Unlike anything seen during the human journey to the beginning of space and time
October 15, 2015 – 32 light-years toward the southern constellation Microscopium

Astrophysicists viewing four years of data provided by NASA’s Hubble Space Telescope and the European Southern Observatory’s (ESO) Very Large Telescope in Chile have discovered something unlike anything is ever seen before. Fast-moving, wave-like structures hidden within the dusty disk orbiting young star AU Microscopii (AU Mic), where they have been looking for clues to the processes leading to the formation of young planets.
Moving across the 40 billion-mile wide disk orbiting young star AU Microscopii at 22,000 mph, the string of ripples in the images above are moving at different speeds. Astronomers believe the features further away from AU Microscopii are moving faster than the ones closer to the star. At least, three are moving at a velocity which will result in them leaving the gravitational influence of the young star.

“The images from SPHERE show a set of unexplained features in the disk, which have an arc-like, or wave-like structure unlike anything that has ever been observed before,” said Anthony Boccaletti of the Paris Observatory, the paper’s lead author.
“We ended up with enough information to track the movement of these strange features over a four-year period,” explained team member Christian Thalmann of the Swiss Federal Institute of Technology in Zurich, Switzerland. “By doing this, we found that the arches are racing away from the star at speeds of up to 10 kilometers per second (22,000 miles per hour)! “ Co-investigator Carol Grady of Eureka Scientific in Oakland, California, added, “Because nothing like this has been observed or predicted in theory we can only hypothesize when it comes to what we are seeing and how it came about.”
Velocities reaching 22,000 miles per hour rule out the possibility of proto-planets within the dusty disk causing the gravitational disturbance detected. Calculations also indicate this phenomenon isn’t related to a collision between two massive bodies or unknown gravitational instabilities in the system of AU Mic. This team of astronomers is currently testing other theories in order to rule out other possibilities, but at this time, they’re just as mystified as the rest of us.
“One explanation for the strange structure links them to the star’s flares. AU Mic is a star with high flaring activity — it often lets off huge and sudden bursts of energy from on or near its surface,” said co-author Glenn Schneider of Steward Observatory in Phoenix, Arizona. “One of these flares could perhaps have triggered something on one of the planets — if there are planets — like a violent stripping of material, which could now be propagating through the disk, propelled by the flare’s force.”
What’s next?
Astronomers now plan on additional observations of the AU Mic system using the Hubble Space Telescope, the European Southern Observatory’s (ESO) Very Large Telescope and other ground and space-based telescopes. To look for answers to the mystery surrounding fast-moving, wave-like structures hidden within the dusty disk surrounding young star AU Microscopii.
You can read more about this in the Oct. 8 edition of the British science journal Nature.
You can discover more about AU Microscopii and the Hubble Space Telescope here.
Journey across the cosmos with the European Southern Observatory’s Very Large Telescope here.
You can learn about NASA’s mandate to travel to the stars here.
Learn about plans of private firm Planetary Resources Inc to mine an asteroid in the near future.
Learn more about icy grains of water and organic material detected erupting from geysers located in the southern polar region of Saturn’s moon Enceladus.