NASA’s Backyard Worlds: Planet 9 Needs Your Help to Spot Rogue Worlds Between Neptune and Proxima Centauri

By spotting moving objects in brief movies made from images captured by NASA’s Wide-field Infrared Survey Explorer (WISE)

NASA's looking for a few citizen scientists to help search for unidentified planets beyond Neptune and out to Alpha Centauri way. Credits : NASA/JPL/Goddard Studios
NASA’s looking for a few citizen scientists to help search for unidentified planets beyond Neptune and out to Alpha Centauri way. Credits: NASA/JPL/Goddard Studios

Space news (Astrophysics: The search for nearby planets; Backyard Worlds: Planet 9) – the outer reaches of our solar system beyond Neptune and neighboring interstellar space –

NASA’s Backyard Worlds: Planet 9 invites you to join the human journey to the beginning of space and time by helping astronomers search for undiscovered worlds on the outer fringes of our solar system and wandering in nearby interstellar space. Just by viewing brief movies created by using images taken by NASA’s Wide-field Infrared Survey Explorer (WISE) and then picking out moving objects in the frames. You can help find interesting things for scientists to study further and you might even get your name on any scientific papers written on the subject. Watch this NASA video on the new website

“There are just over four light-years between Neptune and Proxima Centauri, the nearest star, and much of this vast territory is unexplored,” said lead researcher Marc Kuchner, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Because there’s so little sunlight, even large objects in that region barely shine in visible light. But by looking in the infrared, WISE may have imaged objects we otherwise would have missed.”

Marc Kuchner, for Astronomy Magazine
Credits: NASA/Goddard Studios/Marc Kuchner, for Astronomy Magazine

WISE is just one of many repurposed, retasked spacecraft working beyond the years’ designers and engineers first proposed for their space mission. After being told to stand down in 2011, our intrepid space explorer was reassigned a new mission by NASA in 2013, to identify hazardous near-Earth asteroids and comets. They also gave the old space horse a new name, the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE).

A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving orange dot (upper left) in this loop of WISE images spanning five years. By viewing movies like this, anyone can help discover more of these objects. Credits: NASA/WISE
A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving orange dot (upper left) in this loop of WISE images spanning five years. By viewing movies like this, anyone can help discover more of these objects.
Credits: NASA/WISE

People deciding to join the human journey to the beginning of space and time through this invitation search for unknown objects beyond Neptune using data provided by NEOWISE. You’ll be looking for asteroids and comets possibly on a collision course with Earth. You could also discover the fabled Planet X or a brown dwarf star too faint to be seen in nearby interstellar space, like the brown dwarf star called WISE 0855-0714.

“Brown dwarfs form like stars but evolve like planets, and the coldest ones are much like Jupiter,” said team member Jackie Faherty, an astronomer at the American Museum of Natural History in New York. “By using Backyard Worlds: Planet 9, the public can help us discover more of these strange rogue worlds.”

Jackie Faherty, Senior Scientist/Senior Education Manager at American Museum of Natural History Credits: Linked
Jackie Faherty, Senior Scientist/Senior Education Manager at American Museum of Natural History Credits: Linked

You might be wondering what your tired eyes can do to help NASA scientists? Objects closer to the solar system move across the sky at different rates, unlike ones further away. The most efficient way to search for them is by systematically looking for moving objects in NEOWISE data. Computers are normally used for this job, but human eyes are often better at picking out important moving objects among all the other things on the screen. 

Watch short animations

On Backyard Worlds: Planet 9, millions of people from around the world watch millions of short animations showing how a small patch of the sky has changed over many years. Any important moving objects noticed can be flagged by astronomers for further study. The discoverer could even be given credit in scientific papers written on the subject. This is your chance to join the human journey to the beginning of space and time and get noticed.

“Backyard Worlds: Planet 9 has the potential to unlock once-in-a-century discoveries, and it’s exciting to think they could be spotted first by a citizen scientist,” said team member Aaron Meisner, a postdoctoral researcher at the University of California, Berkeley, who specializes in analyzing WISE images.

Learn about NASA’s engineers testing a prototype asteroid capture system ARM astronauts could use to capture a boulder from the surface of a near-Earth asteroid in the near future.

Read about NASA’s successor to the Curiosity rover, the Mars 2020 rover, and its updated plans.

Become a NASA Disk Detective and help classify young planetary systems.

Join Backyard Worlds: Planet 9.

Learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Discover NEOWISE.

Learn more about the discoveries and work of WISE.

Advertisements

Cassini Views Hydrocarbon Dunes of Titan in Near-infrared 938 Nanometers

Looking for changes in features of hydrocarbon sands in order to better understand winds and dunes of Titan

The shadowy region seen here is one of the most interesting parts discovered on Titan. In this H-shaped region planetary scientists detect the Dunelands of Titan.
The shadowy region seen here is one of the most interesting parts discovered on Titan. In this H-shaped region planetary scientists detect the Dunelands of Titan. Image credit: NASA

Space news (Planetary science: the moons of Saturn; Titan)

At first glance of news, it might seem Saturn’s frozen moon Titan is similar to Earth in many ways, but the atmospheric phenomenon and surfaces detected aren’t anything like those on Earth. The clouds of this distant moon drop ethane and methane rain into lakes covering large regions. The solid surface of Titan is made primarily of solid water and its vast dune fields are composed of hydrocarbon sands. 

The dark shadowy region in the Cassini image of Titan above hosts two large regions where planetary scientists detect hydrocarbon sand dunes called Aztlan (in the south, down direction) and Fensal (in the north, down direction). Planetary scientists study surface features looking for changes over time, which they use to better understand the atmospheric phenomenon.

The view above was taken at a distance of about 450,000 miles (730,000 kilometers), by Cassini’s narrow-angle camera on July 25, 2015, using a spectral filter sensitive to near-infrared light with a wavelength of 938 nanometers.

The mosaic below is composed of Cassini images taken on September 07, 2015, of the hemisphere of Titan containing the dune-filled regions Aztlan and Fensal. Planetary scientists detect small islands from 3 to 25 (5 to 40 kilometers) in size sprinkled around these regions, they believe are mainly water ice along the top, with a dark particulate material deposited by the atmosphere in the surrounding lower areas.

This mosaic of images of the same H-shaped region on Titan shows additional details on these surface features. Image credit: NASA's Jet Propulsion Laboratory.
This mosaic of images of the same H-shaped region on Titan shows additional details on these surface features. Image credit: NASA’s Jet Propulsion Laboratory.

The larger island to the near right, called Bazaruto Facula, contains a dark crater, while several islands in Western Fensal above can be seen here. Images of a region called Shangri-La located on the opposite side of Titan, show similar island-features which appear in clusters with an east-west orientation along their long axis.

Aztlan to the south in this image appears to have far fewer small island features. Planetary scientists do detect three large islands in the western reaches of this region and a few smaller islands. The largest of the islands just right of center in the bottom left frame is 149 to 75 miles (240 by 120 kilometers) across and has been given the name of Sotra Facula.

Discover everything Cassini has discovered about Titan here.

Learn more about the mission of Cassini here.

Embrace the space mission of NASA here.

Learn about the discoveries Cassini has made about Saturn here.

Read about the Monster of the Milky Way recently coming to spectacular life.

Learn and read about a recent link astronomers have found between galaxy mergers and active galactic nuclei.

Learn about the discoveries made by NASA’s New Horizons spacecraft concerning Pluto and its moons.

Analysis of Planetary Data Confirms Evidence of an Ocean of Liquid Water Beneath Ice Shell of Saturn’s moon Enceladus

A liquid environment where alien life could exist 

Illustration of the interior of Saturn's moon Enceladus showing a global liquid water ocean between its rocky core and icy crust. Thickness of layers shown here is not to scale. Image credit: NASA/JPL-Caltech
Illustration of the interior of Saturn’s moon Enceladus showing a global liquid water ocean between its rocky core and icy crust. The thickness of layers shown here is not to scale. Image credit: NASA/JPL-Caltech

Space news (September 29, 2015) – 30 miles above the icy surface of Saturn’s moon Enceladus – 

NASA planetary scientists and astrophysicists studying seven years of Cassini images and gravitational data provided by the Cassini Solstice Mission believe they have proof positive of the existence of a global liquid ocean of water beneath the icy shell of Saturn’s moon Enceladus. 

NASA's Cassini spacecraft continues to orbit near Saturn. Astrophysicists expect to make even more discoveries in the future.
NASA’s Cassini spacecraft continues to orbit near Saturn. Astrophysicists expect to make even more discoveries in the future. Image credit: JPL/NASA.

By carefully mapping craters and other surface features planetary scientists were able to precisely measure changes in the rotation of Enceladus, which indicated a slight wobble in its orbit. A slight wobble they believe is caused by Enceladus not being perfectly round and traveling faster and slower at different times and positions of its orbit around Saturn. This difference in velocity as it orbits the sixth planet from Sol, causes Saturn to gently rock the moon as it rotates on its axis, producing the slight wobble. 

Planetary scientists found the only way they can account for the magnitude of the very small wobble called a libration- of Enceladus in computer simulations, is if a global ocean of liquid water exists beneath its outer ice shell.

“This was a hard problem that required years of observations, and calculations involving a diverse collection of disciplines, but we are confident we finally got it right,” said Peter Thomas, a Cassini imaging team member at Cornell University, Ithaca, New York, and lead author of the paper.

This is in line with previous data obtained by Cassini and interpreted by planetary scientists as a fine spray of water vapor containing icy particles and basic organic molecules erupting from surface fractures near Enceladus’s southern pole region. Astrophysicists believe the global ocean their analysis indicates exists beneath the ice shell of Enceladus is the source of the fine spray and a possible habitat life could develop and survive in.

“If the surface and core were rigidly connected, the core would provide so much dead weight the wobble would be far smaller than we observe it to be,” said Matthew Tiscareno, a Cassini participating scientist at the SETI Institute, Mountain View, California, and a co-author of the paper. “This proves that there must be a global layer of liquid separating the surface from the core,” he said.

Planetary scientists are currently trying to figure out where the energy keeping the global ocean from completely freezing is coming from. At this point, they think tidal forces due to the gravity of Saturn could be producing a lot more energy than previously calculated. 

“This is a major step beyond what we understood about this moon before, and it demonstrates the kind of deep-dive discoveries we can make with long-lived orbiter missions to other planets,” said co-author Carolyn Porco, Cassini imaging team lead at Space Science Institute (SSI), Boulder, Colorado, and visiting scholar at the University of California, Berkeley. “Cassini has been exemplary in this regard.”

Where’s the heat coming from?

The heat energy keeping the global ocean of Enceladus from freezing could be partly coming from geothermal sources on the bottom of the ocean. Cassini is scheduled to pass over Enceladus again on October 28, 2015, at which time it will only be about 30 miles (49 kilometers) above the surface of the moon, which is the closest the spacecraft will come to the surface. Planetary scientists want to pass through the icy spray, again, to collect more data, and hopefully, determine the reasons the global ocean isn’t frozen.

You can read and learn more about Cassini’s mission to Saturn here.

Go here to discover NASA’s mission to the stars and their future plans.

You can learn more about Saturn’s moon Enceladus here.

Read about a magnetar NASA scientists believe is orbiting the supermassive black hole at the center of the Milky Way, Sagittarius A.

Learn about NASA’s search for the ‘Crucible of Life’.

Read about the search for the missing link in black hole evolution.

Pluto

Considered the ninth planet for nearly 75 years, the second biggest dwarf planet discovered in the solar system. Pluto was originally given the name of the Greek god of the underworld by 11-year-old Venetia Burney.

This is the most detailed view to date of the entire surface of the dwarf planet Pluto, as constructed from multiple NASA Hubble Space Telescope photographs taken from 2002 to 2003. The center disk (180 degrees) has a mysterious bright spot that is unusually rich in carbon monoxide frost. Pluto is so small and distant that the task of resolving the surface is as challenging as trying to see the markings on a soccer ball 40 miles away. Credit: NASA, ESA, and M. Buie (Southwest Research Institute). Photo No. STScI-PR10-06a
This is the most detailed view to date of the entire surface of the dwarf planet Pluto, as constructed from multiple NASA Hubble Space Telescope photographs taken from 2002 to 2003. The center disk (180 degrees) has a mysterious bright spot that is unusually rich in carbon monoxide frost. Pluto is so small and distant that the task of resolving the surface is as challenging as trying to see the markings on a soccer ball 40 miles away. Credit: NASA, ESA, and M. Buie (Southwest Research Institute). Photo No. STScI-PR10-06a

Space & Astronomy Wiki – the planets in the solar system –

The furthest of the original nine planets in the solar system from Sol at 3.7 billion miles (5.9 billion km) or 39.5 AU, Pluto is the second biggest dwarf planet behind Eris, which is about 28 percent more massive.

In 2005, this image from NASA's Hubble Space Telescope was used to identify two new moons orbiting Pluto. Pluto is in the center. The moon Charon is just below it. The newly discovered moons, Nix and Hydra, are to the right of Pluto and Charon. Credits: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST
In 2005, this image from NASA’s Hubble Space Telescope was used to identify two new moons orbiting Pluto. Pluto is in the center. The moon Charon is just below it. The newly discovered moons, Nix, and Hydra are to the right of Pluto and Charon.
Credits: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST

Orbited by moons Charon, Nix, Styx, Kerberos, and Hydra, Pluto was discovered on February 18, 1930, by Clyde W. Tombaugh. Charon is almost 50 percent the size of Pluto and is believed to be the result of a collision between a planet-sized object and the dwarf planet early in the history of the solar system.

heic1512b

If the icy surface of Pluto's giant moon Charon is cracked, analysis of the fractures could reveal if its interior was warm, perhaps warm enough to have maintained a subterranean ocean of liquid water, according to a new NASA-funded study.
If the icy surface of Pluto’s giant moon Charon is cracked, analysis of the fractures could reveal if its interior was warm, perhaps warm enough to have maintained a subterranean ocean of liquid water, according to a new NASA-funded study.

With only 12, 173 miles (19, 591 km) between Pluto and Charon, astronomers and space scientists consider the pair to be a double planet system. The entire Pluto system is part of the distant Kuiper Belt, a distant disk-like region beyond the orbit of Neptune full of icy bodies formed during the early history of the solar system.

darksideimage
NASA’s New Horizons spacecraft took this image of Pluto’s dark side with the Sun on the other side of this distant, lonely wanderer. Sunlight filters through and illuminates complex layers of atmospheric haze. Credit: NASA/New Horizons/JHUAPL/SwRI

A day on Pluto is about 153 hours long, which is the time it takes the dwarf planet to spin once on its axis, and a year, the time it takes this distant object it orbit the Sun, takes about 248 Earth years.

The structure of Pluto is not very well understood at present. Nevertheless, spectroscopic observation from Earth in the 1970s has revealed that the planet surface is covered with methane ice. Surface temperature is -230 degrees C, and the frozen methane exhibits a bright coloration. However, with the exception of the polar caps, the frozen methane surface is seen to change to a dark red on the basis of observation of eclipse by its moon Charon. Image Credit: Lunar and Planetary Institute
The structure of Pluto is not very well understood at present. Nevertheless, spectroscopic observation from Earth in the 1970s has revealed that the planet surface is covered with methane ice. Surface temperature is -230 degrees C and the frozen methane exhibits a bright coloration. However, with the exception of the polar caps, the frozen methane surface is seen to change to a dark red on the basis of observation of eclipse by its moon Charon.
Image Credit: Lunar and Planetary Institute

What are planetary scientists saying?

Some planetary scientists think Pluto could have an ocean hidden beneath its icy surface, but this cold and distant body isn’t thought to be a place life could exist. Scientists estimate this dwarf planet has three times as much water in the form of ice as contained within the oceans of Earth.

How big is Pluto’s atmosphere? This is not a typical question one finds in planetary science. Earth’s atmosphere has an equivalent thickness – the thickness if you compress the atmosphere to uniform pressure and density – of about 10 kilometers, or six miles. Compare this with the radius of Earth, 6,370 kilometers, and you see that the razor-thin thickness of Earth’s atmosphere is about 0.17% of its radius. Even if you consider the “outer limit” of Earth’s neutral atmosphere, what we call the exobase, that reaches about 600 kilometers altitude, the atmosphere’s equivalent thickness is only 10% of Earth’s radius—still very thin. So the volume of Earth’s atmosphere is tiny compared to Earth’s volume. Michael E. Summers is a professor of Planetary Science and Astronomy at George Mason University, and specializes in the study of the chemistry and dynamics of planetary atmospheres. He is a New Horizons co-investigator and member of the atmospheres science theme team.
How big is Pluto’s atmosphere? This is not a typical question one finds in planetary science. Earth’s atmosphere has an equivalent thickness – the thickness if you compress the atmosphere to uniform pressure and density – of about 10 kilometers or six miles. Compare this with the radius of Earth, 6,370 kilometers, and you see that the razor-thin thickness of Earth’s atmosphere is about 0.17% of its radius. Even if you consider the “outer limit” of Earth’s neutral atmosphere, what we call the exobase, that reaches about 600 kilometers altitude, the atmosphere’s equivalent thickness is only 10% of Earth’s radius—still very thin. So the volume of Earth’s atmosphere is tiny compared to Earth’s volume.
Michael E. Summers is a professor of Planetary Science and Astronomy at George Mason University and specializes in the study of the chemistry and dynamics of planetary atmospheres. He is a New Horizons co-investigator and member of the atmospheres science theme team.

The surface is also covered by frozen methane and nitrogen gas, which thaws as Pluto nears the Sun, forming a thin atmosphere composed primarily of nitrogen, carbon monoxide, with a little methane thrown in.

krunmacula_context-20160609-sml
NASA’s New Horizons spacecraft took this enhanced-color image of the southeastern region of Pluto’s great plains of ice called Sputnik Planum. At lower right these plains border rugged, dark highlands that rise 1.5 miles above them. Credit: NASA/JHUAPL/SwRI

NASA’s New Horizons spacecraft is the only human envoy to be sent to the Pluto system.

For more information on Pluto go here.

Follow New Horizons as it writes space history here.

Follow NASA’s New Horizons spacecraft as it closes in on Pluto and Charon and prepares to write space history.

Read about the search for the missing link in black hole evolution.

Learn how your firm or private institution can become a leader in the human journey to the beginning of space and time.

Cassini Spies Bright Features in Kraken Mare Possibly Related to “Magic Island” Observed in Ligeia Mare

Space scientists think could be floating debris or waves on the seas of Saturn’s moon Titan 

Cassini radar data reveal the depth of a liquid methane/ethane sea on Saturn's moon Titan near the mouth of a large, flooded river valley. Image Credit: NASA/JPL-Caltech/ASI/Cornell
Cassini radar data reveal the depth of a liquid methane/ethane sea on Saturn’s moon Titan near the mouth of a large, flooded river valley. Image Credit: NASA/JPL-Caltech/ASI/Cornell

Space news (November 18, 2014) – Sailing over Titan’s moons – 

Cassini sailed over Saturn’s moon Titan on August 21, 2014, to take a first look at the depths near the opening of a huge river valley along the eastern shore of Titan’s largest sea Kraken Mare. NASA space scientists collected data along a 120-mile shore-to-shore track of the hydrocarbon sea. One part of this track collected altimetry data along a 25-mile section indicating sea depths in this region of 66 to 115 feet (20 – 35 meters). This involves Cassini’s radar bouncing a beam off the bottom of Kraken Mare to determine an estimate of the depth in the region.

During this 25-mile section of the 120-mile track across Kraken Mare Cassini’s radar and Infrared Mapping Spectrometer (VIMS) detected bright features in the sea space scientists think could be similar to another bright, mystery feature previously observed in another of Titan’s seas, Ligeia Mare, researchers have called “Magic Island”. Detecting the features using both instruments gives scientists a better look and idea of the identity of these enigmatic features.

Space scientists at this time think these unknown features observed by Cassini’s instruments could be waves, floating debris or something else entirely. Unfortunately, it may be awhile before we know anything more about the bright features observed in Kraken Mare since this is the last chance for the spacecraft to observed the region.

Cassini will fly by Titan once again in January 2015, to take a closer look at the original feature spied in Ligeia Mare. At this time they’ll also attempt to measure the sea depth of Punga Mare, the only large sea in Titan’s far north Cassini hasn’t observed.

You can find more information on Cassini and its mission to observe the seas of Saturn’s moon Titan here.

For more information on NASA and its space mission go here.

Read about how astronauts in space monitor their body weight

Read about signs of plate tectonics on Europa

Read about the search for extraterrestrial moons

Searching for Extraterrestrial Moons

NASA astronomers are optimistic that they'll eventually be able to detect transiting exomoons
NASA astronomers are optimistic that they’ll eventually be able to detect transiting exomoons

Question: Is it possible to detect moons orbiting distant exoplanets? How would this be accomplished?

Questions from the kids (2013-12-30) – If we use our own solar system as an example, we would expect exoplanets to have bodies similar to our own Moon orbiting them. Exomoons, as we’ll refer to them, would be small in comparison to their host planets, and this fact is going to make it more difficult to detect them at the extreme distances involved.

NASA scientists believe exomoons could be a good place for life to start and thrive in many solar systems
NASA scientists believe exomoons could be a good place for life to start and thrive in many solar systems

Despite this fact, astronomers believe exomoons should be detectable, using the same techniques and for the same reasons exoplanets are detected. Exomoons have mass, which means they’ll interact gravitationally with their host planet and sun, causing the exoplanet to move in a mathematically predictable manner in response to the force of gravity. The exomoon will constantly pull on the planet gravitationally, which changes the amount of time it takes the planet to pass in front of its host sun. If an exomoon lines up with its home sun from our point of view here on Earth, this would cause a resulting collection of dips in measured sunlight, just before or after the much more significant transits of the host planet in front of its star. Astronomers believe they can use this fact in the future, along with any new techniques they develop, to search for and find distant exomoons orbiting their home planets.

This detection technique is the most practical way astronomers have developed in order to search for and find distant exomoons. This method provides astronomers with a more direct technique to use in the search for exomoons and at present is the best way to do the job. Currently, NASA’s Kepler telescope, which is looking for smaller transiting exoplanets, is probably our best chance of finding a distant exomoon orbiting its home planet. The Kepler telescope really isn’t designed to search for and find distant exomoons, which makes the job a truly daunting task using this telescope. If we use the largest moon in our solar system, Jupiter’s Ganymede, as an example, we would find Ganymede’s diameter is only about 40 percent of Earth’s. This means Ganymede would only block about 0.0014 percent of the Sun’s light during any transit, which is around six times less than the amount blocked by an Earth transit.

The human journey to the beginning of space and time could one day discover an exomoon looking like this
The human journey to the beginning of space and time could one day discover an exomoon looking like this

All of this is based upon the data and information astronomers have concerning our own solar system, which could be too general, or just wrong. It could be Earth-sized moons orbit transiting planets as large as Jupiter or Saturn, which would mean Kepler would just be able to detect them, and make it possible to search for and find distant exomoons orbiting their home planets.

The best bet astronomers have of finding exomoons orbiting their home planets light-years away will probably be the James Webb Space Telescope once it comes online. This will be when the human journey to the beginning of space and time has the best chance of searching for and finding exomoons orbiting their home planets.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion