The Plasma Jets of Active Supermassive Black Holes

Transform surrounding regions and actively evolve host galaxies 

This artist's rendition illustrates a rare galaxy that is extremely dusty, and produces radio jets. Scientists suspect that these galaxies are created when two smaller galaxies merge. A few billion years after the Big Bang, astronomers suspect that small galaxies across the Universe regularly collided forcing the gas, dust, stars, and black holes within them to unite. The clashing of galactic gases was so powerful it ignited star formation, while fusing central black holes developed an insatiable appetite for gas and dust. With stellar nurseries and black holes hungry for galactic gas, a struggle ensued. Scientists say this struggle for resources is relatively short-lived, lasting only 10 to 100 million years. Eventually, much of the gas will be pushed out of the galaxy by the powerful winds of newborn stars, stars going supernovae (dying in a cataclysmic explosion), or radio jets shooting out of central supermassive black holes. The removal of gas will stunt the growth of black holes by "starving'' them, and quench star formation. They believe that these early merging structures eventually grew into some of the most massive galaxies in the Universe.
This artist’s rendition illustrates a rare galaxy that is extremely dusty and produces radio jets. Scientists suspect that these galaxies are created when two smaller galaxies merge.
A few billion years after the Big Bang, astronomers suspect that small galaxies across the Universe regularly collided forcing the gas, dust, stars, and black holes within them to unite. The clashing of galactic gasses was so powerful it ignited star formation while fusing central black holes developed an insatiable appetite for gas and dust. With stellar nurseries and black holes hungry for galactic gas, a struggle ensued.
Scientists say this struggle for resources is relatively short-lived, lasting only 10 to 100 million years. Eventually, much of the gas will be pushed out of the galaxy by the powerful winds of newborn stars, stars going supernovae (dying in a cataclysmic explosion), or radio jets shooting out of central supermassive black holes. The removal of gas will stunt the growth of black holes by “starving” them and quench star formation.
They believe that these early emerging structures eventually grew into some of the most massive galaxies in the Universe. Credits: NASA/JPL

Space news (astrophysics: spinning black holes; bigger, brighter plasma jets) – in the core of galaxies across the cosmos, observing the spin of supermassive black holes – 

In this radio image, two jets shoot out of the center of active galaxy Cygnus A. GLAST may solve the mystery of how these jets are produced and what they are made of. Credit: NRAO
In this radio image, two jets shoot out of the center of active galaxy Cygnus A. GLAST may solve the mystery of how these jets are produced and what they are made of. Credit: NRAO

Have you ever had the feeling the world isn’t the way you see it? That reality’s different than the view your senses offer you? The universe beyond the Earth is vast beyond comprehension and weird in ways human imagination struggles to fathom. Beyond the reach of your senses, the fabric of spacetime warps near massive objects, and even light bends to the will of gravity. In the twilight zone where your senses fear to tread, the cosmos twists and turns in weird directions and appears to leave the universe and reality far behind. Enigmas wrapped in cosmic riddles abound and mysteries to astound and bewilder the human soul are found. 

The galaxy NGC 4151 is located about 45 million light-years away toward the constellation Canes Venatici. Activity powered by its central black hole makes NGC 4151 one of the brightest active galaxies in X-rays. Credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration. Credits: NASA/JPL
The galaxy NGC 4151 is located about 45 million light-years away toward the constellation Canes Venatici. Activity powered by its central black hole makes NGC 4151 one of the brightest active galaxies in X-rays. Credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration. Credits: NASA/JPL

Imagine an object containing the mass of millions even billions of stars like the Sun. Squeeze that matter into a region of infinitely small volume, a region so dense the gravitational force it exerts warps spacetime and prevents even light from escaping its grasp. This object’s what astronomers call a supermassive black hole, a titanic monster your eyes can’t see with a gravitational pull that would stretch your body to infinity as you approached and crossed its outer boundary, the event horizon. Beyond this point, spacetime and reality take a turn toward the extreme, and the rules of science don’t apply. You have entered the realm of one of the most mysterious and enigmatic objects discovered during the human journey to the beginning of space and time.  

In the newly discovered type of AGN, the disk and torus surrounding the black hole are so deeply obscured by gas and dust that no visible light escapes, making them very difficult to detect. This illustration shows the scene from a more distant perspective than does the other image. Click on image for high-res version. Image credit: Aurore Simonnet, Sonoma State University.
In the newly discovered type of AGN, the disk and torus surrounding the black hole are so deeply obscured by gas and dust that no visible light escapes, making them very difficult to detect. This illustration shows the scene from a more distant perspective than does the other image. Click on image for high-res version. Image credit: Aurore Simonnet, Sonoma State University.

Astronomers hunting for supermassive black holes have pinpointed their realms to be the center of massive galaxies and even the center of galaxy clusters. From this central location in each galaxy, the gravitational well of each supermassive black hole appears to act as an anchor point for the billions of stars within, and astronomers believe a force for change and evolution of every galaxy and galaxy cluster in which they exist. Surrounded and fed by massive clouds of gas and matter called accretion disks, with powerful particle jets streaming from opposite sides like the death ray in Star Wars, fierce, hot winds sometimes moving at millions of miles per hour blow from these supermassive monsters in all directions. 

These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe's current age contained about 20 times more AGN than those at 82% of Universe's age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays.
These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe’s current age contained about 20 times more AGN than those at 82% of Universe’s age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays. Credits: NASA/Chandra

“A lot of what happens in an entire galaxy depends on what’s going on in the minuscule central region where the black hole lies,” said theoretical astrophysicist David Garofalo of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Garofalo is the lead author of a new paper that appeared online May 27 in the Monthly Notices of the Royal Astronomical Society. Other authors are Daniel A. Evans of the Massachusetts Institute of Technology, Cambridge, Mass., and Rita M. Sambruna of NASA Goddard Space Flight Center, Greenbelt, Md. 

These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe's current age contained about 20 times more AGN than those at 82% of Universe's age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays.
These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe’s current age contained about 20 times more AGN than those at 82% of Universe’s age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays. Credits: NASA/Chandra

Astronomers studying powerful particle jets streaming from supermassive black holes use to think these monsters spin either in the same direction as their accretion disks, called prograde black holes, or against the flow, retrograde black holes. For the past few decades, Garofalo and team have worked with a theory that the faster the spin of a black hole, the more powerful the particle jets streaming from it. Unfortunately, anomalies in the form of some prograde black holes with no jets have been discovered. This has scientists turning their ideas upside down and sideways, to see if flipping their “spin paradigm” model on its head explains recent anomalies in the theory. 

This composite image shows a vast cloud of hot gas (X-ray/red), surrounding high-energy bubbles (radio/blue) on either side of the bright white area around the supermassive black hole. By studying the inner regions of the galaxy with Chandra, scientists estimated the rate at which gas is falling toward the galaxy's supermassive black hole. These data also allowed an estimate of the power required to produce the bubbles, which are each about 10,000 light years in diameter. Surprisingly, the analysis indicates that most of the energy released by the infalling gas goes into producing jets of high-energy particles that create the huge bubbles, rather than into an outpouring of light as observed in many active galactic nuclei.
This composite image shows a vast cloud of hot gas (X-ray/red), surrounding high-energy bubbles (radio/blue) on either side of the bright white area around the supermassive black hole. By studying the inner regions of the galaxy with Chandra, scientists estimated the rate at which gas is falling toward the galaxy’s supermassive black hole. These data also allowed an estimate of the power required to produce the bubbles, which are each about 10,000 light years in diameter. Surprisingly, the analysis indicates that most of the energy released by the infalling gas goes into producing jets of high-energy particles that create the huge bubbles, rather than into an outpouring of light as observed in many active galactic nuclei. X-ray: NASA/CXC/KIPAC/S.Allen et al; Radio: NRAO/VLA/G.Taylor; Infrared: NASA/ESA/McMaster Univ./W.Harris

Using data collected during a more recent study that links their previous theory with observations of galaxies at varying distances from Earth across the observable universe. Astronomers found more distant radio-loud galaxies with jets are powered by retrograde black holes, while closer radio-quiet black holes have prograde black holes. The study showed supermassive black holes found at the core of galaxies evolve over time from a retrograde to prograde state.  

This illustration shows the different features of an active galactic nucleus (AGN), and how our viewing angle determines what type of AGN we observe. The extreme luminosity of an AGN is powered by a supermassive black hole at the center. Some AGN have jets, while others do not. Click on image for unlabeled, high-res version. Image credit: Aurore Simonnet, Sonoma State University.
This illustration shows the different features of an active galactic nucleus (AGN), and how our viewing angle determines what type of AGN we observe. The extreme luminosity of an AGN is powered by a supermassive black hole at the center. Some AGN have jets, while others do not. Click on image for unlabeled, high-res version. Image credit: Aurore Simonnet, Sonoma State University.

“This new model also solves a paradox in the old spin paradigm,” said David Meier, a theoretical astrophysicist at JPL not involved in the study. “Everything now fits nicely into place.” 

A mere 11 million light-years away, Centaurus A is a giant elliptical galaxy - the closest active galaxy to Earth. This remarkable composite view of the galaxy combines image data from the x-ray ( Chandra), optical(ESO), and radio(VLA) regimes. Centaurus A's central region is a jumble of gas, dust, and stars in optical light, but both radio and x-ray telescopes trace a remarkable jet of high-energy particles streaming from the galaxy's core. The cosmic particle accelerator's power source is a black hole with about 10 million times the mass of the Sun coincident with the x-ray bright spot at the galaxy's center. Blasting out from the active galactic nucleus toward the upper left, the energetic jet extends about 13,000 light-years. A shorter jet extends from the nucleus in the opposite direction. Other x-ray bright spots in the field are binary star systems with neutron stars or stellar mass black holes. Active galaxy Centaurus A is likely the result of a merger with a spiral galaxy some 100 million years ago.
A mere 11 million light-years away, Centaurus A is a giant elliptical galaxy – the closest active galaxy to Earth. This remarkable composite view of the galaxy combines image data from the x-ray ( Chandra), optical(ESO), and radio(VLA) regimes. Centaurus A’s central region is a jumble of gas, dust, and stars in optical light, but both radio and x-ray telescopes trace a remarkable jet of high-energy particles streaming from the galaxy’s core. The cosmic particle accelerator’s power source is a black hole with about 10 million times the mass of the Sun coincident with the x-ray bright spot at the galaxy’s center. Blasting out from the active galactic nucleus toward the upper left, the energetic jet extends about 13,000 light-years. A shorter jet extends from the nucleus in the opposite direction. Other x-ray bright spots in the field are binary star systems with neutron stars or stellar mass black holes. Active galaxy Centaurus A is likely the result of a merger with a spiral galaxy some 100 million years ago. Credits: X-ray – NASA, CXC, R.Kraft (CfA), et al.; Radio – NSF, VLA, M.Hardcastle (U Hertfordshire) et al.; Optical – ESO, M.Rejkuba (ESO-Garching) et al.

Astrophysicists studying backward spinning black holes believe more powerful particle jets stream from these supermassive black holes because additional space exists between the monster and the inner edge of the accretion disk. This additional space between the monster and accretion disk provides more room for magnetic fields to build-up, which fuels the particle jet and increases its power. This idea is known as Reynold’s Conjecture, after the theoretical astrophysicist Chris Reynolds of the University of Maryland, College Park. 

The optical counterparts of many active galactic nuclei (circled) detected by the Swift BAT Hard X-ray Survey clearly show galaxies in the process of merging. These images, taken with the 2.1-meter telescope at Kitt Peak National Observatory in Arizona, show galaxy shapes that are either physically intertwined or distorted by the gravity of nearby neighbors. These AGN were known prior to the Swift survey, but Swift has found dozens of new ones in more distant galaxies. Credit: NASA/Swift/NOAO/Michael Koss and Richard Mushotzky (Univ. of Maryland)
The optical counterparts of many active galactic nuclei (circled) detected by the Swift BAT Hard X-ray Survey clearly show galaxies in the process of merging. These images, taken with the 2.1-meter telescope at Kitt Peak National Observatory in Arizona, show galaxy shapes that are either physically intertwined or distorted by the gravity of nearby neighbors. These AGN were known prior to the Swift survey, but Swift has found dozens of new ones in more distant galaxies. Credit: NASA/Swift/NOAO/Michael Koss and Richard Mushotzky (Univ. of Maryland)

“If you picture yourself trying to get closer to a fan, you can imagine that moving in the same rotational direction as the fan would make things easier,” said Garofalo. “The same principle applies to these black holes. The material orbiting around them in a disk will get closer to the ones that are spinning in the same direction versus the ones spinning the opposite way.”  

Swift's Hard X-ray Survey offers the first unbiased census of active galactic nuclei in decades. Dense clouds of dust and gas, illustrated here, can obscure less energetic radiation from an active galaxy's central black hole. High-energy X-rays, however, easily pass through. Credit: ESA/NASA/AVO/Paolo Padovani
Swift’s Hard X-ray Survey offers the first unbiased census of active galactic nuclei in decades. Dense clouds of dust and gas, illustrated here, can obscure less energetic radiation from an active galaxy’s central black hole. High-energy X-rays, however, easily pass through. Credit: ESA/NASA/AVO/Paolo Padovani

Scientists believe the powerful particle jets and winds emanating from supermassive black holes found at the center of galaxies also play a key role in shaping their evolution and eventual fate. Often even slowing the formation rate of new stars in a host galaxy and nearby island universes as well.  

“Jets transport huge amounts of energy to the outskirts of galaxies, displace large volumes of the intergalactic gas, and act as feedback agents between the galaxy’s very center and the large-scale environment,” said Sambruna. “Understanding their origin is of paramount interest in modern astrophysics.” 

What lies just beyond the reach of our senses and technology, beneath the exterior of these supermassive black holes? Scientists presently study these enigmatic stellar objects looking for keys to the doors of understanding beyond the veil of gas and dust surrounding these titanic beasts. Keys they hope one day to use to unlock even greater secrets of reality just beyond hidden doors of understanding.  

Watch this video on active galactic nuclei.

Read and learn more about the supermassive black holes astronomers detect in a region called the COSMOS field.

Read about the recent detection by astronomers of read-end collisions between knots in the particle jets of supermassive black holes.

Learn what astronomers have discovered about feedback mechanisms in the feeding processes of active supermassive black holes.

You can join the voyage of NASA across the cosmos here

Learn more about supermassive black holes

Discover more about what scientists have discovered about the powerful particle jets emanating from supermassive black holes here

Discover NASA’s Jet Propulsion Laboratory

Learn about astronomy at Caltech

Read and learn more about galaxies here

Discover more about spinning black holes.  

Advertisements

Rear-end Collisions Between High-speed Knots in Relativistic Jet

Produces shocks that accelerate particles, illuminating the colliding material 

The Hubble Space Telescope took this image of the core region of galaxy NGC 3862 with relativistic jet of material visible as line of light in the 3 o'clock position. Images to the right show knots of material outlined in blue, red and green moving along the jet over two decades. X marks the supermassive black hole. Credits: NASA/ESA/Hubble
The Hubble Space Telescope took this image of the core region of galaxy NGC 3862 with relativistic jet of material visible as line of light in the 3 o’clock position. Images to the right show knots of material outlined in blue, red and green moving along the jet over two decades. X marks the supermassive black hole.
Credits: NASA/ESA/Hubble

Space news (astrophysics: relativistic jets; shock collisions inside particle jets) – Observing plasma jet blasting from supermassive black hole in core of galaxy NGC 3862, 260 million light-years from Earth toward the constellation Leo in the rich galaxy cluster Abell 1367 –

Astronomers recently made an interesting discovery while studying data collected by the Hubble Space Telescope over two decades of observing the core of elliptical galaxy NGC 3862.  They were originally looking to create a time-lapse video of a relativistic jet blasting from the supermassive black hole thought to reside within its core. Instead, they discovered a rear-end collision between two separate high-speed waves of material ejected by a monster black hole whose mass astronomers have yet to measure. In this case, scientists believe the rear-end collision accelerated and heated particles which illuminated the colliding material for Hubble to see.

The relativistic jet erupting from the accretion disk of the supermassive black hole thought to reside at the core of galaxy NGC 3862 is one of the most studied and therefore best understood. It’s also one of the few active galaxies with jets observed in visible light. It appears to stream out of the accretion disk at speeds several times the speed of light, but this is just a visual illusion referred to as superluminal motion created by the combination of insanely fast velocities and our line of sight being almost on point. It forms a narrow beam hundreds of light-years in length that eventually begins to spread out like a cone, before forming clumps at around 1,000 light-years. Clumps scientists study looking for clues pointing to facts they can use to learn more about these plasma jets and the cosmos.

Astronomers have observed knots of material being ejected from dense stellar objects previously during the human journey to the beginning of space and time. This is one of the few times they have detected knots with an optical telescope thousands of light-years from a supermassive black hole. It’s the certainly the first time we have detected a rear-end collision between separately ejected knots in a relativistic jet. 

“Something like this has never been seen before in an extragalactic jet,” said Eileen Meyer of NASA’s Space Telescope Science Institute (STScI). “As the knots continue merging they will brighten further in the coming decades. This will allow us a very rare opportunity to see how the energy of the collision is dissipated into radiation.”

What would cause successive jets of material to achieve varying speeds? One theory involves the idea of material falling onto the supermassive black hole being superheated and ejected along its spin axis. Ejected material is constrained by the powerful magnetic fields surrounding the monster black hole into a narrow beam. If the flow of falling material isn’t perfectly smooth, knots are ejected in a string, rather than a continuous beam or steady hose.

It’s possible knots ejected later travel through a less dense interstellar medium, which would result in varying speeds. In this scenario, a knot launched after another knot would eventually catch up and rear-end it. 

Beyond learning knots of material ejected in plasma jets erupting from the accretion disk of a supermassive black hole sometimes rear-end each other, astronomers are interested in this second case of superluminal motion observed in jets hundreds, thousands of light-years from the source supermassive black hole. This indicates the jets are still moving at nearly the speed of light at distances rivaling the scale of the host galaxy and still contain tremendous energy. Understanding this could help astronomers determine more about the evolution of galaxies as the cosmos ages, including our own Milky Way.

Astronomers are also trying to figure out why galaxy NGC 3862 is one of the few they have detected jets in optical wavelengths? They haven’t been able to come up with any good theories on why some jets are detected in visible light and others aren’t. 

Work goes on

Work at the institute continues. Meyer is currently working on additional videos using Hubble images of other relativistic jets in nearby galaxies to try to detect superluminal motion. This is only possible due to the longevity of the Hubble Space Telescope and ingenuity of engineers and scientists from NASA and the ESA. Hopefully, they could discover more clues to answer these questions and other mysteries gnawing at the corner of my mind.

Watch this video made by Eileen Meyer of the Space Telescope Science Institute (STScI) in Baltimore, Maryland using archival data from two decades of Hubble Space Telescope observations of galaxy NGC 3862.

Read about magnetic lines of force NASA astronomers viewed emanating from a supermassive black hole 900 million light-years from Earth.

Read and learn more about how astronomers study the formation of stars in the Milky Way.

Read about a runaway star discovered traveling across the Tarantula Nebula.

Take the space voyage of NASA.

Read and learn more about relativistic jets here.

Learn more about the discoveries made by the ESA.

Learn more about galaxy NGC 3862 here.

Learn what astronomers have discovered about supermassive black holes.

Discover and learn more about superluminal motion here.

Discover NASA’s Space Telescope Science Institute (STScI).

Take the space journey of the Hubble Space Telescope here.

 

 

 

 

Feedback Mechanisms of Actively Feeding Supermassive Black Holes

Can blow star-forming gas 1000 light-years out of core region of host galaxies 

This artist's rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole's accretion disk (inset) that ultimately drives such outflows. Credits: ESA/ATG Medialab
This artist’s rendering shows a galaxy being cleared of interstellar gas, the building blocks of new stars. New X-ray observations by Suzaku have identified a wind emanating from the black hole’s accretion disk (inset) that ultimately drives such outflows.
Credits: ESA/ATG Medialab

Space news (astrophysics: evolution of galaxies; feedback mechanisms) – about 2.3 billion years ago in a galaxy far, far away and standing in a fierce, 2 million mile per hour (3 million kilometers per hour) outflow of star-forming gas – 

Astrophysicists studying the evolution of galaxies using the Suzaku X-ray satellite and the European Space Agency’s Herschel Infrared Space Observatory have found evidence suggesting supermassive black holes significantly influence the evolution of their host galaxies. They found data pointing to winds near a monster black hole blowing star-forming gas over 1,000 light-years from the galaxy center. Enough material to form around 800 stars with the mass of our own Sol. 

“This is the first study directly connecting a galaxy’s actively ‘feeding’ black hole to features found at much larger physical scales,” said lead researcher Francesco Tombesi, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland, College Park (UMCP). “We detect the wind arising from the luminous disk of gas very close to the black hole, and we show that it’s responsible for blowing star-forming gas out of the galaxy’s central regions.” 

The artist’s view of galaxy IRAS F11119+3257 (F11119) above shows 3 million miles per hour winds produced near the supermassive black hole at its center heating and dispersing cold, dense molecular clouds that could form new stars. Astronomers believe these winds are part of a feedback mechanism that blows star-forming gas from galaxy centers, forever altering the structure and evolution of their host galaxy.  

A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii's 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey. Credits: NASA's Goddard Space Flight Center/SDSS/S. Veilleux
A red-filter image of IRAS F11119+3257 (inset) from the University of Hawaii’s 2.2-meter telescope shows faint features that may be tidal debris, a sign of a galaxy merger. Background: A wider view of the region from the Sloan Digital Sky Survey.
Credits: NASA’s Goddard Space Flight Center/SDSS/S. Veilleux

Astronomers have been studying the Monster of the Milky Way, the supermassive black hole with an estimated mass six million times that of Sol thought to reside at the center of our galaxy, for years. The monster black hole at the core of F11119 is thought to contain around 16 million times the mass of Sol. The accretion disk surrounding this supermassive black hole is measured at hundreds of times the diameter of our solar system. The 170 million miles per hour (270 million kilometers per hour) winds emanating from its accretion disk push the star-forming dust out of the central regions of the galaxy. Producing a steady flow of cold gas over a thousand light-years across traveling at around 2 million mph (3 million kph) and moving a volume of mass equal to around 800 Suns. 

Astrophysicists have been searching for clues to a possible correlation between the masses of a galaxy’s central supermassive black hole and its galactic bulge. They have observed galaxies with more massive black holes generally, have bulges with proportionately larger stellar mass. The steady flow of material out of the central regions of galaxy F11119 and into the galactic bulge could help explain this correlation. 

“These connections suggested the black hole was providing some form of feedback that modulated star formation in the wider galaxy, but it was difficult to see how,” said team member Sylvain Veilleux, an astronomy professor at UMCP. “With the discovery of powerful molecular outflows of cold gas in galaxies with active black holes, we began to uncover the connection.” 

“The black hole is ingesting gas as fast as it can and is tremendously heating the accretion disk, allowing it to produce about 80 percent of the energy this galaxy emits,” said co-author Marcio Meléndez, a research associate at UMCP. “But the disk is so luminous some of the gas accelerates away from it, creating the X-ray wind we observe.” 

tidal_disruption_art_as
In this artist’s rendering, a thick accretion disk has formed around a supermassive black hole following the tidal disruption of a star that wandered too close. Stellar debris has fallen toward the black hole and collected into a thick chaotic disk of hot gas. Flashes of X-ray light near the center of the disk result in light echoes that allow astronomers to map the structure of the funnel-like flow, revealing for the first time strong gravity effects around a normally quiescent black hole. Credits: NASA/Swift/Aurore Simonnet, Sonoma State University

The accretion disk wind and associated molecular outflow of cold gas could be the final pieces astronomers have been looking for in the puzzle explaining supermassive black hole feedback. Watch this video animation of the workings of supermassive black hole feedback in quasars

Black-hole-powered galaxies called blazars are the most common sources detected by NASA's Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy's center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar. Credits: M. Weiss/CfA
Black-hole-powered galaxies called blazars are the most common sources detected by NASA’s Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy’s center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar.
Credits: M. Weiss/CfA

When the supermassive black hole’s most active, it clears cold gas and dust from the center of the galaxy and shuts down star formation in this region. It also allows shorter-wavelength light to escape from the accretion disk of the black hole astronomers can study to learn more. We’ll keep you updated on any additional discoveries. 

What’s the conclusion?

Astrophysicists conclude F11119 could be an early evolutionary phase of a quasar, a type of active galactic nuclei (AGN) with extreme emissions across a broad spectrum. Computer simulations show the supermassive black hole should eventually consume the gas and dust in its accretion disk and then its activity should lessen. Leaving a less active galaxy with little gas and a comparatively low level of star formation. 

Blazar 3C 279's historic gamma-ray flare can be seen in these images from the Large Area Telescope (LAT) on NASA's Fermi satellite. Both images show gamma rays with energies from 100 million to 100 billion electron volts (eV). For comparison, visible light has energies between 2 and 3 eV. Left: A week-long exposure ending June 10, before the eruption. Right: An exposure for the following week, including the flare. 3C 279 is brighter than the Vela pulsar, normally the brightest object in the gamma-ray sky. The scale bar at left shows an angular distance of 10 degrees, which is about the width of a clenched fist at arm's length. Credits: NASA/DOE/Fermi LAT Collaboration
Blazar 3C 279’s historic gamma-ray flare can be seen in these images from the Large Area Telescope (LAT) on NASA’s Fermi satellite. Both images show gamma rays with energies from 100 million to 100 billion electron volts (eV). For comparison, visible light has energies between 2 and 3 eV. Left: A week-long exposure ending June 10, before the eruption. Right: An exposure for the following week, including the flare. 3C 279 is brighter than the Vela pulsar, normally the brightest object in the gamma-ray sky. The scale bar at left shows an angular distance of 10 degrees, which is about the width of a clenched fist at arm’s length.
Credits: NASA/DOE/Fermi LAT Collaboration

Astrophysicists and scientists look forward to detecting and studying feedback mechanisms connected with the growth and evolution of supermassive black holes using the enhanced ability of ASTRO-H. A joint space partnership between Japan’s Aerospace Exploration Agency (ISAS/JAXA) and NASA’s Goddard Space Flight Center, Suzaku’s successors expected to lift the veil surrounding this mystery even more and lay the foundation for one day understanding a little more about the universe and its mysteries.

Watch an animation made by NASA’s Goddard Space Flight Center showing how black hole feedback works in quasars here.

Journey across the cosmos with NASA

Learn more about the universe you live in with the ESA here

Read and learn more about supermassive black holes feedback mechanisms

Read and learn what astronomers have discovered concerning AGN here

Read more about galaxy IRAS F11119+3257

Discover ASTRO-H here

Learn about the discoveries of the Suzaku X-ray Satellite. 

Discover Japan’s Aerospace Exploration Agency here

Discover NASA’s Goddard Space Flight Center

Learn more about the European Space Agency’s Herschel Infrared Space Observatory here. 

Learn what astronomers have discovered about the Monster of the Milky Way.  

 

Magnetic Lines of Force Emanating from Supermassive Black Hole

Move like a whip with one end held firmly by the hand of the gravitational monster within 

This cartoon shows how magnetic waves, called Alfvén S-waves, propagate outward from the base of black hole jets. The jet is a flow of charged particles, called a plasma, which is launched by a black hole. The jet has a helical magnetic field (yellow coil) permeating the plasma. The waves then travel along the jet, in the direction of the plasma flow, but at a velocity determined by both the jet's magnetic properties and the plasma flow speed. The BL Lac jet examined in a new study is several light-years long, and the wave speed is about 98 percent the speed of light. Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a study using data from the National Radio Astronomy Observatory's Very Long Baseline Array. Scientists used this instrument to explore the galaxy/black hole system known as BL Lacertae (BL Lac) in high resolution. Credits: NASA/JPL
This cartoon shows how magnetic waves, called Alfvén S-waves, propagate outward from the base of black hole jets. The jet is a flow of charged particles, called a plasma, which is launched by a black hole. The jet has a helical magnetic field (yellow coil) permeating the plasma. The waves then travel along the jet, in the direction of the plasma flow, but at a velocity determined by both the jet’s magnetic properties and the plasma flow speed. The BL Lac jet examined in a new study is several light-years long, and the wave speed is about 98 percent the speed of light.
Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a study using data from the National Radio Astronomy Observatory’s Very Long Baseline Array. Scientists used this instrument to explore the galaxy/black hole system known as BL Lacertae (BL Lac) in high resolution. Credits: NASA/JPL

Space news (astrophysics: supermassive black hole particle jets; Alfven S-waves) – 900 million light-years from Earth toward the constellation Lacerta, near the event horizon of the galaxy/monster supermassive black hole system called BL Lacertae (BL Lac) – 

The end of a whip moves faster than the speed of sound, creating a characteristic sound known to many humans familiar with this ancient weapon and all its variations. A sound that’s known for putting fear in the heart and sweat on the brow. But a whip trillions of miles long, moving at around 98 percent the speed of light and held in the gravitational grip of a supermassive black hole with a mass estimated to be around 200 million times that of Sol. A supermassive monster with a jet of charged particles with helical magnetic lines of force propagating from its base acts much like a gigantic, undulating cosmic whip held in its giant hand. 

In the artist’s rendition of quasar-like object BL Lac, above, magnetic waves called Alfven S-waves travel outward from the base of a jet launched from the supermassive black hole residing in its core. These waves were generated when magnetic field lines coming from the disk surrounding the black hole interacted with ions and twisted, coiled into a helical shape. Ions in the form of a particle jet ejected from the black hole at around 98 percent the speed of light with a helical magnetic field permeating through it like a titanic, crackling light-whip. A cosmic whip a few light-years in length, appearing to travel five times the speed of light, due to an optical illusion. Traveling at nearly the speed of light, slightly off the line of sight to Earth, our perception of how fast these Alfven S-waves are moving is thrown off as time slows down. Creating the visual illusion of movement at five times the speed of light. 

This artist's concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. (Smaller black holes also exist throughout galaxies.) In this illustration, the supermassive black hole at the center is surrounded by matter flowing onto the black hole in what is termed an accretion disk. This disk forms as the dust and gas in the galaxy falls onto the hole, attracted by its gravity. Also shown is an outflowing jet of energetic particles, believed to be powered by the black hole's spin. The regions near black holes contain compact sources of high energy X-ray radiation thought, in some scenarios, to originate from the base of these jets. This high energy X-radiation lights up the disk, which reflects it, making the disk a source of X-rays. The reflected light enables astronomers to see how fast matter is swirling in the inner region of the disk, and ultimately to measure the black hole's spin rate. Image credit: NASA/JPL-Caltech
This artist’s concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. (Smaller black holes also exist throughout galaxies.) In this illustration, the supermassive black hole at the center is surrounded by matter flowing onto the black hole in what is termed an accretion disk. This disk forms as the dust and gas in the galaxy falls onto the hole, attracted by its gravity.
Also shown is an outflowing jet of energetic particles, believed to be powered by the black hole’s spin. The regions near black holes contain compact sources of high energy X-ray radiation thought, in some scenarios, to originate from the base of these jets. This high energy X-radiation lights up the disk, which reflects it, making the disk a source of X-rays. The reflected light enables astronomers to see how fast matter is swirling in the inner region of the disk, and ultimately to measure the black hole’s spin rate.
Image credit: NASA/JPL-Caltech

“The waves are excited by a shaking motion of the jet at its base,” said David Meier, a now-retired astrophysicist from NASA’s Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena. The team’s findings, detailed in the April 10 issue of The Astrophysical Journal, mark the first time so-called Alfvén (pronounced Alf-vain) waves have been identified in a black hole system. 

Retired astrophysicist David Meier. Credits: NASA/JPL
Retired astrophysicist David Meier. Credits: NASA/JPL

A cosmic whip!

The quasar-like object called BL Lac is believed to be powered by matter falling into a supermassive black hole at the core of this very bright galaxy. Astronomers detected the particle jets associated with the supermassive black hole at its core swinging back and forth and bending as Alfven waves propagated along the magnetic field lines emanating from its disk. 

“Imagine running a water hose through a slinky that has been stretched taut,” said first author Marshall Cohen, an astronomer at Caltech. “A sideways disturbance at one end of the slinky will create a wave that travels to the other end, and if the slinky sways to and fro, the hose running through its center has no choice but to move with it.” 

“A similar thing is happening in BL Lac,” Cohen said. “The Alfvén waves are analogous to the propagating sideways motions of the slinky, and as the waves propagate along the magnetic field lines, they can cause the field lines — and the particle jets encompassed by the field lines — to move as well.” 

“It’s common for black hole particle jets to bend — and some even swing back and forth. But those movements typically take place on timescales of thousands or millions of years. What we see is happening on a timescale of weeks,” Cohen said. “We’re taking pictures once a month, and the position of the waves is different each month.” 

“By analyzing these waves, we are able to determine the internal properties of the jet, and this will help us ultimately understand how jets are produced by black holes,” said Meier. 

You can join the space voyage of NASA here

Read and learn more about supermassive black holes

Read more about BL Lac here

Learn about astronomy at the California Institute of Technology

Discover NASA’s Jet Propulsion Laboratory here

Learn about astronomy at the University of Cologne

Discover the Max Planck Institute for Radioastronomy in Germany here

Learn more about the Isaac Newton Institute of Chile

Discover astronomy at Aalto University in Finland

Learn more about the Astro Space Center of Lebedev Physical Institute. 

Discover astronomy at the Pulkovo Observatory here

Take a voyage across the cosmos aboard the telescopes of the Crimean Astrophysical Observatory in Russia. 

Discover astronomy at Purdue University in Indiana here

Learn more about astronomy at Denison University in Granville, Ohio. 

Learn more about NASA’s work with university students on new space technology to help lead the drive to Mars and beyond.

Read about the star navigation skills of the Polynesian islanders who colonized the Pacific Ocean.

Learn more about astronomers study of the supermassive black hole at the center of galaxy Pictor A.

WISE Infrared All-Sky Survey Reveals Millions of Supermassive Black Hole Candidates

Plus nearly a thousand extremely bright, dusty objects nicknamed hot DOGS 

With its all-sky infrared survey, NASA's Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes "feed" off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles. Image credit: NASA/JPL-Caltech/UCLA
With its all-sky infrared survey, NASA’s Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes “feed” off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles.
Image credit: NASA/JPL-Caltech/UCLA

Space news (All-sky surveys: infrared; candidate supermassive black holes and dust-obscured galaxies) – The visible universe – 

Astronomers working with data provided by an infrared survey of the visible sky conducted by NASA’s Wide-field Infrared Survey Explorer (WISE) have identified millions of new candidates for the quasar section in the Galaxy Zoo. All-sky images taken by WISE revealed around 2.5 million candidate supermassive black holes actively feeding on material, some over 10 billion light-years away. They also pinpointed nearly a 1,000 very bright, extremely dusty objects nicknamed hot DOGS believed to be among the brightest galaxies discovered during the human journey to the beginning of space and time.

The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist's concept of the WISE satellite superimposed. Image credit: NASA/JPL-Caltech/UCLA
The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist’s concept of the WISE satellite superimposed.
Image credit: NASA/JPL-Caltech/UCLA

“These dusty, cataclysmically forming galaxies are so rare WISE had to scan the entire sky to find them,” said Peter Eisenhardt, lead author of the paper on the first of these bright, dusty galaxies, and project scientist for WISE at JPL. “We are also seeing evidence that these record setters may have formed their black holes before the bulk of their stars. The ‘eggs’ may have come before the ‘chickens.” 

Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST
Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST

“WISE has exposed a menagerie of hidden objects,” said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. “We’ve found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust.” 

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view. Image credit: NASA/ESA
This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.
Image credit: NASA/ESA

Astronomers detected Trojan asteroid TK7 in October 2010 in images of the sky taken by NASA’s WISE, before verifying its existence on optical images taken by the Canada-France-Hawaii Telescope. Additional study and computer modeling indicate Earth’s small dance partner should stay in a safe orbit for the next 10,000 years at least.  

This zoomed-in view of a portion of the all-sky survey from NASA's Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE's infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars. The circular inset images, obtained with NASA's Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen. Image credit: NASA/JPL-Caltech/UCLA/STScI
This zoomed-in view of a portion of the all-sky survey from NASA’s Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE’s infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars.
The circular inset images, obtained with NASA’s Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen.
Image credit: NASA/JPL-Caltech/UCLA/STScI

In March 2014 astronomers studying infrared images taken by WISE announced the discovery of around 3,500 new stars lying within 500 light-years of Earth. At the same time, they searched the data looking for evidence of Planet X, or Nemesis, the mythical planet some believe to exist somewhere beyond the orbit of Pluto. Scientists analyzed millions of infrared images taken by WISE out to a distance well beyond the orbit of our former ninth planet. They didn’t detect any objects the size of a planet out to a distance of around 25,000 times the distance between the Earth and Sol. Many times beyond the orbit of Pluto. No Planet X was found. 

NASA's Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or "hot DOGs," are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy. Image credit: NASA/JPL-Caltech/UCLA
NASA’s Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or “hot DOGs,” are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy.
Image credit: NASA/JPL-Caltech/UCLA

The vast majority of the latest candidates for the Galaxy Zoo are objects previously undetected by astronomers due to dust blocking visible light. Fortunately, the infrared eyes of WISE detected glowing dust around the candidates, which allowed scientists to detect them. These latest findings are clues astronomers use to better understand the processes creating galaxies and the monster black holes residing in their centers

This image zooms in on the region around the first "hot DOG" (red object in magenta circle), discovered by NASA's Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun. WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles). Image credit: NASA/JPL-Caltech/UCLA
This image zooms in on the region around the first “hot DOG” (red object in magenta circle), discovered by NASA’s Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun.
WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles).
Image credit: NASA/JPL-Caltech/UCLA

“We’ve got the black holes cornered,” said Daniel Stern of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., lead author of the WISE black hole study and project scientist for another NASA black-hole mission, the Nuclear Spectroscopic Telescope Array (NuSTAR). “WISE is finding them across the full sky, while NuSTAR is giving us an entirely new look at their high-energy X-ray light and learning what makes them tick.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Organizing the Monster Zoo

The Monster of the Milky Way, the estimated 4 million solar mass black hole astronomers believe resides at the center, periodically feeds upon material falling too deep into its gravity well, and heats up surrounding disks of dust and gas. Astronomers have even witnessed 1 billion solar mass monster black holes change their surrounding environments enough to shut down star formation processes in their host galaxy. Now, astronomers need to go through the millions of candidates and put them in the correct section of the zoo. We might even need to open a few new sections to accommodate unusual candidates found during a closer examination.  

You can learn more about supermassive black holes here

Watch this YouTube video about the Monster of the Milky Way

Tour NASA’s Jet Propulsion Laboratory here

Journey across the x-ray universe aboard NASA’s WISE

Learn everything NASA has learned during its journey. 

Learn more about the mission of NASA’s Nuclear Spectroscopic Telescopic Array (NuStar). 

Read more about Quasars

Learn more about dust-obscured galaxies (hot DOGS) here

Learn more about Trojan asteroid TK7

Learn more about the Canada-France-Hawaii Telescope

Learn more about How Astronomers Study the Formation of Stars.

Read more about a Wolf-Rayet star astronomers have nicknamed Nasty 1.

Read about the next-generation telescope the Giant Magellan Telescope.

Looming Cosmic Clouds Crisscross Giant Elliptical Galaxy Centaurus A

613778main_hs-2011-18-a-xlarge_web_full

Revealing the youthful glow of blue star clusters and a dusty core hidden from view 

Space news (astrophysics: giant elliptical galaxies; Centaurus A) – 11 million light-years from Earth toward the constellation Centaurus (NGC 5128) –  

The closest galaxy to Earth with an active nucleus containing a supermassive black hole that ejects jets of high-speed, extremely energetic particles into space, the giant elliptical island universe Centaurus A’s (NGC 5128) a nearby laboratory in which astronomers test present theories.  

The stunning Hubble Space Telescope image of Centaurus A (above) reveals a scene resembling cosmic clouds on a stormy day. Dark lanes of gas and dust crisscross its warped disk, revealing the youthful glow of blue star clusters, and red patches indicating shockwaves from a recent merger with a spiral galaxy. Shockwaves that cause hydrogen gas clouds to contract, starting the process of new star formation. 

cena_comp

The startling composite image of Centaurus A above combines X-ray data from NASA’s Chandra Observatory, optical data from the European Southern Observatory’s Very Large Telescope, and the National Radio Astronomy Observatory’s Very Large Array. The core of NGC 5128 is a mess of gas, dust, and stars in visible light, but X-rays and radio waves reveal a stunning jet of high-speed, extremely energetic particles emanating from its active nucleus. 

CenAwide_colombari_1824
Elliptical galaxy Centaurus A is a peculiar galaxy with unusual and chaotic lanes of dust running across its center making it hard for astronomers to study its core. Also called NGC 5128, Centaurus A has red stars and a round shape characteristic of a giant elliptical galaxy, a type normally low in dark dust lanes. Image Credit & Copyright: Roberto Colombari

What could power such an event?

The power source for the relativistic jets observed streaming from the active galactic nucleus of Centaurus A’s a supermassive black hole with the estimated mass of over 10 million suns. Beaming out from the galactic nucleus toward the upper left, the high-speed jet travels nearly 13,000 light-years, while a shorter jet shoots from the core in the opposing direction. Astronomers think the source of the chaos in active galaxy Centaurus A’s the noted collision with a spiral galaxy about 100 million years ago. 

cenA_cfht_big
Thick lanes of dust obscure the center of Elliptical Galaxy Centaurus A from CFHT Credit & Copyright: Jean-Charles Cuillandre (CFHT) & Giovanni Anselmi (Coelum Astronomia), Hawaiian Starlight 

The amazing high-energy, extremely-fast, 30,000 light-year-long particle jet is the most striking feature in the false-color X-ray image taken by the Chandra Observatory. Beaming upward toward the left corner of the image, the relativistic jet seems to blast from the core of Centaurus A. A core containing an active, monster black hole pulling nearby matter into the center of its gravity well. An unknown realm mankind dreams about visiting one day. 

ssc2004-09a1_Ti
This image taken by NASA’s Spitzer Space Telescope shows in unprecedented detail the galaxy Centaurus A’s last big meal: a spiral galaxy seemingly twisted into a parallelogram-shaped structure of dust. Spitzer’s ability to see dust and also see through it allowed the telescope to peer into the center of Centaurus A and capture this galactic remnant as never before. Credit: NASA/Spitzer

You can learn more about supermassive black holes here

Take the space journey of NASA

Discover the Chandra X-ray Observatory

Learn more about the space voyage of the Hubble Space Telescope here

Learn more about the European Southern Observatory’s Very Large Telescope

Discover the National Radio Astronomy Observatory’s Very Large Array. 

Learn more about elliptical galaxy Centaurus A here.

Journey across the cosmos on a runaway supermassive star streaking out of 30 Doradus, the Tarantula Nebula.

Read about and witness the spectacular shockwave of a supernova in visible light for the first time.

Learn more about the next-generation planet hunter TESS, the Transiting Exoplanet Survey Satellite.

Wolf-Rayet Star “Nasty 1” Transitional Stage in Evolution of Massive Stars

A very rapidly evolving, supermassive star with a newly formed nebula only a few thousand years old

hs-2015-21-a-large_web

Space news (supermassive stars: Wolf-Rayet stars; star NaSt1) – 3,000 light-years away on the edge of a pancake-shaped disk of gas moving at 22,000 mph – 

Astronomers using the Hubble Space Telescope have discovered new clues concerning a nearby supermassive, rapidly aging star they have nicknamed “Nasty 1”. Designated NaSt1 in astronomy catalogs, “Nasty 1” when first discovered decades ago was identified as a non-typical Wolf-Rayet star with an orbiting disk-like structure. A vast disk estimated to be almost 2 trillion miles wide astronomers now think formed due to a companion star snacking on its outer envelope. Putting NaSt1 in a class of Wolf-Rayet stars astronomers haven’t observed often during the human journey to the beginning of space and time. A star type possibly representing a transition stage in the evolution of supermassive stars. 

hs-2015-21-b-large_web

“We were excited to see this disk-like structure because it may be evidence for a Wolf-Rayet star-forming from a binary interaction,” said study leader Jon Mauerhan of the University of California, Berkeley. “There are very few examples in the galaxy of this process in action because this phase is short-lived, perhaps lasting only a hundred thousand years, while the timescale over which a resulting disk is visible could be only ten thousand years or less.” 

me2
Study leader Jon Mauerhan of the University of California, Berkley. Credit: University of California, Berkley.

In the case of NaSt1, computer simulations show a supermassive star evolving really fast and swelling as it begins to run out of hydrogen. Its outer hydrogen envelope is loosely bound and is gravitationally stripped from the star- astronomers call this process stellar cannibalism – by a more compact, nearby companion star. In the process the more compact star gains mass, while the more massive star loses its hydrogen envelope, exposing its helium core and eventually becoming a Wolf-Rayet star. 

The mass-transfer model is the favored process for how Wolf-Rayet stars evolve at the moment and considering at least 70 percent of supermassive stars detected, so far, are members of binary star system, this seems logical. Astronomers used to think this type of star could also form when a massive sun ejects its hydrogen envelope. But the direct mass loss model by itself can’t account for the number of Wolf-Rayet stars observed relative to less-evolved supermassive suns in the Milky Way.  

hs-2015-21-c-web_print

“We’re finding that it is hard to form all the Wolf-Rayet stars we observe by the traditional wind mechanism because the mass loss isn’t as strong as we used to think,” said Nathan Smith of the University of Arizona in Tucson, who is a co-author on the new NaSt1 paper. “Mass exchange in binary systems seems to be vital to account for Wolf-Rayet stars and the supernovae they make, and catching binary stars in this short-lived phase will help us understand this process.” 

nsmith
Co-author of study Nathan Smith of the University of Arizona in Tucson. Credit: The University of Arizona.

Astronomers computer models show that the mass-transfer process isn’t always perfectly efficient. Matter can only transfer from NaSt1 at a certain rate, left over material begins orbiting, creating a disk-like structure. 

“That’s what we think is happening in Nasty 1,” Mauerhan said. “We think there is a Wolf-Rayet star buried inside the nebula, and we think the nebula is being created by this mass-transfer process. So this type of sloppy stellar cannibalism actually makes Nasty 1 a rather fitting nickname.” 

Observing Nasty 1 (star NaSt1) through the clock of gas and dust surrounding this star system hasn’t been easy. The intervening disk-like structure even blocks the view of the Hubble Space Telescope. Scientists haven’t been able to measure the distance between the stars, their mass, or the volume of material transferring to the smaller companion star.  

Astronomers have been able to discover a few items concerning the disk-like structure surrounding Nasty 1. Measurements indicate it’s traveling at around 22,000 mph in the outer nebula, a slower speed than recorded in other stars of this type. Scientists think this indicates a much less energetic supernova than was recorded for other events, like Era Carinae. In this case and other similar stars, the gas in the outer nebula has been recorded in the hundreds of thousands of miles per hour. Nasty 1 could be different supernova animal altogether.  

GMT-1-640x425
High atop the Cerro Manqui peak at the Las Campanas Observatory in Chile the twin the Walter Baade Telescope is the first of the twin 6.5-meter Magellan telescopes to be completed. Credit: Ico.cl

Nasty 1 could also lose its outer envelope of hydrogen intermittently. Previous studies in the infrared light provided clues indicating the existence of a dense pocket of hot gas and dust close to the central stars in the region. More recent observations using the Magellan Telescope located at the Las Campanas Observatory in Chile has also detected a bigger pocket of cooler gas and dust possibly indirectly blocking light from these stars. Astronomers think the existence of warm dust in the region implies it formed just recently, perhaps intermittently, as elementally enriched matter from the stellar winds of massive stars collides, mixes, flows away, and cools. Irregular stellar wind strength, the rate at which star NaSt1 loses its outer envelope, could also help explain the observed clumpy structure and gaps noted in the outer regions of the disk.  

Astrophysicists used NASA’s Chandra X-ray Observatory to measure the hypersonic winds screaming from each star. Readings showed a scorching hot plasma, indicating colliding stellar winds producing high-energy shockwaves that glow in X-rays. This is consistent with previous data collected on other evolving Wolf-Rayet star systems. We’ll get a better view once the outer hydrogen of Nasty 1’s (star NaSt1) depleted, and the mass-transfer process completes. Eventually, the gas and dust in the lumpy, disk-like structure will dissipate, giving us a clearer view of this mysterious binary star system.   

 

704250main_chandra-telescope_full
NASA’s Chandra X-ray Observatory has shown the cosmos is full of objects and events far beyond anything we imagined when we first started the human journey to the beginning of space and time. Credit: NASA/Chandra

Nasty 1’s still evolving!

“What evolutionary path the star will take is uncertain, but it will definitely not be boring,” said Mauerhan. “Nasty 1 could evolve into another Eta Carinae-type system. To make that transformation, the mass-gaining companion star could experience a giant eruption because of some instability related to the acquiring of matter from the newly formed Wolf-Rayet. Or, the Wolf-Rayet could explode as a supernova. A stellar merger is another potential outcome, depending on the orbital evolution of the system. The future could be full of all kinds of exotic possibilities depending on whether it blows up or how long the mass transfer occurs, and how long it lives after the mass transfer ceases.” 

Astronomers continue to study Nasty 1 and its peculiar, unusual disk-like structure looking for clues to explain the mysteries surrounding its origin. 

Join the conversation and learn more about NASA here

Take the space voyage of the ESA

Learn more about the things the Chandra X-ray Observatory has taught us about the universe we live in here

Learn more about Wolf-Rayet stars

Discover the universe through the eyes of the Hubble Space Telescope

Discover what the astronomy department at the University of California, Berkeley is up to here. 

Learn more about supernovae

Discover astronomy at the University of Arizona in Tucson

Discover the Magellan Telescope

Learn more about the Las Campanas Observatory in Chile

Watch a Kepler animation of a supernova shockwave in visible light.

Read about the things astronomers are finding out about a type of galaxy called lenticular galaxies.

Read about the plans to construct the next-generation planet-hunter The Magellan Giant Telescope.