagram shows the configuration and overall shape of ASCA. Credits: JAXA

Japan’s 4th cosmic x-ray space mission and the second collaboration between NASA and ISAS to launch into orbit around the Earth, the Advanced Satellite for Cosmology & Astrophysics (ASCA) opened a new window on the x-ray universe. Designed and engineered to conduct x-ray spectroscopy ASCA (formally Astro-D) paved a path for NASA’s Chandra X-ray Observatory, XMM-Newton and Japan’s Suzaku (Astro-EII) to study x-ray emissions across the night sky. This smaller eye on the x-ray universe was the perfect complement to ROSAT’s all-sky survey of around 150,000 x-ray sources and RXTE’s study of the different types observed. Making this little satellite an essential, pivotal mile marker during the human journey to the beginning of space and time. Combined, these space missions have an advanced human understanding of the high-energy universe and revealed mysteries keeping astronomers up at night and peering into the unknown x-ray universe at the cosmos beyond human imagination. 

photo3_3_e
After the success of HAKUCHO, Japan launched an X-ray astronomy satellite every four or five years: HINOTORI (solar X-ray) in 1981, TENMA in 1983, GINGA in 1987, and ASCA in 1993. Credits: JAXA.

ASCA (Astro-D) launched from Japan’s Kagoshima Space Center at the southern tip of Japan on Kyushu island on February 20, 1993, aboard ISAS’s fourth generation Mu launch system M-3sII. Orbiting at a distance from Earth at perigee of 525 and 615 at apogee, it took only 96 minutes on average for Astro-D to complete one revolution of its nearly circular path around the planet. During a lifespan lasting nearly 8 years, Japan’s little x-ray satellite provided the first images of x-ray emitting objects and detected x-rays from supernova SN 1993J in galaxy M81. The data it supplied allowed astronomers to reveal clues to the origin and formation of accreting binaries, the accretion disks of active galactic nuclei, galaxy clusters, and supernovae. 

Using combined data from a trio of orbiting X-ray telescopes, including NASA’s Chandra X-ray Observatory and the Japan-led Suzaku satellite, astronomers have obtained a rare glimpse of the powerful phenomena that accompany a still-forming star. A new study based on these observations indicates that intense magnetic fields drive torrents of gas into the stellar surface, where they heat large areas to millions of degrees. X-rays emitted by these hot spots betray the newborn star’s rapid rotation. Credits: JAXA/NASA.
Using combined data from a trio of orbiting X-ray telescopes, including NASA’s Chandra X-ray Observatory and the Japan-led Suzaku satellite (ASCA), astronomers have obtained a rare glimpse of the powerful phenomena that accompany a still-forming star. A new study based on these observations indicates that intense magnetic fields drive torrents of gas into the stellar surface, where they heat large areas to millions of degrees. X-rays emitted by these hot spots betray the newborn star’s rapid rotation. Credits: JAXA/NASA.

A tough little satellite says goodbye

This tough little satellite operated until July of 2000 when fluctuations in solar activity caused Earth’s atmosphere to expand. ASCA experienced friction caused by the thinner atmosphere and fell into an uncontrolled spin. Minimal satellite operations continued until around 14:20 on March 2, 2001, when Astro-D fell deeper into the planet’s gravity well and disappeared. Bringing to a close a chapter in space history on a little satellite that opened a window to the x-ray universe and revealed clues to a weird, weird, weird cosmos beyond human imagination. 

Follow the space journey of NASA

Learn more about the space discoveries of ISAS here

Learn more about the things ASCA told us about the origins and formation of galaxy clusters

Read about the things Astro-D told us about the accretion disks of active galactic nuclei here

Discover what Astro-D discovered about accreting binaries

Read about what x-ray emissions ASCA detected from supernova SN 1006 told astronomers about its origins and formation

Learn how 3-D printer technology is changing the way humans live and work in space.

Read and learn about the star navigation skills of incredible Polynesian islanders.

Read about a supermassive black hole astronomers found in an out of the way part of the cosmos.

New Satellite “Hitomi” (Pupil of the Eye) Observes Wider X-ray Universe

Japan successfully launched an H-2A rocket carrying the next generation of X-ray space observatory into orbit on Wednesday

pct05_b.jpg

Space news (February 17, 2016) – The Yoshinobu Launch Complex at Tanegashima Space Center in Kagoshima Prefecture in southwestern Japan –  

Anxious astronomers, engineers, and scientists in Japan, Canada and NASA headquarters watched nervously Wednesday as a two-stage H-2A carrier vehicle carrying years of their work and dedication rose slowly from Tanegashima Space Center in Japan.

IMG_0193PorterAstroH.jpg

The H-2A rocket carried the next generation of X-ray space observatory “Hitomi”, formerly known as the Astro-H satellite, to its launch point 580 kilometers above the surface of the Earth.

We see X-rays from sources throughout the universe, wherever the particles in matter reach sufficiently high energies,” said Robert Petre, chief of Goddard’s X-ray Astrophysics Laboratory and the U.S. project scientist for ASTRO-H. “These energies arise in a variety of settings, including stellar explosions, extreme magnetic fields, or strong gravity, and X-rays let us probe aspects of these phenomena that are inaccessible by instruments observing at other wavelengths.”

As part of the launching of Astro-H, the satellite had been recently renamed “Hitomi”, which means “pupil of the eye” in Japanese. Using this eye-in-the-sky, astronomers around the world will study neutron stars, galaxy clusters and black holes in a wider bandwidth of x-rays from soft X-ray to the softest Gamma-ray.

This has been an extraordinary undertaking over many years to build this powerful new X-ray spectrometer jointly in the U.S. and Japan,” said Goddard’s Richard Kelley, the U.S. principal investigator for the ASTRO-H collaboration. “The international team is extremely excited to finally be able to apply the fundamentally new capabilities of the SXS, supported by the other instruments on the satellite, to observations of a wide range of celestial sources, especially clusters of galaxies and black hole systems.”

“Hitomi” is the sixth in a series of X-ray astronomy satellites designed and engineered by Japan Aerospace Exploration Agency’s (JAXA) Institute of Space and Astronautical Science (ISAS). All of the satellites in the series have been extremely successful X-ray observatories that have contributed to human knowledge of the cosmos. The latest satellite to launch into space is expected to offer breakthroughs in understanding and knowledge of the evolution of the largest structures observed in the cosmos.  

Canada’s connection to “Hitomi” is the Canadian ASTRO-H Metrology System (CAMS), which sharpens blurry images using lasers and detectors to correct for the movement of the boom used to support the ends of the extremely long detectors on the satellite. Needed to observe the highest-energy x-rays, the CAMS system was built in consultation with Canadian scientists and researchers by Ottawa-based Neptec.

The technology used in the SXS is leading the way to the next generation of imaging X-ray spectrometers, which will be able to distinguish tens of thousands of X-ray colors while capturing sharp images at the same time,” said Caroline Kilbourne, a member of the Goddard SXS team.

Hitomi starts work

Ultimately “Hitomi” was designed, engineered and launched by the three partners in this venture to conduct a survey of black holes and distant galaxies. They will use the results of the survey to help lift the veil of mystery surrounding the evolution of the most mysterious celestial objects in the cosmos. This is just the start of the space mission of “Hitomi”, once this initial mission concludes, we expect the newest automated-envoy of the human journey to the beginning of space and time to offer insights into the way matter acts in extreme gravitational fields, study the rotation of spinning black holes and the internal structure of neutron stars, and the dynamics and detailed physics of relativistic jets during its mission.

You can follow the space mission of “Hitomi” here.

Learn more about the things we learn about the cosmos each day here.

Learn more about Japan’s Institute of Space and Astronautical Science.

Learn more about the future space missions of the Japan Aerospace Exploration Agency. 

Read about the recent observation of gravitational waves by astronomers.

Learn about the things astronomers discovered recently about young, newborn stars.

Learn more about the things NASA’s New Horizons spacecraft is telling us about Pluto and its moons.

Astronomers View Rectangular Galaxy Never Seen Before

Astronomers discovered LEDA 07886 in images taken by the Subaru telescope
Astronomers discovered LEDA 07886 in images taken by the Subaru telescope

Astronomers studying galaxies have discovered something unusual

Astronomy news (November 29, 2013) – Astronomers have found galaxies of different shapes and sizes during the human journey to the beginning of space and time, but the rectangular-shaped galaxy astronomers recently located 68 million light-years away in Eridanus the River doesn’t fit any current theory of what a galaxy should look like. Leda 074886 is one of about 250 galaxies in the cluster of galaxies around the massive galaxy NGC 1407, which lies about 70 million light-years from Earth in the constellation Eridanus.

Astronomers wonder about this rectangular shape

Astronomers detected LEDA 074886 in a wide-field image taken with the Japanese Subaru Telescope. After analysis astronomers detected a stellar disk inside the rectangular-galaxy, aligned edge-on to our line of sight in the Milky Way. This disk is rotating at speeds up to 33 km/second, but at this point they’re not sure it has a spiral structure characteristic of a galaxy.

Astronomers classify galaxies according to their overall shape, using three general categories; elliptical, disk-like, and irregular. The unusual shape of the galaxy designated LEDA 074886 doesn’t fit into any of these three categories. The question astronomers are asking is how did this galaxy come to have this unusual shape?

Could this rectangular shaped galaxy be the result of a galactic collision?

Is the unusual shape of this galaxy due to a collision with another galaxy, perhaps between two spiral galaxies? Astronomers models indicate this scenario could possibly result in the stars of each galaxy flinging outward to form a rectangular shape. Astronomers also detected a disk of bluish, relatively young stars near the center of this galaxy, which they believe could indicate a recent collision with another small galaxy. This discovery should help astronomers model the formation and evolution of galaxies better and perhaps get a picture of the fated collision between the Milky Way and Andromeda 4 billion years from now.

Astronomers are wondering if LEDA 07886 is how our galaxy and Andromeda will look when they collide four billion years from now
Astronomers are wondering if LEDA 07886 is how our galaxy and Andromeda will look when they collide four billion years from now

Can NASA astronomers detect extraterrestrial moons orbiting distant suns? Read this article to find out https://spaceshipearth1.wordpress.com/2013/12/31/searching-for-extraterrestrial-moons/.

Read about the latest discovery in the search for life beyond Earth https://spaceshipearth1.wordpress.com/2013/12/25/the-search-for-life-beyond-earth-takes-a-turn-at-jupiter/.

Read about the latest images of the solar system sent back by the Cassini spacecraft https://spaceshipearth1.wordpress.com/2013/12/22/cassini-spacecraft-show-views-of-the-solar-system-in-natural-color/.

Worshipping Sol

 The energy of the sun affects all life on Earth in ways we don’t even imagine

Three separate instruments aboard Hinode will study Sol

Humans have worshipped Sol for thousands of years

The original source of energy for all life on Earth, Sol has always ruled the lives and minds of human beings in many ways. The ruler of the daytime sky in ancient times and still today, Sol was worshipped by ancient humans of many cultures, and will always be a major force in the life of every human being on Earth. The Sumerians worshiped Utu as their sun god over two thousand years ago and modern humans worship the sun in their own way. We send spacecraft toward Sol, to study the lifecycle and physical and chemical characteristics of our sun, and determine everything we can about the sun.

Astronomy News – Hinode (Solar-B) is one spacecraft humans have sent out toward Sol in an attempt to delve deeper into the mysteries of the sun. A highly sophisticated observational satellite equipped with three solar telescopes, Hinode has recently revealed that the solar corona isn’t quite as static as solar scientists were first thinking. Hinode has surprised solar scientists of late with views of complex structures in the solar chromosphere, solar scientists use to think were static, but now believe to be dynamic structures flowing in time. This is making solar scientists rethink some of the previous ideas they had about the heating mechanisms and dynamics of the active solar corona.

Astronomers study the Sun continuously in an attempt to understand its mysteries

What questions will solar scientists working with Hinode try to answer next? They’ll be looking into why a hot corona exists above a cooler atmosphere? The origins and driving forces behind solar flares and the Sol’s magnetic field? The changes that the release of solar energy in its many forms has on interplanetary space in our solar system and life on Earth? The answers to these questions could be a key to eventually answering many of the questions the first stargazers and all humans have been asking for thousands of years. Solar scientists are also interested in knowing how magnetic changes near Sol’s surface effect the heliosphere, the outer atmosphere of Sol that extends beyond Pluto, and how severe changes in the heliosphere can cause satellites to malfunction and electrical blackouts on Earth.

Check out my latest astronomy site at http://astronomytonight.yolasite.com/.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion