NASA’s Planning on Visiting the Water Worlds of the Solar System and Beyond

Next stop the ocean worlds of Enceladus and Europa

This illustration shows Cassini diving through the Enceladus plume in 2015. New ocean world discoveries from Cassini and Hubble will help inform future exploration and the broader search for life beyond Earth.
Credits: NASA/JPL-Caltech

Space news (planetary science: water worlds of the solar system; Enceladus and Europa) – planets and moons around the solar system and exoplanets across the universe covered with water

This graphic illustrates how scientists on NASA’s Cassini mission think water interacts with rock at the bottom of the ocean of Saturn’s icy moon Enceladus, producing hydrogen gas (H2).
The Cassini spacecraft detected the hydrogen in the plume of gas and icy material spraying from Enceladus during its deepest and last dive through the plume on Oct. 28, 2015. Cassini also sampled the plume’s composition during previous flybys, earlier in the mission. From these observations, scientists have determined that nearly 98 percent of the gas in the plume is water vapor, about 1 percent is hydrogen, and the rest is a mixture of other molecules including carbon dioxide, methane, and ammonia.
The graphic shows water from the ocean circulating through the seafloor, where it is heated and interacts chemically with the rock. This warm water, laden with minerals and dissolved gasses (including hydrogen and possibly methane) then pours into the ocean creating chimney-like vents.
The hydrogen measurements were made using Cassini’s Ion and Neutral Mass Spectrometer, or INMS, instrument, which sniffs gasses to determine their composition.
The finding is an independent line of evidence that hydrothermal activity is taking place in the Enceladus ocean. Previous results from Cassini’s Cosmic Dust Analyzer instrument, published in March 2015, suggested hot water is interacting with rock beneath the ocean; the new findings support that conclusion and indicate that the rock is reduced in its geochemistry. With the discovery of hydrogen gas, scientists can now conclude that there is a source of chemical free energy in Enceladus’ ocean.
The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The Ion and Neutral Mass Spectrometer was designed and built by NASA Goddard Space Flight Center, Greenbelt, Maryland; the team is based at Southwest Research Institute (SwRI) in San Antonio.
For more information about the Cassini mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Image Credit: NASA.

The solar system’s awash in water! NASA missions have provided verifiable facts showing ocean worlds and moons exist in our solar system and beyond, other than Earth. Planetary bodies where water is locked in a frozen embrace and even flowing beneath miles of ice. Liquid water exobiologists are keen to explore for life forms they would love to meet and get to know a little better during the next phase of the human journey to the beginning of space and time. Watch this YouTube video on NASA’s search for life on the ocean worlds of the solar system.

Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter’s moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.
This revelation didn’t happen until 1979 when NASA’s Voyager 1 and 2 flew by Jupiter and found evidence that Europa’s interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon’s interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.
Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.
The location of the plumes corresponds to the position of an unusually warm spot on the moon’s icy crust, as measured in the late 1990s by NASA’s Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon’s subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. Credits: NASA/JPL

Papers published by the journal Science and written by Cassini mission scientists and researchers working with the Hubble Space Telescope indicate hydrogen gas believed pouring from the subsurface ocean of Enceladus could potentially provide chemical energy life could use to survive and evolve. Watch this YouTube video called “NASA: Ingredients for Life at Saturn’s moon Enceladus“, it shows the proof scientists used to come to these conclusions. Their work provides new insights concerning possible oceans of water on moons of Jupiter and Saturn and other ocean moons in the solar system and beyond. 

Best Evidence Yet for Reoccurring Water Vapor Plumes Erupting from Jupiter’s Moon
When Galileo discovered Jupiter’s moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder.
This revelation didn’t happen until 1979 when NASA’s Voyager 1 and 2 flew by Jupiter and found evidence that Europa’s interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon’s interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa.
Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite.
The location of the plumes corresponds to the position of an unusually warm spot on the moon’s icy crust, as measured in the late 1990s by NASA’s Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon’s subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. Credits: NASA/JPL

“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington. ”These results demonstrate the interconnected nature of NASA’s science missions that are getting us closer to answering whether we are indeed alone or not.”

Portrait of Thomas Zurbuchen taken on Monday, October 17, 2016, at NASA Headquarters in Washington. Photo Credit: (NASA/Aubrey Gemignani)

Researchers believe they have found evidence indicating hydrogen gas could be pouring out of hydrothermal vents on the floor of Saturn’s moon Enceladus and into these oceans of water. Any microbes existing in these distant waters could use this gas as a form of chemical energy to operate biological processes. By combining hydrogen with carbon dioxide dissolved in this ocean of water in a chemical reaction called methanogenesis, geochemists think methane could be produced which could act as the basis of a tree of life similar to the one observed on Earth. 

Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. The tiger stripes are four prominent, approximately 84-mile- (135-kilometer-) long fractures that cross the moon’s south polar terrain.
This two-image mosaic is one of the highest resolution views acquired by Cassini during its imaging survey of the geyser basin capping the southern hemisphere of Saturn’s moon Enceladus. It clearly shows the curvilinear arrangement of geysers, erupting from the fractures. .From left to right, the fractures are Alexandria, Cairo, Baghdad, and Damascus.
As a result of this survey, 101 geysers were discovered: 100 have been located on one of the tiger stripes (PIA17188), and the three-dimensional configurations of 98 of these geysers have also been determined (PIA17186). The source location of the remaining geyser could not be definitively established. These results, together with those of other Cassini instruments, now strongly suggest that the geysers have their origins in the sea known to exist beneath the ice underlying the south polar terrain.
These findings from the imaging survey, of which the two images composing this mosaic are a part, were presented in a paper by Porco, DiNino, and Nimmo and published in the online version of the Astronomical Journal in July 2014: http://dx.doi.org/10.1088/0004-6256/148/3/45.
A companion paper, by Nimmo et al., is available at http://dx.doi.org/10.1088/0004-6256/148/3/46.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org.
Photojournal notes: This image has been rotated 180 degrees from its original orientation published on February 2, 2010.
Image Credit:
NASA/JPL/Space Science Institute

On Earth, this process is thought to be at the root of the tree of life, and could even be essential, critical to the origin of life on our little blue dot. Life existing on our planet requires three main ingredients, liquid water, a source of energy for metabolic processes, and specific chemical ingredients to develop and continue to thrive. This study shows Enceladus could have the right ingredients for life to exist, but planetary scientists and exobiologists are looking for evidence of the presence of sulfur and phosphorus. 

This set of images from NASA’s Cassini mission shows how the gravitational pull of Saturn affects the amount of spray coming from jets at the active moon Enceladus. Enceladus has the most spray when it is farthest away from Saturn in its orbit (inset image on the left) and the least spray when it is closest to Saturn (inset image on the right).
Water ice and organic particles gush out of fissures known as “tiger stripes” at Enceladus’ south pole. Scientists think the fissures are squeezed shut when the moon is feeling the greatest force of Saturn’s gravity. They theorize the reduction of that gravity allows the fissures to open and release the spray. Enceladus’ orbit is slightly closer to Saturn on one side than the other. A simplified version of that orbit is shown as a white oval.
Scientists correlate the brightness of the Enceladus plume to the amount of solid material being ejected because the fine grains of water ice in the plume are very bright when lit from behind. Between the dimmest and brightest images, they detected a change of about three to four times in brightness, approximately the same as moving from a dim hallway to a brightly lit office.
This analysis is the first clear finding that shows the jets at Enceladus vary in a predictable manner. The background image is a mosaic made from data obtained by Cassini’s imaging science subsystem in 2006. The inset image on the left was obtained on Oct. 1, 2011. The inset image on the right was obtained on Jan. 30, 2011.
A related image, PIA17039, shows just the Enceladus images. The Saturn system mosaic was created from data obtained by Cassini’s imaging cameras in 2006.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, DC. The Cassini orbiter was designed, developed and assembled at JPL. The visual and infrared mapping spectrometer was built by JPL, with a major contribution by the Italian Space Agency. The visual and infrared mapping spectrometer science team is based at the University of Arizona, Tucson.
For more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov/.
Image Credit:
NASA/JPL-Caltech/University of Arizona/Cornell/SSI

Previous data shows the rocky core of this moon is similar to meteorites containing these two elements, so they’re thought to be chemically similar in nature, and scientists are looking for the same chemical ingredients of life found on Earth, primarily carbon, nitrogen, oxygen, and of course hydrogen, phosphorus, and sulphur.

Linda Spilker
Cassini Project Scientist. Credits: NASA

“Confirmation that the chemical energy for life exists within the ocean of a small moon of Saturn is an important milestone in our search for habitable worlds beyond Earth,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

This illustration shows NASA’s Cassini spacecraft about to make one of its dives between Saturn and its innermost rings as part of the mission’s grand finale.
Cassini will make 22 orbits that swoop between the rings and the planet before ending its mission on Sept. 15, 2017, with a final plunge into Saturn. The mission team hopes to gain powerful insights into the planet’s internal structure and the origins of the rings, obtain the first-ever sampling of Saturn’s atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn’s clouds and inner rings.
During its time at Saturn, Cassini has made numerous dramatic discoveries, including a global ocean that showed indications of hydrothermal activity within the icy moon Enceladus, and liquid methane seas on its moon Titan.
The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington.
For more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Image Credit: NASA/JPL-Caltech

Cassini detected hydrogen in plumes of gas and frozen matter spewing from Enceladus during the spacecraft’s deepest pass over its surface on October 28, 2015. This combined with previous data obtained by Cassini’s Ion and Neutral Mass Spectrometer (INMS) during earlier flybys around 2005, helped scientists determine that nearly 98 percent of the material spraying from the surface of the moon is water. The remaining two percent is thought to be around 1 percent hydrogen with some carbon dioxide, methane, ammonia and assorted unknown molecules in the mix. 

Cassini has shown us two independent detections of possible water spewing from the surface of Enceladus. NASA and its partners are currently looking over proposals to send spacecraft to determine if there is an ocean of water beneath its surface by taking a sample. The Europa Life Finder (ELF) is the proposal NASA’s seriously looking at undertaking at this point, but reports indicate a few other proposals are also being discussed. We’ll provide additional information on other proposals as they’re released to media outlets.

“Although we can’t detect life, we’ve found that there’s a food source there for it. It would be like a candy store for microbes,” said Hunter Waite, lead author of the Cassini study.

Two different observations of possible plumes of water spraying from the icy surface of Saturn’s moon Enceladus provides proof hydrothermal activity is occurring beneath. Geophysicists believe hot water is combining chemically with rock and other matter at the bottom of an ocean of water underneath its icy surface to produce hydrogen gas. Hydrogen gas exobiologists think could be used as energy, food of a sort, to sustain life forms exobiologists want to meet and learn more about. A meeting that would change our place in the cosmos, the way we think about the universe, and reality.

Looking for an interplanetary vacation destination? Consider a visit to Europa, one of the Solar System’s most tantalizing moons. Ice-covered Europa follows an elliptical path in its 85-hour orbit around our ruling gas giant Jupiter. Heat generated from strong tidal flexing by Jupiter’s gravity keeps Europa’s salty subsurface ocean liquid all year round. That also means even in the absence of sunlight Europa has energy that could support simple life forms. Unfortunately, it is currently not possible to make reservations at restaurants on Europa, where you might enjoy a dish of the local extreme shrimp. But you can always choose another destination from Visions of the Future.

Astronomers and researchers working with the Hubble Space Telescope in 2016 reported on an observation of a possible plume erupting from the icy surface of Europa in the same general location Hubble observed a possible plume in 2014. This location also corresponds to the unusually warm region with cracks in the icy surface observed by NASA’s Galileo spacecraft back in the 1990s. This provides evidence this phenomenon could be periodic, intermittent in this region of the moon. Mission planners are looking at this region as a possible location to obtain a sample of water erupting from a possible ocean of water beneath its icy surface. Watch this video on Europa.

Estimates of the size of this most recently observed plume indicate it rose about 62 miles (~100 kilometers) from the surface of Europa, while the plume in 2014 only reached a height of around 30 miles (50 kilometers). 

William Sparks
Space Telescope Science Institute. Credits: Space Science Institute/NASA/JPL

“The plumes on Enceladus are associated with hotter regions, so after Hubble imaged this new plume-like feature on Europa, we looked at that location on the Galileo thermal map. We discovered that Europa’s plume candidate is sitting right on the thermal anomaly,” said William Sparks of the Space Telescope Science Institute in Baltimore, Maryland. Sparks led the Hubble plume studies in both 2014 and 2016.

One interesting thought’s the plumes and the hot spot is somehow linked. If this is the case, it could mean the vented water’s falling onto the surface of the moon, which would change the structure and chemistry of the surface grains and allow them to retain heat longer than the surrounding region. This location would be a great place to search for the ingredients of life and a possible entry point into an ocean of water beneath.

NASA’s Europa Clipper mission is being designed to fly by the icy Jovian moon multiple times and investigate whether it possesses the ingredients necessary for life.
Credits: NASA/JPL-Caltech/SETI Institute

These observations by the Hubble Space Telescope and future looks enable future space missions to Europa and other ocean worlds in the solar system. Specifically, laying the groundwork for NASA’s Europa Clipper mission, which is set for a launch sometime in the 2020s. 

James Green: Director of Planetary Science, NASA Headquarters. Credits: NASA

“If there are plumes on Europa, as we now strongly suspect, with the Europa Clipper we will be ready for them,” said Jim Green, Director of Planetary Science, at NASA Headquarters.

NASA has indicated they’re looking to identify a possible site with persistent, intermittent plume activity as a target location for a mission to Europa to explore using its powerful suite of science instruments. Another team’s currently at work on a powerful ultraviolet camera to add to the Europa Clipper that would offer data similar to that provided by the Hubble Space Telescope, while some members of the Cassini team are working on a very sensitive, next generation INMS instrument to put on the spacecraft. 

Water’s the story of life on Earth! Science has shown it played and plays the main part in the birth, evolution, and sustenance of life on Earth. 

NASA’s planning on taking the human journey to the beginning of space and time to the ocean worlds of the solar system during the decades ahead. To search for the ingredients of life and even possibly simple one-celled life forms, of an unknown type. We plan on going along for the ride to have a look for ourselves and we hope to see your name on the ship manifest. We’ll save a seat for you.

Join the human journey to the beginning of space and time by taking part in NASA’s Backyard Worlds: Planet 9. Participants take part in the search for hidden worlds between Neptune and Proxima Centauri.

NASA’s and FEMA are currently tracking the progress of a 300 to 800 ft asteroid they think has around a 2 percent chance of hitting the Earth around September 20, 2020.

Planetary scientists searching the Red Planet for signs of past and present water believe they have found evidence indicating Mars once was a lot wetter and a possible location for the evolution of life.

NASA’s Looking to Form Space Technology Partnerships with American Firms 

Aimed at space technologies advancing the commercial space industry and enabling future NASA missions

NASA’s Marshall Space Flight Center (MSFC) additive manufactured injector by was successfully hot fire tested by Vector Space System on Dec. 8, 2016 using Liquid Oxygen/Propylene propellant (LOX/LC3H6). This work was performed under a 2015 STMD ACO Space Act Agreement. Credits: Vector Space System
NASA’s Marshall Space Flight Center (MSFC) additive manufactured injector by was successfully hot fire tested by Vector Space System on Dec. 8, 2016 using Liquid Oxygen/Propylene propellant (LOX/LC3H6). This work was performed under a 2015 STMD ACO Space Act Agreement.
Credits: Vector Space System

Space news (developing new space technology: the commercial space sector; the “Announcement of Collaborative Opportunity (ACO)” solicitation) – NASA headquarters in Washington, D.C., the Office of Space Technology Mission Directorate (STMD) –

Air-bearing test of Affordable Vehicle Avionics (AVA), developed by ARC, tested at MSFC to support the UP Aerospace Spyder Launch Vehicle development. This work is performed under the STMD ACO Space Act Agreement. Credits: NASA/Marshall
Air-bearing test of Affordable Vehicle Avionics (AVA), developed by ARC, tested at MSFC to support the UP Aerospace Spyder Launch Vehicle development. This work is performed under the STMD ACO Space Act Agreement.
Credits: NASA/Marshall

NASA put out a call today for American businesses looking to form long-term partnerships aimed at designing and developing new space technologies to enable the human journey to the beginning of space and time. The Space Technology Mission Directorate (STMD) released an “Announcement of Collaborative Opportunity (ACO)” solicitation you can read that explains the opportunity better.

Dynetics regeneratively cooled engine ready for test at MSFC using Peroxide/ Kerosene (H2O2/ RP) propellant. (January, 2016). This work is performed under the STMD ACO Space Act Agreement. Credits: NASA/Marshall
Dynetics regeneratively cooled engine ready for test at MSFC using Peroxide/ Kerosene (H2O2/ RP) propellant. (January, 2016). This work is performed under the STMD ACO Space Act Agreement.
Credits: NASA/Marshall

NASA’s looking to enable the development of new space technology by forming partnerships with commercial firms in the space industry and providing resources where available and appropriate. Business partners benefit from NASA technical expertise and test facilities, along with hardware and computer software designed and engineered to enable the development of current and new space technologies. Space sector partnerships between NASA and private firms can also reduce the cost of design and development of new space technologies and accelerate the inclusion of emerging commercial space technologies into future space missions. 

Stephen Jurczyk, Associate Administrator NASA Credits: Linked
Stephen Jurczyk, Associate Administrator NASA Credits: Linked

“This ACO continues to build on STMD’s strategy to advance commercial space capabilities aligned with NASA’s long-term strategic goals,” said Steve Jurczyk, associate administrator for STMD at NASA Headquarters in Washington. “These partnerships will leverage NASA’s unique engineering expertise and test facilities to increase U.S. industry competitiveness in the space sector.”

Areas of space technology

This opportunity’s a limited one. NASA’s only seeking partnerships in four areas of space technology through this ACO:

  • The design and development of space spacecraft launch systems.
  • New commercial capabilities to produce low-cost yet reliable electronic systems for space.
  • Advanced commercial space telecommunications technologies that can be used during future NASA space missions or infused into their infrastructure.
  • Advanced small spacecraft chemical propulsion systems, sub-kW power level electric propulsion systems, and large-scale chemical cryogenic propulsion systems. 

All partnerships must work on the advancement of commercially-developed space technologies that can benefit both private and government use and the human journey to the beginning of space and time in general. 

Better hurry! All preliminary proposals have to be submitted by March 15, 2017. They’ll provide feedback on your ideas. After that, your final proposal’s due by May 31. 

All awarded funds are in the form of non-reimbursable Space Act Agreements (no funds exchanged). You also need to be a profit-driven US firm looking to make some money and enable the human journey to the beginning of space and time. 

Read about NASA’s Mars 2020 rover and its plans to take over the work being done by the Curiosity rover.

Learn about the new method astronomers are developing to help determine distances to stellar objects on the other side of the Milky Way.

Learn how astronomers study the formation of new stars in the cosmos.

Read more about NASA’s contributions to the human journey to the beginning of space and time here.

Learn more about the work of the genius at the Jet Propulsion Laboratory.

Learn more about the work being done by NASA’s Space Technology Mission Directorate here.

The Plasma Jets of Active Supermassive Black Holes

Transform surrounding regions and actively evolve host galaxies 

This artist's rendition illustrates a rare galaxy that is extremely dusty, and produces radio jets. Scientists suspect that these galaxies are created when two smaller galaxies merge. A few billion years after the Big Bang, astronomers suspect that small galaxies across the Universe regularly collided forcing the gas, dust, stars, and black holes within them to unite. The clashing of galactic gases was so powerful it ignited star formation, while fusing central black holes developed an insatiable appetite for gas and dust. With stellar nurseries and black holes hungry for galactic gas, a struggle ensued. Scientists say this struggle for resources is relatively short-lived, lasting only 10 to 100 million years. Eventually, much of the gas will be pushed out of the galaxy by the powerful winds of newborn stars, stars going supernovae (dying in a cataclysmic explosion), or radio jets shooting out of central supermassive black holes. The removal of gas will stunt the growth of black holes by "starving'' them, and quench star formation. They believe that these early merging structures eventually grew into some of the most massive galaxies in the Universe.
This artist’s rendition illustrates a rare galaxy that is extremely dusty and produces radio jets. Scientists suspect that these galaxies are created when two smaller galaxies merge.
A few billion years after the Big Bang, astronomers suspect that small galaxies across the Universe regularly collided forcing the gas, dust, stars, and black holes within them to unite. The clashing of galactic gasses was so powerful it ignited star formation while fusing central black holes developed an insatiable appetite for gas and dust. With stellar nurseries and black holes hungry for galactic gas, a struggle ensued.
Scientists say this struggle for resources is relatively short-lived, lasting only 10 to 100 million years. Eventually, much of the gas will be pushed out of the galaxy by the powerful winds of newborn stars, stars going supernovae (dying in a cataclysmic explosion), or radio jets shooting out of central supermassive black holes. The removal of gas will stunt the growth of black holes by “starving” them and quench star formation.
They believe that these early emerging structures eventually grew into some of the most massive galaxies in the Universe. Credits: NASA/JPL

Space news (astrophysics: spinning black holes; bigger, brighter plasma jets) – in the core of galaxies across the cosmos, observing the spin of supermassive black holes – 

In this radio image, two jets shoot out of the center of active galaxy Cygnus A. GLAST may solve the mystery of how these jets are produced and what they are made of. Credit: NRAO
In this radio image, two jets shoot out of the center of active galaxy Cygnus A. GLAST may solve the mystery of how these jets are produced and what they are made of. Credit: NRAO

Have you ever had the feeling the world isn’t the way you see it? That reality’s different than the view your senses offer you? The universe beyond the Earth is vast beyond comprehension and weird in ways human imagination struggles to fathom. Beyond the reach of your senses, the fabric of spacetime warps near massive objects, and even light bends to the will of gravity. In the twilight zone where your senses fear to tread, the cosmos twists and turns in weird directions and appears to leave the universe and reality far behind. Enigmas wrapped in cosmic riddles abound and mysteries to astound and bewilder the human soul are found. 

The galaxy NGC 4151 is located about 45 million light-years away toward the constellation Canes Venatici. Activity powered by its central black hole makes NGC 4151 one of the brightest active galaxies in X-rays. Credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration. Credits: NASA/JPL
The galaxy NGC 4151 is located about 45 million light-years away toward the constellation Canes Venatici. Activity powered by its central black hole makes NGC 4151 one of the brightest active galaxies in X-rays. Credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration. Credits: NASA/JPL

Imagine an object containing the mass of millions even billions of stars like the Sun. Squeeze that matter into a region of infinitely small volume, a region so dense the gravitational force it exerts warps spacetime and prevents even light from escaping its grasp. This object’s what astronomers call a supermassive black hole, a titanic monster your eyes can’t see with a gravitational pull that would stretch your body to infinity as you approached and crossed its outer boundary, the event horizon. Beyond this point, spacetime and reality take a turn toward the extreme, and the rules of science don’t apply. You have entered the realm of one of the most mysterious and enigmatic objects discovered during the human journey to the beginning of space and time.  

In the newly discovered type of AGN, the disk and torus surrounding the black hole are so deeply obscured by gas and dust that no visible light escapes, making them very difficult to detect. This illustration shows the scene from a more distant perspective than does the other image. Click on image for high-res version. Image credit: Aurore Simonnet, Sonoma State University.
In the newly discovered type of AGN, the disk and torus surrounding the black hole are so deeply obscured by gas and dust that no visible light escapes, making them very difficult to detect. This illustration shows the scene from a more distant perspective than does the other image. Click on image for high-res version. Image credit: Aurore Simonnet, Sonoma State University.

Astronomers hunting for supermassive black holes have pinpointed their realms to be the center of massive galaxies and even the center of galaxy clusters. From this central location in each galaxy, the gravitational well of each supermassive black hole appears to act as an anchor point for the billions of stars within, and astronomers believe a force for change and evolution of every galaxy and galaxy cluster in which they exist. Surrounded and fed by massive clouds of gas and matter called accretion disks, with powerful particle jets streaming from opposite sides like the death ray in Star Wars, fierce, hot winds sometimes moving at millions of miles per hour blow from these supermassive monsters in all directions. 

These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe's current age contained about 20 times more AGN than those at 82% of Universe's age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays.
These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe’s current age contained about 20 times more AGN than those at 82% of Universe’s age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays. Credits: NASA/Chandra

“A lot of what happens in an entire galaxy depends on what’s going on in the minuscule central region where the black hole lies,” said theoretical astrophysicist David Garofalo of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Garofalo is the lead author of a new paper that appeared online May 27 in the Monthly Notices of the Royal Astronomical Society. Other authors are Daniel A. Evans of the Massachusetts Institute of Technology, Cambridge, Mass., and Rita M. Sambruna of NASA Goddard Space Flight Center, Greenbelt, Md. 

These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe's current age contained about 20 times more AGN than those at 82% of Universe's age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays.
These galaxy clusters show that younger, more distant galaxy clusters contained far more active galactic nuclei (AGN) than older, nearby ones. It was found that the clusters at 58% of the Universe’s current age contained about 20 times more AGN than those at 82% of Universe’s age. The galaxies in the earlier Universe contained much more gas that allowed for more star formation and black hole growth. In the Chandra X-ray images, red, green, and blue represent low, medium, and high-energy X-rays. Credits: NASA/Chandra

Astronomers studying powerful particle jets streaming from supermassive black holes use to think these monsters spin either in the same direction as their accretion disks, called prograde black holes, or against the flow, retrograde black holes. For the past few decades, Garofalo and team have worked with a theory that the faster the spin of a black hole, the more powerful the particle jets streaming from it. Unfortunately, anomalies in the form of some prograde black holes with no jets have been discovered. This has scientists turning their ideas upside down and sideways, to see if flipping their “spin paradigm” model on its head explains recent anomalies in the theory. 

This composite image shows a vast cloud of hot gas (X-ray/red), surrounding high-energy bubbles (radio/blue) on either side of the bright white area around the supermassive black hole. By studying the inner regions of the galaxy with Chandra, scientists estimated the rate at which gas is falling toward the galaxy's supermassive black hole. These data also allowed an estimate of the power required to produce the bubbles, which are each about 10,000 light years in diameter. Surprisingly, the analysis indicates that most of the energy released by the infalling gas goes into producing jets of high-energy particles that create the huge bubbles, rather than into an outpouring of light as observed in many active galactic nuclei.
This composite image shows a vast cloud of hot gas (X-ray/red), surrounding high-energy bubbles (radio/blue) on either side of the bright white area around the supermassive black hole. By studying the inner regions of the galaxy with Chandra, scientists estimated the rate at which gas is falling toward the galaxy’s supermassive black hole. These data also allowed an estimate of the power required to produce the bubbles, which are each about 10,000 light years in diameter. Surprisingly, the analysis indicates that most of the energy released by the infalling gas goes into producing jets of high-energy particles that create the huge bubbles, rather than into an outpouring of light as observed in many active galactic nuclei. X-ray: NASA/CXC/KIPAC/S.Allen et al; Radio: NRAO/VLA/G.Taylor; Infrared: NASA/ESA/McMaster Univ./W.Harris

Using data collected during a more recent study that links their previous theory with observations of galaxies at varying distances from Earth across the observable universe. Astronomers found more distant radio-loud galaxies with jets are powered by retrograde black holes, while closer radio-quiet black holes have prograde black holes. The study showed supermassive black holes found at the core of galaxies evolve over time from a retrograde to prograde state.  

This illustration shows the different features of an active galactic nucleus (AGN), and how our viewing angle determines what type of AGN we observe. The extreme luminosity of an AGN is powered by a supermassive black hole at the center. Some AGN have jets, while others do not. Click on image for unlabeled, high-res version. Image credit: Aurore Simonnet, Sonoma State University.
This illustration shows the different features of an active galactic nucleus (AGN), and how our viewing angle determines what type of AGN we observe. The extreme luminosity of an AGN is powered by a supermassive black hole at the center. Some AGN have jets, while others do not. Click on image for unlabeled, high-res version. Image credit: Aurore Simonnet, Sonoma State University.

“This new model also solves a paradox in the old spin paradigm,” said David Meier, a theoretical astrophysicist at JPL not involved in the study. “Everything now fits nicely into place.” 

A mere 11 million light-years away, Centaurus A is a giant elliptical galaxy - the closest active galaxy to Earth. This remarkable composite view of the galaxy combines image data from the x-ray ( Chandra), optical(ESO), and radio(VLA) regimes. Centaurus A's central region is a jumble of gas, dust, and stars in optical light, but both radio and x-ray telescopes trace a remarkable jet of high-energy particles streaming from the galaxy's core. The cosmic particle accelerator's power source is a black hole with about 10 million times the mass of the Sun coincident with the x-ray bright spot at the galaxy's center. Blasting out from the active galactic nucleus toward the upper left, the energetic jet extends about 13,000 light-years. A shorter jet extends from the nucleus in the opposite direction. Other x-ray bright spots in the field are binary star systems with neutron stars or stellar mass black holes. Active galaxy Centaurus A is likely the result of a merger with a spiral galaxy some 100 million years ago.
A mere 11 million light-years away, Centaurus A is a giant elliptical galaxy – the closest active galaxy to Earth. This remarkable composite view of the galaxy combines image data from the x-ray ( Chandra), optical(ESO), and radio(VLA) regimes. Centaurus A’s central region is a jumble of gas, dust, and stars in optical light, but both radio and x-ray telescopes trace a remarkable jet of high-energy particles streaming from the galaxy’s core. The cosmic particle accelerator’s power source is a black hole with about 10 million times the mass of the Sun coincident with the x-ray bright spot at the galaxy’s center. Blasting out from the active galactic nucleus toward the upper left, the energetic jet extends about 13,000 light-years. A shorter jet extends from the nucleus in the opposite direction. Other x-ray bright spots in the field are binary star systems with neutron stars or stellar mass black holes. Active galaxy Centaurus A is likely the result of a merger with a spiral galaxy some 100 million years ago. Credits: X-ray – NASA, CXC, R.Kraft (CfA), et al.; Radio – NSF, VLA, M.Hardcastle (U Hertfordshire) et al.; Optical – ESO, M.Rejkuba (ESO-Garching) et al.

Astrophysicists studying backward spinning black holes believe more powerful particle jets stream from these supermassive black holes because additional space exists between the monster and the inner edge of the accretion disk. This additional space between the monster and accretion disk provides more room for magnetic fields to build-up, which fuels the particle jet and increases its power. This idea is known as Reynold’s Conjecture, after the theoretical astrophysicist Chris Reynolds of the University of Maryland, College Park. 

The optical counterparts of many active galactic nuclei (circled) detected by the Swift BAT Hard X-ray Survey clearly show galaxies in the process of merging. These images, taken with the 2.1-meter telescope at Kitt Peak National Observatory in Arizona, show galaxy shapes that are either physically intertwined or distorted by the gravity of nearby neighbors. These AGN were known prior to the Swift survey, but Swift has found dozens of new ones in more distant galaxies. Credit: NASA/Swift/NOAO/Michael Koss and Richard Mushotzky (Univ. of Maryland)
The optical counterparts of many active galactic nuclei (circled) detected by the Swift BAT Hard X-ray Survey clearly show galaxies in the process of merging. These images, taken with the 2.1-meter telescope at Kitt Peak National Observatory in Arizona, show galaxy shapes that are either physically intertwined or distorted by the gravity of nearby neighbors. These AGN were known prior to the Swift survey, but Swift has found dozens of new ones in more distant galaxies. Credit: NASA/Swift/NOAO/Michael Koss and Richard Mushotzky (Univ. of Maryland)

“If you picture yourself trying to get closer to a fan, you can imagine that moving in the same rotational direction as the fan would make things easier,” said Garofalo. “The same principle applies to these black holes. The material orbiting around them in a disk will get closer to the ones that are spinning in the same direction versus the ones spinning the opposite way.”  

Swift's Hard X-ray Survey offers the first unbiased census of active galactic nuclei in decades. Dense clouds of dust and gas, illustrated here, can obscure less energetic radiation from an active galaxy's central black hole. High-energy X-rays, however, easily pass through. Credit: ESA/NASA/AVO/Paolo Padovani
Swift’s Hard X-ray Survey offers the first unbiased census of active galactic nuclei in decades. Dense clouds of dust and gas, illustrated here, can obscure less energetic radiation from an active galaxy’s central black hole. High-energy X-rays, however, easily pass through. Credit: ESA/NASA/AVO/Paolo Padovani

Scientists believe the powerful particle jets and winds emanating from supermassive black holes found at the center of galaxies also play a key role in shaping their evolution and eventual fate. Often even slowing the formation rate of new stars in a host galaxy and nearby island universes as well.  

“Jets transport huge amounts of energy to the outskirts of galaxies, displace large volumes of the intergalactic gas, and act as feedback agents between the galaxy’s very center and the large-scale environment,” said Sambruna. “Understanding their origin is of paramount interest in modern astrophysics.” 

What lies just beyond the reach of our senses and technology, beneath the exterior of these supermassive black holes? Scientists presently study these enigmatic stellar objects looking for keys to the doors of understanding beyond the veil of gas and dust surrounding these titanic beasts. Keys they hope one day to use to unlock even greater secrets of reality just beyond hidden doors of understanding.  

Watch this video on active galactic nuclei.

Read and learn more about the supermassive black holes astronomers detect in a region called the COSMOS field.

Read about the recent detection by astronomers of read-end collisions between knots in the particle jets of supermassive black holes.

Learn what astronomers have discovered about feedback mechanisms in the feeding processes of active supermassive black holes.

You can join the voyage of NASA across the cosmos here

Learn more about supermassive black holes

Discover more about what scientists have discovered about the powerful particle jets emanating from supermassive black holes here

Discover NASA’s Jet Propulsion Laboratory

Learn about astronomy at Caltech

Read and learn more about galaxies here

Discover more about spinning black holes.  

NASA Selects Eight Teams of Young, Ambitious University Students

15-114

NASA architects, engineers and scientists are already busy creating sustainable, space-based living quarters, work spaces and laboratories for next-generation human space exploration, including our journey to Mars. This 2011 version of the deep space habitat at the Desert Research and Technology Studies (Desert RATS) analog field test site in Arizona features a Habitat Demonstration Unit, with the student-built X-Hab loft on top, a hygiene compartment on one side and airlock on the other.
Credits: NASA

To be the cutting edge of innovation in engineering and design of new deep space habitats 

Space news (New space technology: deep space habitats; 2016 X-Hab Academic Innovation Challenge) – NASA’s Advanced Exploration Systems (AES) division headquarters – 

157750main_jsc2006e39969_small

In one scenario of the Desert Research and Technology Studies in the Arizona desert, a test subject returns to a mock way station. Credit: NASA

NASA engineers, scientists, and systems designers are hard at work creating the next-generation habitats needed to travel and live in space and one day inhabit Mars. Deep within NASA’s Desert Research and Technology Studies (Desert RATS) test site in Arizona, they have assembled the 2011 version of the deep space habitat. A futuristic space habitat featuring a Habitat Demonstration Unit with X-Hab loft, a second story habitation designed and built by a team from the University of Wisconsin-Madison as part of the 2011 X-Hab Academic Innovation Challenge. 

 

x-hab-2016-webpromo_0
The 2016 X-Hab Student Academic Challenge has selected eight university teams to design, engineer and build a next-generation space habitation. Credit: NASA/NSPF

The X-Hab Academic Challenge program’s designed and implemented to help get graduate and undergraduate level university students directly involved in the development of deep space technology capable of allowing humans to live and travel in space and eventually colonize Mars. Students are encouraged to develop and implement skills and knowledge in all areas and disciplines, team up with industry and experts and actively engage the world in a conversation concerning their work. All in an effort to improve and develop science knowledge, technical ability, leadership qualities and project skills of students selected and encourage further studies in space industry disciplines. 

umd-xhab

Cutaway of inflatable airlock highlighting doors, support structures and suitports.
Credits: University of Maryland
The 2016 X-Hab Academic Challenge is the sixth event and this year NASA scientists and engineers are working with graduate and undergraduate students from eight American universities on new technology projects to enable astronauts to travel into deep space and the Red Planet. Earlier in the year, student teams submitted proposals, which were selected after extensive analysis by NASA. During the 2015-2016 academic year, each team will design, engineer, build and test all project systems and concepts hand in hand with scientists and engineers from NASA’s Human Exploration and Operations Mission Directorate. NASA staff will work with student teams selected on next-generation life support systems, space habitats and deep space food production systems needed for the success of future manned missions to Mars. 

osu-xhab

Organics and Agricultural Sustainment Inflatable System (OASIS) Habitat Interior
Credits: Oklahoma State University

“These strategic collaborations lower the barrier for university students to assist NASA in bridging gaps and increasing our knowledge in architectural design trades, capabilities, and technology risk reduction related to exploration activities that will eventually take humans farther into space than ever before,” said Jason Crusan, director of NASA’s Advanced Exploration Systems (AES) division. 

 

20150128_crusan_bio
Official portrait of Jason Crusan at NASA Headquarters in Washington, DC on Wednesday, Jan. 28, 2015. Credit: NASA

The teams and projects selected as part of NASA’s X-Hab Academic Innovation Challenge are listed below. 

AES’s In-space Manufacturing division sponsorships are: 

The University of Puerto Rico at Mayaguez is working on the development of new low-power technology required for the manufacture of metals in zero-gravity environments 

AES’s Beyond Earth Habitation division sponsorships are: 

The University of Maryland, College Park is working on next-generation airlocks that are inflatable 

Students from Pratt Institute, Brooklyn, New York are working on habitat designs to keep astronauts safe and warm during their trip to the Red Planet

Oklahoma State University, Stillwater students are doing studies on deep space habitats suitable for a trip to the Red Planet 

AES’s Life Support Systems division sponsorships are: 

Students from the University of South Alabama, Mobile are working on a new concentration swing frequency response device 

AES’s Space Life and Physical Sciences division sponsorships are:  

Students from Utan State University, Logan are designing new experimental plant systems for microgravity environments 

The team from Ohio State University, Columbus is working on improving water delivery in modular vegetable production systems needed to provide astronauts with food during their journey and life on Mars 

The team from the University of Colorado-Boulder, Boulder is working on improving the performance of the Mars OASIS Space Plant Growth System 

The X-Hab Academic Innovation Challenge is led by NASA and the National Space Grant Foundation in an effort to enable the human journey to the beginning of space and time. The program supports space science research efforts to develop sustainable and cost-effective robotic and human space technology to make our journey possible. It also helps train and develop highly skilled scientists, engineers, and technicians needed to design and implement technology developed to travel and live in space. 

Partners in space exploration

NASA lends its scientists, engineers and space exploration technology, and experience to the X-Hab Academic Innovation Challenge. The National Space Grant Foundation administers the grants provided by NASA, which range from $10,000 to $30,000, to fund the building, development and final evaluation of each project selected and completed during the 2015-2016 academic year. 

Find more information on previous X-Hab Academic Innovation Challenges here

Join the conversation and space journey of NASA

Find out more about the work of the National Space Grant Foundation here

Read about a runaway star NASA astronomers have been following across the Tarantula Nebula.

Learn more about the colonization of the Pacific Ocean by Polynesian islanders and their star navigation skills tens of thousands of years ago.

Read about the Kepler Space Telescope recently capturing a supernova shockwave in visible light for the first time.

 

 

Pluto Shows Planetary Scientists Geophysical and Atmospheric Surprises

Exotic ice floes and distinct layers of haze above dwarf planet’s surface

New Horizons discovers flowing ices in Pluto’s heart-shaped feature. In the northern region of Pluto’s Sputnik Planum (Sputnik Plain), swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth. Credits: NASA/JHUAPL/SwRI
New Horizons discovers flowing ices in Pluto’s heart-shaped feature. In the northern region of Pluto’s Sputnik Planum (Sputnik Plain), swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth.
Credits: NASA/JHUAPL/SwRI

Space news (July 29, 2015) – 1.25 million miles (2 million kilometers) from Earth and headed into the Kuiper Belt

NASA space scientists looking at LORRI images and data sent back to Earth by the New Horizons spacecraft ten days after closest approach to the dwarf planet Pluto received a nice surprise. Exotic ices flowing across the surface of the dwarf planet Pluto as glaciers do on Earth and possibly Mars. Indicating geological activity planetary scientists had dreamed of but didn’t truly expect to find, and the possibility even bodies at extreme distances from the Sun could be crucibles for the ingredients of life.

“We knew that a mission to Pluto would bring some surprises, and now — 10 days after closest approach — we can say that our expectation has been more than surpassed,” said John Grunsfeld, NASA’s associate administrator for the Science Mission Directorate. “With flowing ices, exotic surface chemistry, mountain ranges, and vast haze, Pluto is showing a diversity of planetary geology that is truly thrilling.”

Photo caption: The sheet of ice visible here on the plain informally called Sputnik Planum appears to have flowed, and could still be moving, as glaciers do on Earth. This plain rests within the western half of Pluto's noted heart-shaped feature called Tombaugh Regio and could be rich in nitrogen, carbon monoxide, methane ices, and other compounds.
Photo caption: The sheet of ice visible here on the plain informally called Sputnik Planum appears to have flowed, and could still be moving, as glaciers do on Earth. This plain rests within the western half of Pluto’s noted heart-shaped feature called Tombaugh Regio and could be rich in nitrogen, carbon monoxide, methane ices, and other compounds.

“We’ve only seen surfaces like this on active worlds like Earth and Mars,” said mission co-investigator John Spencer of SwRI. “I’m really smiling.”

“At Pluto’s temperatures of minus-390 degrees Fahrenheit, these ices can flow like a glacier,” said Bill McKinnon, deputy leader of the New Horizons Geology, Geophysics, and the Imaging team at Washington University in St. Louis. “In the southernmost region of the heart, adjacent to the dark equatorial region, it appears that ancient, heavily cratered terrain has been invaded by much newer ice deposits.”

Space scientists combined four New Horizon images taken by LORRI with color data from the Ralph Instrument to produce this stunning global view of Pluto taken at a distance of 280,000 miles (450,000 kilometers) from the spacecraft.
Space scientists combined four New Horizon images taken by LORRI with color data from the Ralph Instrument to produce this stunning global view of Pluto taken at a distance of 280,000 miles (450,000 kilometers) from the spacecraft.

Detailed analysis of LORRI images taken of Pluto’s surface reveals a global pattern of ice floe zones varying according to latitude. The darkest surface terrains are found near the equator region, with mid-toned terrains being mainly located in mid-latitudes, and lighter colored terrains covering the North Polar Region.

Mountain Ranges Viewed on Pluto’s Sputnik Planum

Planetary scientists have named the two peaks of the mountain range Hillary Montes (Hillary Mountains) for Sir Edmund Hillary, who along with legendary mountain guide Tenzing Norgay summited Mount Everest in 1953. Rising over 1 mile (1.6 kilometers) above the surface of the planet, image climbing to the top of these peaks, a feat humankind could one day attempt and achieve. This would truly be an inspiring moment during the human journey to the beginning of space and time.

This LORRI image shows the surface terrain of Pluto are much more complicated than planetary scientists first thought. Notice the polygonal shape of many of the plains viewed, two magnificent mountain ranges, and cratered terrain that looks like ice has recently been deposited.
This LORRI image shows the surface terrain of Pluto is much more complicated than planetary scientists first thought. Notice the polygonal shape of many of the plains viewed, two magnificent mountain ranges and cratered terrain that looks like ice has recently been deposited.

“For many years, we referred to Pluto as the Everest of planetary exploration,” said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado. “It’s fitting that the two climbers who first summited Earth’s highest mountain, Edmund Hillary, and Tenzing Norgay, now have their names on this new Everest.”

View a video here of a simulated flyover of Sputnik Planum and Pluto’s recently viewed mountain range called Hillary Montes.

Seven hours after reaching its point of closest approach to Pluto, New Horizons looked back at the dwarf planet through its Long Range Reconnaissance Imager (LORRI) just in time to view sunlight beaming through its atmosphere highlight gasses rising as high as 80 miles (130 kilometers) from its surface. Subsequent analysis of images revealed two distinct gas layers, one at around 30 miles (50 kilometers), and the other at 50 miles (80 kilometers).

“My jaw was on the ground when I saw this first image of an alien atmosphere in the Kuiper Belt,” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “It reminds us that exploration brings us more than just incredible discoveries — it brings incredible beauty.”

Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. Credits: NASA/JHUAPL/SwRI
Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image was taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame.
Credits: NASA/JHUAPL/SwRI

“The hazes detected in this image are a key element in creating the complex hydrocarbon compounds that give Pluto’s surface its reddish hue,” said Michael Summers, New Horizons co-investigator at George Mason University in Fairfax, Virginia.

Planetary scientists believe the hazes detected in the LORRI images form through a process in which sunlight breaks up methane gas particles, which have been detected in the atmosphere of Pluto. This process leads to the formation of more complex hydrocarbon gasses, like ethylene and acetylene, which have been detected by New Horizons.  These heavier compounds fall to the lower regions of Pluto’s atmosphere, where they condense into ice particles that form the hazes viewed. The ice particles are then struck by ultraviolet sunlight, which converts them into the dark hydrocarbons covering the surface of the dwarf planet.

This theory is different than first thoughts on the possibility of this process occurring, in fact, space scientists had previously calculated temperatures would be too warm for such hazes to form above the altitude of 20 miles (30 kilometers). It appears they’ll have to devise a new theory for how the hazes detected could form so far from the surface of Pluto.

Presently around 7.6 million miles (12.2 million kilometers) from Pluto and flying deeper into the Kuiper Belt, New Horizons will continue to send data back to Earth through this year and 2016. All involved in the mission expect to discover more and more about dwarf planets, the Kuiper Belt, and the Solar System as the human journey to the beginning of space and time heads into unseen territory searching for the unknown.

Learn more about NASA’s space mission here.

Learn more about NASA’s New Horizons mission and discover dwarf planet Pluto and its moons here.

Read about NASA’s New Horizons of the Human Journey to the Beginning of Space and Time

Learn about the search for the missing link in black hole evolution

Read about clear skies and hot water vapor detected on Neptune-size exoplanets

NASA Seeks Ultra-lightweight Materials with the Right Stuff

To enable human journey to Mars 

Ultra-lightweight materials are needed to construct rovers, habitats and other necessary equipment.
Ultra-lightweight materials are needed to construct rovers, habitats, and other necessary equipment.

Space news (January 2, 2015) – The NASA development laboratory –

In 1979 Tom Wolfe published The Right Stuff, a book about the first test pilots and astronauts chosen for NASA’s space program. Recently, NASA’s Space Technology Mission Directive (STMD) sent out a solicitation to private and business interests with the right stuff to engineer and create ultra-lightweight materials required for the construction of space vehicles and structures capable of traveling and surviving a journey to Mars and returning in working condition.

NASA’s Game Changing Development Program (GCDP) is seeking proposals from U.S. organizations, and educational, business and nonprofit institutions on developing and eventually manufacturing lower-mass alternatives to current honeycomb and foam materials used in the construction of composite sandwich structures. Composite sandwich structures are manufactured by attaching two thin materials to a low-mass core. Stronger ultra-lightweight materials will allow for the engineering and construction of heat shrouds and other components with the right stuff to enable the human journey to Mars and back.

“Technology drives exploration and ultra-lightweight materials will play a key role in our future missions,” said Michael Gazarik, associate administrator for Space Technology at NASA Headquarters in Washington. “This call for proposals continues a cadence of solicitations that touch on a specific set of thrust areas needed to push human and robotic exploration farther in the solar system.”

NASA will award two proposals up to $550,000 to develop and eventually manufacture ultra-lightweight materials during this phase of the Game Changing Development Program. This is your chance to become a leader in the human journey to Mars and beyond.

You can view all NASA solicitations here. Just click on Solicitations and then Open Solicitations.

You can learn more about NASA’s STMD and the future space technology expected to help us journey safely to Mars and back here.

Read about the mystery surrounding the lack of stars being formed in galaxy clusters.

Learn more about the formation of stars like our own Sun.

Learn about the evolution of life during the early universe.