NASA’s Planning on Visiting the Water Worlds of the Solar System and Beyond

Next stop the ocean worlds of Enceladus and Europa

This illustration shows Cassini diving through the Enceladus plume in 2015. New ocean world discoveries from Cassini and Hubble will help inform future exploration and the broader search for life beyond Earth.
Credits: NASA/JPL-Caltech

Space news (planetary science: water worlds of the solar system; Enceladus and Europa) – planets and moons around the solar system and exoplanets across the universe covered with water

This graphic illustrates how scientists on NASA’s Cassini mission think water interacts with rock at the bottom of the ocean of Saturn’s icy moon Enceladus, producing hydrogen gas (H2).
The Cassini spacecraft detected the hydrogen in the plume of gas and icy material spraying from Enceladus during its deepest and last dive through the plume on Oct. 28, 2015. Cassini also sampled the plume’s composition during previous flybys, earlier in the mission. From these observations, scientists have determined that nearly 98 percent of the gas in the plume is water vapor, about 1 percent is hydrogen, and the rest is a mixture of other molecules including carbon dioxide, methane, and ammonia.
The graphic shows water from the ocean circulating through the seafloor, where it is heated and interacts chemically with the rock. This warm water, laden with minerals and dissolved gasses (including hydrogen and possibly methane) then pours into the ocean creating chimney-like vents.
The hydrogen measurements were made using Cassini’s Ion and Neutral Mass Spectrometer, or INMS, instrument, which sniffs gasses to determine their composition.
The finding is an independent line of evidence that hydrothermal activity is taking place in the Enceladus ocean. Previous results from Cassini’s Cosmic Dust Analyzer instrument, published in March 2015, suggested hot water is interacting with rock beneath the ocean; the new findings support that conclusion and indicate that the rock is reduced in its geochemistry. With the discovery of hydrogen gas, scientists can now conclude that there is a source of chemical free energy in Enceladus’ ocean.
The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The Ion and Neutral Mass Spectrometer was designed and built by NASA Goddard Space Flight Center, Greenbelt, Maryland; the team is based at Southwest Research Institute (SwRI) in San Antonio.
For more information about the Cassini mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Image Credit: NASA.

The solar system’s awash in water! NASA missions have provided verifiable facts showing ocean worlds and moons exist in our solar system and beyond, other than Earth. Planetary bodies where water is locked in a frozen embrace and even flowing beneath miles of ice. Liquid water exobiologists are keen to explore for life forms they would love to meet and get to know a little better during the next phase of the human journey to the beginning of space and time. Watch this YouTube video on NASA’s search for life on the ocean worlds of the solar system.

Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter’s moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.
This revelation didn’t happen until 1979 when NASA’s Voyager 1 and 2 flew by Jupiter and found evidence that Europa’s interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon’s interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.
Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.
The location of the plumes corresponds to the position of an unusually warm spot on the moon’s icy crust, as measured in the late 1990s by NASA’s Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon’s subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. Credits: NASA/JPL

Papers published by the journal Science and written by Cassini mission scientists and researchers working with the Hubble Space Telescope indicate hydrogen gas believed pouring from the subsurface ocean of Enceladus could potentially provide chemical energy life could use to survive and evolve. Watch this YouTube video called “NASA: Ingredients for Life at Saturn’s moon Enceladus“, it shows the proof scientists used to come to these conclusions. Their work provides new insights concerning possible oceans of water on moons of Jupiter and Saturn and other ocean moons in the solar system and beyond. 

Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter’s moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.
This revelation didn’t happen until 1979 when NASA’s Voyager 1 and 2 flew by Jupiter and found evidence that Europa’s interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon’s interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.
Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.
The location of the plumes corresponds to the position of an unusually warm spot on the moon’s icy crust, as measured in the late 1990s by NASA’s Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon’s subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. Credits: NASA/JPL

“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington. ”These results demonstrate the interconnected nature of NASA’s science missions that are getting us closer to answering whether we are indeed alone or not.”

Portrait of Thomas Zurbuchen taken on Monday, October 17, 2016, at NASA Headquarters in Washington. Photo Credit: (NASA/Aubrey Gemignani)

Researchers believe they have found evidence indicating hydrogen gas could be pouring out of hydrothermal vents on the floor of Saturn’s moon Enceladus and into these oceans of water. Any microbes existing in these distant waters could use this gas as a form of chemical energy to operate biological processes. By combining hydrogen with carbon dioxide dissolved in this ocean of water in a chemical reaction called methanogenesis, geochemists think methane could be produced which could act as the basis of a tree of life similar to the one observed on Earth. 

Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. The tiger stripes are four prominent, approximately 84-mile- (135-kilometer-) long fractures that cross the moon’s south polar terrain.
This two-image mosaic is one of the highest resolution views acquired by Cassini during its imaging survey of the geyser basin capping the southern hemisphere of Saturn’s moon Enceladus. It clearly shows the curvilinear arrangement of geysers, erupting from the fractures. .From left to right, the fractures are Alexandria, Cairo, Baghdad, and Damascus.
As a result of this survey, 101 geysers were discovered: 100 have been located on one of the tiger stripes (PIA17188), and the three-dimensional configurations of 98 of these geysers have also been determined (PIA17186). The source location of the remaining geyser could not be definitively established. These results, together with those of other Cassini instruments, now strongly suggest that the geysers have their origins in the sea known to exist beneath the ice underlying the south polar terrain.
These findings from the imaging survey, of which the two images composing this mosaic are a part, were presented in a paper by Porco, DiNino, and Nimmo and published in the online version of the Astronomical Journal in July 2014: http://dx.doi.org/10.1088/0004-6256/148/3/45.
A companion paper, by Nimmo et al., is available at http://dx.doi.org/10.1088/0004-6256/148/3/46.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org.
Photojournal notes: This image has been rotated 180 degrees from its original orientation published on February 2, 2010.
Image Credit:
NASA/JPL/Space Science Institute

On Earth, this process is thought to be at the root of the tree of life, and could even be essential, critical to the origin of life on our little blue dot. Life existing on our planet requires three main ingredients, liquid water, a source of energy for metabolic processes, and specific chemical ingredients to develop and continue to thrive. This study shows Enceladus could have the right ingredients for life to exist, but planetary scientists and exobiologists are looking for evidence of the presence of sulfur and phosphorus. 

This set of images from NASA’s Cassini mission shows how the gravitational pull of Saturn affects the amount of spray coming from jets at the active moon Enceladus. Enceladus has the most spray when it is farthest away from Saturn in its orbit (inset image on the left) and the least spray when it is closest to Saturn (inset image on the right).
Water ice and organic particles gush out of fissures known as “tiger stripes” at Enceladus’ south pole. Scientists think the fissures are squeezed shut when the moon is feeling the greatest force of Saturn’s gravity. They theorize the reduction of that gravity allows the fissures to open and release the spray. Enceladus’ orbit is slightly closer to Saturn on one side than the other. A simplified version of that orbit is shown as a white oval.
Scientists correlate the brightness of the Enceladus plume to the amount of solid material being ejected because the fine grains of water ice in the plume are very bright when lit from behind. Between the dimmest and brightest images, they detected a change of about three to four times in brightness, approximately the same as moving from a dim hallway to a brightly lit office.
This analysis is the first clear finding that shows the jets at Enceladus vary in a predictable manner. The background image is a mosaic made from data obtained by Cassini’s imaging science subsystem in 2006. The inset image on the left was obtained on Oct. 1, 2011. The inset image on the right was obtained on Jan. 30, 2011.
A related image, PIA17039, shows just the Enceladus images. The Saturn system mosaic was created from data obtained by Cassini’s imaging cameras in 2006.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, DC. The Cassini orbiter was designed, developed and assembled at JPL. The visual and infrared mapping spectrometer was built by JPL, with a major contribution by the Italian Space Agency. The visual and infrared mapping spectrometer science team is based at the University of Arizona, Tucson.
For more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov/.
Image Credit:
NASA/JPL-Caltech/University of Arizona/Cornell/SSI

Previous data shows the rocky core of this moon is similar to meteorites containing these two elements, so they’re thought to be chemically similar in nature, and scientists are looking for the same chemical ingredients of life found on Earth, primarily carbon, nitrogen, oxygen, and of course hydrogen, phosphorus, and sulphur.

Linda Spilker
Cassini Project Scientist. Credits: NASA

“Confirmation that the chemical energy for life exists within the ocean of a small moon of Saturn is an important milestone in our search for habitable worlds beyond Earth,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

This illustration shows NASA’s Cassini spacecraft about to make one of its dives between Saturn and its innermost rings as part of the mission’s grand finale.
Cassini will make 22 orbits that swoop between the rings and the planet before ending its mission on Sept. 15, 2017, with a final plunge into Saturn. The mission team hopes to gain powerful insights into the planet’s internal structure and the origins of the rings, obtain the first-ever sampling of Saturn’s atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn’s clouds and inner rings.
During its time at Saturn, Cassini has made numerous dramatic discoveries, including a global ocean that showed indications of hydrothermal activity within the icy moon Enceladus, and liquid methane seas on its moon Titan.
The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington.
For more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Image Credit: NASA/JPL-Caltech

Cassini detected hydrogen in plumes of gas and frozen matter spewing from Enceladus during the spacecraft’s deepest pass over its surface on October 28, 2015. This combined with previous data obtained by Cassini’s Ion and Neutral Mass Spectrometer (INMS) during earlier flybys around 2005, helped scientists determine that nearly 98 percent of the material spraying from the surface of the moon is water. The remaining two percent is thought to be around 1 percent hydrogen with some carbon dioxide, methane, ammonia and assorted unknown molecules in the mix. 

Cassini has shown us two independent detections of possible water spewing from the surface of Enceladus. NASA and its partners are currently looking over proposals to send spacecraft to determine if there is an ocean of water beneath its surface by taking a sample. The Europa Life Finder (ELF) is the proposal NASA’s seriously looking at undertaking at this point, but reports indicate a few other proposals are also being discussed. We’ll provide additional information on other proposals as they’re released to media outlets.

“Although we can’t detect life, we’ve found that there’s a food source there for it. It would be like a candy store for microbes,” said Hunter Waite, lead author of the Cassini study.

Two different observations of possible plumes of water spraying from the icy surface of Saturn’s moon Enceladus provides proof hydrothermal activity is occurring beneath. Geophysicists believe hot water is combining chemically with rock and other matter at the bottom of an ocean of water underneath its icy surface to produce hydrogen gas. Hydrogen gas exobiologists think could be used as energy, food of a sort, to sustain life forms exobiologists want to meet and learn more about. A meeting that would change our place in the cosmos, the way we think about the universe, and reality.

Looking for an interplanetary vacation destination? Consider a visit to Europa, one of the Solar System’s most tantalizing moons. Ice-covered Europa follows an elliptical path in its 85-hour orbit around our ruling gas giant Jupiter. Heat generated from strong tidal flexing by Jupiter’s gravity keeps Europa’s salty subsurface ocean liquid all year round. That also means even in the absence of sunlight Europa has energy that could support simple life forms. Unfortunately, it is currently not possible to make reservations at restaurants on Europa, where you might enjoy a dish of the local extreme shrimp. But you can always choose another destination from Visions of the Future.

Astronomers and researchers working with the Hubble Space Telescope in 2016 reported on an observation of a possible plume erupting from the icy surface of Europa in the same general location Hubble observed a possible plume in 2014. This location also corresponds to the unusually warm region with cracks in the icy surface observed by NASA’s Galileo spacecraft back in the 1990s. This provides evidence this phenomenon could be periodic, intermittent in this region of the moon. Mission planners are looking at this region as a possible location to obtain a sample of water erupting from a possible ocean of water beneath its icy surface. Watch this video on Europa.

Estimates of the size of this most recently observed plume indicate it rose about 62 miles (~100 kilometers) from the surface of Europa, while the plume in 2014 only reached a height of around 30 miles (50 kilometers). 

William Sparks
Space Telescope Science Institute. Credits: Space Science Institute/NASA/JPL

“The plumes on Enceladus are associated with hotter regions, so after Hubble imaged this new plume-like feature on Europa, we looked at that location on the Galileo thermal map. We discovered that Europa’s plume candidate is sitting right on the thermal anomaly,” said William Sparks of the Space Telescope Science Institute in Baltimore, Maryland. Sparks led the Hubble plume studies in both 2014 and 2016.

One interesting thought’s the plumes and the hot spot is somehow linked. If this is the case, it could mean the vented water’s falling onto the surface of the moon, which would change the structure and chemistry of the surface grains and allow them to retain heat longer than the surrounding region. This location would be a great place to search for the ingredients of life and a possible entry point into an ocean of water beneath.

NASA’s Europa Clipper mission is being designed to fly by the icy Jovian moon multiple times and investigate whether it possesses the ingredients necessary for life.
Credits: NASA/JPL-Caltech/SETI Institute

These observations by the Hubble Space Telescope and future looks enable future space missions to Europa and other ocean worlds in the solar system. Specifically, laying the groundwork for NASA’s Europa Clipper mission, which is set for a launch sometime in the 2020s. 

James Green: Director of Planetary Science, NASA Headquarters. Credits: NASA

“If there are plumes on Europa, as we now strongly suspect, with the Europa Clipper we will be ready for them,” said Jim Green, Director of Planetary Science, at NASA Headquarters.

NASA has indicated they’re looking to identify a possible site with persistent, intermittent plume activity as a target location for a mission to Europa to explore using its powerful suite of science instruments. Another team’s currently at work on a powerful ultraviolet camera to add to the Europa Clipper that would offer data similar to that provided by the Hubble Space Telescope, while some members of the Cassini team are working on a very sensitive, next generation INMS instrument to put on the spacecraft. 

Water’s the story of life on Earth! Science has shown it played and plays the main part in the birth, evolution, and sustenance of life on Earth. 

NASA’s planning on taking the human journey to the beginning of space and time to the ocean worlds of the solar system during the decades ahead. To search for the ingredients of life and even possibly simple one-celled life forms, of an unknown type. We plan on going along for the ride to have a look for ourselves and we hope to see your name on the ship manifest. We’ll save a seat for you.

Join the human journey to the beginning of space and time by taking part in NASA’s Backyard Worlds: Planet 9. Participants take part in the search for hidden worlds between Neptune and Proxima Centauri.

NASA’s and FEMA are currently tracking the progress of a 300 to 800 ft asteroid they think has around a 2 percent chance of hitting the Earth around September 20, 2020.

Planetary scientists searching the Red Planet for signs of past and present water believe they have found evidence indicating Mars once was a lot wetter and a possible location for the evolution of life.

Advertisements

Europa Spacecraft

Set to blast off sometime in the 2020s

This artist’s rendering shows NASA’s Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. This view shows the spacecraft configuration, which could change before launch, as of early 2016.
The mission would place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of the giant planet’s moon Europa — a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life. The highly capable, radiation-tolerant spacecraft would enter into a long, looping orbit around Jupiter to perform repeated close flybys of Europa.
The concept image shows two large solar arrays extending from the sides of the spacecraft, to which the mission’s ice-penetrating radar antennas are attached. A saucer-shaped high-gain antenna is also side mounted, with a magnetometer boom placed next to it. On the forward end of the spacecraft (at left in this view) is a remote-sensing palette, which houses the rest of the science instrument payload.
The nominal mission would perform at least 45 flybys of Europa at altitudes varying from 1,700 miles to 16 miles (2,700 kilometers to 25 kilometers) above the surface.
This view takes artistic liberty with Jupiter’s position in the sky relative to Europa and the spacecraft. Credits: NASA/JPL/ESA

Space news (The search for life beyond Earth) – An artist’s rendition of the Europa spacecraft orbiting Jupiter

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons which ended in 2003. NASA will announce today, Tuesday, May 26, the selection of science instruments for a mission to Europa, to investigate whether it could harbor conditions suitable for life. The Europa mission would conduct repeated close flybys of the small moon during a three-year period.
Numerous linear features in the center of this mosaic and toward the poles may have formed in response to tides strong enough to fracture Europa’s icy surface. Some of these features extend for over 1,500 kilometers (900 miles). Darker regions near the equator on the eastern (right) and western (left) limb may be vast areas of chaotic terrain. Bright white spots near the western limb are the ejecta blankets of young impact craters.
North is to the top of the picture and the sun illuminates the surface from the left. The image, centered at 0 latitude and 10 longitude, covers an area approximately 2,500 by 3,000 kilometers. The finest details that can discerned in this picture are about 2 kilometers across (about 1,550 by 1,860 miles). The images were taken by Galileo’s camera when the spacecraft was 94,000 kilometers (58,000 miles) from Europa.
Image Credit: NASA/JPL/University of Arizona

NASA’s Jet Propulsion Laboratory released this artists rendering of the Europa spacecraft, which is set to head to Jupiter sometime in the 2020s. The Europa Mission spacecraft configuration in early 2016 is shown in this image. The final spacecraft configuration at launch could easily be different, so stay tuned here for more news. The position of Jupiter in the sky relative to Europa and the spacecraft are also off in this drawing

This is an artist’s concept of a plume of water vapor thought to be ejected off the frigid, icy surface of the Jovian moon Europa, located about 500 million miles (800 million kilometers) from the sun. Spectroscopic measurements from NASA’s Hubble Space Telescope led scientists to calculate that the plume rises to an altitude of 125 miles (201 kilometers) and then it probably rains frost back onto the moon’s surface. Previous findings already pointed to a subsurface ocean under Europa’s icy crust.
Image credit: NASA/ESA/K. Retherford/SWRI

Two large solar arrays are shown extending from the sides of the Europa spacecraft to which the ice-penetrating radar antennas are attached in this artist’s rendition. On the side of the craft, a saucer-shaped high gain antenna is depicted next to a magnetometer boom. On the forward section is a remote-sensing palette with the remaining science instruments.

Jupiter’s moon Europa has a crust made up of blocks, which are thought to have broken apart and ‘rafted’ into new positions, as shown in the image on the left. These features are the best geologic evidence to date that Europa may have had a subsurface ocean at some time in its past.
Combined with the geologic data, the presence of a magnetic field leads scientists to believe an ocean is most likely present at Europa today. In this false color image, reddish-brown areas represent non-ice material resulting from geologic activity. White areas are rays of material ejected during the formation of the Pwyll impact crater. Icy plains are shown in blue tones to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are ridges and fractures in the crust, some of which are more than 1,850 miles long. These images were obtained by NASA’s Galileo spacecraft during Sept. 7, 1996, Dec. 1996 and Feb. 1997 at a distance of 417,489 miles.
Image Credit: NASA/JPL/University of Arizona

The Europa Mission profile has a very capable, radiation-resistant spacecraft traveling to Jupiter, where it enters into a long, looping orbit of the giant planet in order to perform at least 45 repeated flybys of Europa at altitudes ranging from 1700 miles to 16 miles (2700 kilometers to 25 kilometers) above its surface. Planetary scientists want to take a closer look at the evidence for an ocean of liquid water beneath its icy shell. An ocean of liquid water that could be the habitat of alien lifeforms we want to get to know better. 

Join the human journey to the beginning of space and time by joining the people helping NASA scientists look for possible planetary bodies between Neptune and Alpha Centauri.

Learn more about NASA plans to handle a possible future asteroid impact on Earth around Sept. 20, 2020, of a body estimated at around 300 to 800 ft in diameter.

Travel into the heart of a cosmic storm over 200,000 light-years away in one of many large satellite galaxies orbiting the Milky Way, the Large Magellanic Cloud.

Learn more about NASA’s Europa Mission here.

Explore NASA’s Jet Propulsion Laboratory.

Learn more about Jupiter and its moons here.

Explore Europa.

Learn more about the Large Magellanic Cloud.

Europa Shows Signs of Plate Tectonics

12,000 square miles of thick icy material forced under another ice shell

Space news – (Europa) – Planetary space geologists have looked for years for telltale signs of plate tectonics occurring elsewhere in the solar system, other than Earth. Indications of this geological process taking place on other planetary bodies could mean the processes geologists observe here are possibly common in the solar system.

Recently, space scientists looking at images taken of Europa by NASA’s Galileo spacecraft during a flyby in the early 2000s, discovered unusual geological features they believe indicates the process of plate tectonics is taking place on the surface. You can learn more about Europa and view the images here

This conceptual illustration of the subduction process on Europa show how cold, brittle surface material roughly 10-12 miles thick moved into the moved into the warmer interior
This conceptual illustration of the subduction process on Europa shows how cold, brittle surface material roughly 10-12 miles thick moved into the moved into the warmer interior.

Image Credit: Noah Kroese, I.NK

Planetary space geologist Simon Kattenhorn, working at the University of Idaho, and Louise Prockter, of Johns Hopkins University Applied Physics Laboratory, discovered geological boundaries indicating the surface of Europa had recently shifted significantly in the northern latitudes.

Planetary space geologists see areas in the northern latitudes of Europa where the new ice crust has thrust up from below and then spread into bands miles wide. This planetary space geologists believe occurs in a process possibly similar to seafloor spreading on Earth, which is part of the theory of plate tectonics. Plate tectonics, or continental drift, is the theory the Earth’s crust and upper mantle, or lithosphere, is composed of slowly drifting tectonic plates of various sizes.

On our home planet, while new sea floor is forming at mid-ocean ridges, old surface is annihilated at subduction zones. Subduction zones are surface areas where two tectonic plates meet and then overlap as one is pushed beneath the other. Despite the mile wide bands of the new surface on Europa, however, planetary space geologists couldn’t understand how the top layer was able to accommodate the volume of new crust being formed.

“We have been puzzled for years as to how all this new terrain could be formed, but we couldn’t figure out how it was accommodated,” said Prockter. “We finally think we’ve found the answer.”

Planetary space geologists rearranged the Galileo images they were looking at into their original positions to get a view of these new surface regions before they moved. They found 12,000 square miles (almost 20,000 square kilometers) of the old surface area in the northern latitudes was gone.

Planetary geologists also saw ice volcanoes erupting on the surface in the regions in question in the images, which they think could be formed due to the melting and absorption of one icy plate as it’s pushed beneath another at a subduction zone.

“Europa may be more Earth-like than we imagined if it has a global plate tectonic system,” Kattenhorn says. “Not only does this discovery make it one of the most geologically interesting bodies in the solar system, it also implies two-way communication between the exterior and interior — a way to move material from the surface into the ocean — a process which has significant implications for Europa’s potential as a habitable world.”

Read about “Einstein’s Spacetime

Read about future Earth Missions Discovering Something Unusual

Read about Bohemia Interactive Launching the First Manned Mission to Mars

The Search for Life Beyond Earth Takes a Turn at Jupiter

Astronomers view water geysers on Europa

This artists conception of vapour plumes possibly containing water and organic material
This artist’s conception of vapour plumes possibly containing water and organic material

Astronomy news (2013-12-22) – Galileo might have dreamed of unseen life forms existing in a watery soup under the icy surface of Europa when he first discovered Jupiter had moons on January 07, 1610. NASA astronomers working with the Hubble Space Telescope probably had similar thoughts when they recently saw images of what appears to be water geysers erupting from the south pole of Europa. The image above shows an artist’s conception of what astronomers and scientists believe is plumes of water vapour reaching over 100 miles into space from the south pole of Europa.

Are there life forms or maybe just organic material of some type existing on this watery moon? NASA astronomers, space scientists and interested people around the world are hoping this news will spur NASA officials and congress to provide them with the resources they need to fund the Europa Clipper (a NASA mission designed to travel to Europa to see if the conditions required for life exist).

“If there’s a geyser 200 kilometers tall, and you could fly a spacecraft through it and sample the water coming out from Europa, that would be phenomenal. What if there are organics in it? That’s getting to the question of ‘Are we alone in the universe?’ ” said John Grunsfeld, NASA’s top official for space science. “A subsurface ocean at Europa potentially provides all conditions for microbial life — at least life we know,” says study lead author Lorenz Roth, a planetary scientist at the Southwest Research Institute in San Antonio, Texas.

Astronomers believe Europa's "Great Lake" is thought to be one of many in the shallow regions of the moon's icy exterior
Astronomers believe Europa’s “Great Lake” is just one of many in the shallow regions of the moon’s icy exterior

Astronomers are currently taking a look at earlier data concerning Europa provided by the Voyager probes during the 1980s and Galileo spacecraft during the 1990s to see if they missed something. Astronomers and planetary scientists suspected back in the 1980s, when they first obtained the data from the Voyager probes, that Europa could have an ocean of water beneath its icy crust deeper and more massive than all of the oceans of Earth. The Galileo spacecraft also detected the magnetic signature of a subsurface ocean beneath the surface ice of Europa and brown regions on the ice planetary scientists think could be due to ice crystals containing possible organic material, formed from water vapor plumes like the ones recently viewed, being deposited on the surface of the moon.

Astronomers search for water near the south pole of Europa by looking for the presence of both hydrogen and oxygen
Astronomers search for water near the south pole of Europa by looking for the presence of both hydrogen and oxygen

Astronomers are also comparing this data to more recent information concerning Europa, they obtained last year through the repaired Hubble Space Telescope, to see if they can find the telltale signature of hydrogen and oxygen they’re looking for in the data. Water is composed of hydrogen and oxygen and this signature will help astronomers and planetary scientists determine if plumes of water vapour are in fact coming from Europa’s southern hemisphere.

“As it hit the vacuum of space, the water would flash freeze and some of it would turn into water vapour. Those water molecules would be split into atomic hydrogen and oxygen in the harsh radiation environment of the Jupiter system. But it wouldn’t just be water in the plume: Whatever else was in that ocean would be squirted into space, too, said James Green, head of NASA’s planetary science division. For a planetary scientist, it’s huge,” Green said of the news.

The image above shows spikes in hydrogen and oxygen levels in two southern hemisphere regions on Europa’s surface that last for brief periods of about seven hours and coincide with the moon reaching its farthest point from Jupiter in its orbit. Astronomers and planetary scientists think current computer models suggest the images obtained through the Hubble Space Telescope could show plumes of water vapour over a hundred miles high streaming into space from the surface of Europa. It remains puzzling to astronomers and scientists why the water vapour plumes seem to coincide with Europa reaching its apocenter, since this is the moment when tidal forces on the moon are at a low point (Astronomers estimate these tidal forces can be over 1,000 times stronger than the tidal forces our own moon experiences due to Earth). Current ideas include the thought that maybe the surface cracks on Europa’s southern pole open once Jupiter’s gravity starts to lessen, allowing water vapour to squeeze out in jets reaching over a hundred miles into space.

The colored area here is called Thera Macula, a region below the icy exterior of Europa that appears to be in chaos
The coloured area here is called Thera Macula, a region below the icy exterior of Europa that appears to be in chaos

Astronomers and planetary scientists at NASA suggest Europa’s plumes are probably like geysers they found on Saturn’s moon Enceladus, which also seem to appear when the moon reaches its apocenter. They’re excited about this discovery because Europa is only about half as far from Earth than Enceladus, which will allow the Hubble Space Telescope to have a closer look, this time. They hope to be able to use this fact to confirm the discovery of water on Europa and Enceladus and possibly get some quantitative data on the size, density, composition and timing of the plumes. Analysis of the composition of the plumes should also give them the data they need to model the interior of the moon, without having to land on the surface and drill holes.

Visible are plains of bright ice, cracks that run to the horizon, and dark patches that likely contain both ice and dirt
Visible on the surface of Europa are plains of bright ice, cracks that run to the horizon, and dark patches that likely contain both ice and dirt

The implications of the discovery of water on both Enceladus and Europa is stunning to contemplate for human beings, astronomers, and planetary scientists. We believe the human journey to the beginning of space and time should voyage to both of these moons in the future to determine if the ingredients for life exist on these distant bodies. We need to do this for science, mankind and future generations of humanity.

This image shows a crack in the icy exterior of Europa, through which vapour could escape into space
This image shows a crack in the icy exterior of Europa, through which vapour could escape into space

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc. in Washington operates STScI for NASA.

To view the images of the evidence for plumes visit:

http://www.nasa.gov/content/goddard/hubble-europa-water-vapor

For more information about the Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

Watch this YouTube video on astronomers thoughts on the possibility of an ocean beneath the crust of Europa https://www.youtube.com/watch?v=RrjY2BKm-TA.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion