Traveling Across the Tarantula Nebula on a Runaway Star

hs-2010-14-a-web_print (1)
This image of the 30 Doradus nebula, a rambunctious stellar nursery, and the enlarged inset photo show a heavyweight star that may have been kicked out of its home by a pair of heftier siblings. In the inset image at right, an arrow points to the stellar runaway and a dashed arrow to its presumed direction of motion. The image was taken by the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA’s Hubble Space Telescope. The heavyweight star, called 30 Dor #016, is 90 times more massive than the Sun and is traveling at more than 250,000 miles an hour. In the wider view of 30 Doradus, the homeless star, located on the outskirts of the nebula, is centered within a white box. The box shows Hubble’s field of view. The image was taken by the European Southern Observatory’s (ESO) Wide Field Imager at the 2.2-meter telescope on La Silla, Chile. Credits: NASA/ESA/Hubble

Traveling at 250,000 mph would be a windy, visually spectacular ride to hell 

Space news (Astrophysics: stellar nursery dynamics; runaway stars) – 170,000 light-years from Earth, near the edge of the Tarantula Nebula – 

hs-2010-14-b-full_jpg
Hubble/WFPC2 and ESO/2.2-m Composite Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

If you want to travel through the galaxy, hitch a ride on a runaway star like the one astronomers have been tracking since it came screaming out of 30 Doradus (Tarantula Nebula) in 2006. Data collected by the newly installed Cosmic Origins Spectrograph on the Hubble Space Telescope suggests a massive star, as much as 90 times the mass of Sol, was knocked out of the nebula by gravitational interactions with even more massive suns. Traveling at around 250,000 mph, voyaging through the cosmos on this runaway star would be an adventure to write home about.  

hs-2010-14-c-large_web
ESO 2.2-m WFI Image of the Tarantula Nebula. Credits: NASA/ESA/Hubble

The trail leads back to a star-forming region deep within the Tarantula Nebula called R136, where over 2,400 massive stars near the center of this huge nebula produce an intense wind of radiation. Astronomers think interactions with some of the 100 plus solar mass stars detected in this stellar nursery resulted in this runaway star being flung over 375 light-years by its bigger siblings.  

hs-2010-14-d-web_print
Massive Star is Ejected from a Young Star Cluster. Credits: NASA/ESA/Hubble

These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region,” says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. “Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters.”   

walbornq75sm
Nolan Walborn. Credits: NASA/ESA/Hubble Heritage Site

Astrophysicists studying the runaway star and the region in the Tarantula region where the trail ended believe it’s likely a massive, blue-white sun at least ten times hotter than Sol and only a few million years old. It’s far from home and in a region of space where no clusters with similar stars are found. It’s also left an egg-shaped cavity in its wake with glowing edges pointing in the direction of the center of 30 Doradus and the region of R136. A flaming trail you would see behind the star as you traveled across the cosmos and onto eternity.  

hs-2010-14-e-web_print
Compass/Scale Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

 “It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster’s most massive stars have not yet exploded as supernovae,” says COS team member Danny Lennon of the Space Telescope Science Institute. “This implies that the star must have been ejected through dynamical interaction.” 

This runway star continues to scream across the cosmos, nearing the outskirts of 30 Doradus a star-forming region in the Large Magellanic Cloud, it will one day end its existence in a titanic explosion or supernova, and possibly leave behind one of the most mysterious and enigmatic objects discovered during the human journey to the beginning of space and time, a black hole.  

hs-2010-14-f-web_print
Hubble Observations of Massive Stars in the Large Magellanic Cloud. Credits: NASA/ESA/Hubble

Imagine riding this runaway star until it contracted into a black hole and left our universe altogether. Where would we travel? To a random location in spacetime? To another reality or universe? The possibilities abound and far exceed our ability to imagine such a reality. Scientists tell us such a journey wouldn’t be possible, but they’re just stumbling around in the dark looking for ideas to grasp. For handholds on the dark cliff we climb as we search for answers to the mysteries before us.  

What’s next?

Astronomers continue to study the Tarantula Nebula and the star-forming region R136 looking for signs of impending supernovae among the zoo of supermassive stars within. They also continue to track this runaway star and two other blue hot, supermassive stars outside the boundary of 30 Doradus that appear to have also been ejected from their host systems. We’ll update you with any news on it, and other runaway stars as it continues to scream across the cosmos. 

You can follow the space journey of NASA here

Experience the space voyage of the ESA

Learn more about the Tarantula Nebula here

Read about the discoveries of the Hubble Space Telescope

Explore NASA’s Space Telescope Institute here

Discover everything astronomers know about the star-forming region R136

Discover the mysteries of the Large Magellanic Cloud here

Read about the discoveries of the Chandra X-ray Observatory

Read and learn more about ancient navigators “The Incredible Polynesian Navigators Followed the Stars“.

Learn what astronomers are discovering about the first black holes to exist in the universe.

Read about astronomers observe the shock wave of a supernova in visible light for the first time.

Advertisements

New Satellite “Hitomi” (Pupil of the Eye) Observes Wider X-ray Universe

Japan successfully launched an H-2A rocket carrying the next generation of X-ray space observatory into orbit on Wednesday

pct05_b.jpg

Space news (February 17, 2016) – The Yoshinobu Launch Complex at Tanegashima Space Center in Kagoshima Prefecture in southwestern Japan –  

Anxious astronomers, engineers, and scientists in Japan, Canada and NASA headquarters watched nervously Wednesday as a two-stage H-2A carrier vehicle carrying years of their work and dedication rose slowly from Tanegashima Space Center in Japan.

IMG_0193PorterAstroH.jpg

The H-2A rocket carried the next generation of X-ray space observatory “Hitomi”, formerly known as the Astro-H satellite, to its launch point 580 kilometers above the surface of the Earth.

We see X-rays from sources throughout the universe, wherever the particles in matter reach sufficiently high energies,” said Robert Petre, chief of Goddard’s X-ray Astrophysics Laboratory and the U.S. project scientist for ASTRO-H. “These energies arise in a variety of settings, including stellar explosions, extreme magnetic fields, or strong gravity, and X-rays let us probe aspects of these phenomena that are inaccessible by instruments observing at other wavelengths.”

As part of the launching of Astro-H, the satellite had been recently renamed “Hitomi”, which means “pupil of the eye” in Japanese. Using this eye-in-the-sky, astronomers around the world will study neutron stars, galaxy clusters and black holes in a wider bandwidth of x-rays from soft X-ray to the softest Gamma-ray.

This has been an extraordinary undertaking over many years to build this powerful new X-ray spectrometer jointly in the U.S. and Japan,” said Goddard’s Richard Kelley, the U.S. principal investigator for the ASTRO-H collaboration. “The international team is extremely excited to finally be able to apply the fundamentally new capabilities of the SXS, supported by the other instruments on the satellite, to observations of a wide range of celestial sources, especially clusters of galaxies and black hole systems.”

“Hitomi” is the sixth in a series of X-ray astronomy satellites designed and engineered by Japan Aerospace Exploration Agency’s (JAXA) Institute of Space and Astronautical Science (ISAS). All of the satellites in the series have been extremely successful X-ray observatories that have contributed to human knowledge of the cosmos. The latest satellite to launch into space is expected to offer breakthroughs in understanding and knowledge of the evolution of the largest structures observed in the cosmos.  

Canada’s connection to “Hitomi” is the Canadian ASTRO-H Metrology System (CAMS), which sharpens blurry images using lasers and detectors to correct for the movement of the boom used to support the ends of the extremely long detectors on the satellite. Needed to observe the highest-energy x-rays, the CAMS system was built in consultation with Canadian scientists and researchers by Ottawa-based Neptec.

The technology used in the SXS is leading the way to the next generation of imaging X-ray spectrometers, which will be able to distinguish tens of thousands of X-ray colors while capturing sharp images at the same time,” said Caroline Kilbourne, a member of the Goddard SXS team.

Hitomi starts work

Ultimately “Hitomi” was designed, engineered and launched by the three partners in this venture to conduct a survey of black holes and distant galaxies. They will use the results of the survey to help lift the veil of mystery surrounding the evolution of the most mysterious celestial objects in the cosmos. This is just the start of the space mission of “Hitomi”, once this initial mission concludes, we expect the newest automated-envoy of the human journey to the beginning of space and time to offer insights into the way matter acts in extreme gravitational fields, study the rotation of spinning black holes and the internal structure of neutron stars, and the dynamics and detailed physics of relativistic jets during its mission.

You can follow the space mission of “Hitomi” here.

Learn more about the things we learn about the cosmos each day here.

Learn more about Japan’s Institute of Space and Astronautical Science.

Learn more about the future space missions of the Japan Aerospace Exploration Agency. 

Read about the recent observation of gravitational waves by astronomers.

Learn about the things astronomers discovered recently about young, newborn stars.

Learn more about the things NASA’s New Horizons spacecraft is telling us about Pluto and its moons.

Crucible of the Building Blocks of Life

Just add water, gasses, and simple organic molecules 

Space news (July 27, 2015) – the search for life beyond Earth – a simple recipe for extraterrestrial life –

The simple building blocks of life could have traveled to Earth on icy grains of dust carried on asteroids and meteorites during the early moments of the Solar System.
The simple building blocks of life could have traveled to Earth on icy grains of dust carried on asteroids and meteorites during the early moments of the Solar System.

NASA scientists studying the origins of organic compounds important to the development of life on Earth think they’re on the trail of a cosmic “Crucible of the Building Blocks of Life”. Recent experiments conducted by astrobiologists working at the Goddard Space Flight Center in Greenbelt, Maryland indicate asteroids and meteorites could have been the source of complex organic compounds essential to the evolution of life on Earth. Essential organic compounds they have been able to reproduce in laboratory experiments from simpler organic compounds, water, and gasses in simulations of the space environments of meteorites and asteroids. 

“We found that the types of organic compounds in our laboratory-produced ices match very well to what is found in meteorites,” said Karen Smith of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This result suggests that these important organic compounds in meteorites may have originated from simple molecular ices in space. This type of chemistry may also be relevant for comets, which contain large amounts of water and carbon dioxide ices. These experiments show that vitamin B3 and other complex organic compounds could be made in space and it is plausible that meteorite and comet impacts could have added an extraterrestrial component to the supply of vitamin B3 on ancient Earth.”

“This work is part of a broad research program in the field of Astrobiology at NASA Goddard. We are working to understand the origins of biologically important molecules and how they came to exist throughout the Solar System and on Earth. The experiments performed in our laboratory demonstrate an important possible connection between the complex organic molecules formed in cold interstellar space and those we find in meteorites.”

The Crucible of the Building Blocks of Life

Deep within immense clouds of gas and dust created by exploding stars (supernovae) and the winds of red giant stars coming to the end of their days are countless dust grains. Many of these dust grains will end up part of asteroids and meteorites like the millions of bodies in the Main Asteroid Belt, Kuiper Belt, and Oort Cloud. Asteroids and meteorites that bombarded the Earth from space during the formation of the planets and Solar System.

Cosmic dust grains carried on asteroids and meteorites that struck the Earth during the first moments of the birth of the Solar System could have carried complex organic compounds that contributed to the birth and evolution of life on Earth.
Cosmic dust grains carried on asteroids and meteorites that struck the Earth during the first moments of the birth of the Solar System could have carried complex organic compounds that contributed to the birth and evolution of life on Earth.

NASA space scientists were able to reproduce a “Crucible of the Building Blocks of Life” using an aluminum plate cooled to minus 423 degrees Fahrenheit (minus 253 Celsius) as the cold surface of an interstellar dust grain carried by an asteroid or meteorite heading to Earth 4.5 billion years ago. The experiments were conducted in a vacuum chamber used to replicate conditions in space to which they added gasses containing water, carbon dioxide, and the simple organic compound pyridine. Bombarding the cold surface with high energy protons from a particle accelerator to simulate cosmic radiation and other radiation found in space produced more complex organic compounds like vitamin B3.  

Data collected by the European Space Agency's Rosetta Mission during the months and years ahead could shine more light on this subject. Rosetta's lander, Philae, is currently sitting on the surface of Comet 67P/Churyumov-Gerasimenko awaiting its closest approach to the Sun in August 2015. Presently, the surface of the comet is warming and gases we can test to validate the results of these experiments are expected to be released as it nears Sol. 
Data collected by the European Space Agency’s Rosetta Mission during the months and years ahead could shine more light on this subject. Rosetta’s lander, Philae, is currently sitting on the surface of Comet 67P/Churyumov-Gerasimenko awaiting its closest approach to the Sun in August 2015. Presently, the surface of the comet is warming and gasses we can test to validate the results of these experiments are expected to be released as it nears Sol.

To learn more about the European Space Agency and its work with the Rosetta mission go here.

To learn more about NASA’s space mission and the search for life beyond Earth visit here.

Learn more about the Goddard Space Flight Center here.

Learn more about plans to visit Jupiter’s moon Europa to have a look for the ingredients that make life possible.

Read about the search for the missing link in black hole evolution.

Learn about the planets space scientists are finding orbiting four star systems.

The Search for the Missing Link in Black Hole Evolution

Space scientists think they have found a black hole family member they thought should exist; an intermediate-mass black hole

A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.
A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.

Space news (June 09, 2015) – 100 million light-years away in the direction of the constellation Camelopardalis – 

Mysterious celestial objects space scientists study to better understand the universe, black holes could hold the keys to unlocking the nature of reality. In fact, a celestial object just discovered may turn out to be the key to a long sought after question about how black holes evolve and alter the surrounding environment. 

Space scientists conducting a study of ultraluminous x-ray sources (ULXs) looking for intermediate-mass black holes using NASA’s Chandra X-ray Observatory believe they have found a candidate. An interesting object, called NGC 2276-3c, located in an arm of spiral galaxy NGC 2276, appears to have the right characteristics.  

“Astronomers have been looking very hard for these medium-sized black holes,” said co-author Tim Roberts of the University of Durham in the UK. “There have been hints that they exist, but the IMBHs have been acting like a long-lost relative that isn’t interested in being found.” 

Space scientists studying black holes have observed objects residing at the center of galaxies with masses millions and even billions of times that of the sun. They have also observed objects with characteristics of smaller black holes, with masses about five to thirty times that of the sun. 

NGC 2276-3c is a middle-class black hole, with a mass about 50,000 times that of the sun, which could grow over the next few billions of years. In fact, space scientists think its home galaxy could at the moment be interacting with elliptical galaxy NGC 2300, which could account for its asymmetrical shape. 

How did space scientists locate and study NGC 2276-3c? Researchers observed the object almost at the same time using both the Chandra X-ray Observatory and European Very Long Baseline Interferometry Network (VLBI). Using the X-ray and radio data obtained, along with known facts concerning the relationship between radio and X-ray luminosities for sources powered by black holes, they estimated the mass of the object to be around 50,000 solar masses. This puts the black hole in the range of mass expected for an IMBH. 

“We found that NGC2276-3c has traits similar to both stellar-mass black holes and supermassive black holes,” said co-author Andrei Lobanov of the Max Planck Institute for Radio Astronomy in Bonn, Germany. “In other words, this object helps tie the whole black hole family together.” 

During the study, space scientists also determined NGC 2276-3c has a characteristic seen in many supermassive black holes, a powerful radio jet extending up to 2,000 light years from the black hole. A region of the radio jet extending for about 1,000 light years, also seems to be missing young stars, which they think could mean the radio jet cleared out a cavity in the surrounding gas and prevented the formation of new stars. Powerful evidence to suggest IMBHs could alter their surrounding environments in amazing ways. 

NGC 2276-3c’s location in the spiral arm of its home galaxy is also making space scientists ask questions. Was it formed in the galaxy, or did it come from the center of a dwarf galaxy that collided and merged with NGC 2276 in the past? 

A recent study by a team of researchers led by Anna Wolter of the National Institute of Astrophysics in Milan, Italy seems to support the merger theory. It concluded that new stars are forming at the rate of about five to fifteen solar masses each year in NGC 2276. A high rate of new star formation they believe was possibly triggered by a possible collision with another galaxy in the past, which points to the formation of this IMBH during a merger between galaxies.   

What’s next?

Now astronomers will do more research on NGC 2275-3c and the radio jet extending from it, in order to look for clues to the effects supermassive black hole seeds existing during the first days of the universe could have had on their surroundings.  

You can learn more about NASA’s flagship X-ray telescope, the Chandra X-ray Observatory here

Learn more about NASA’s space mission to the stars here

Read about space scientists on the trail of a cosmic mystery.  

Learn more about the physical things astronauts deal with.

Learn about the ancient astronomy knowledge of ancient Peruvians.

  

NExSS Coalition Searches for Habitable Planets and Life Beyond Earth

Groundbreaking collaboration between sciences explores planetary zoo for candidates with the ingredients for life

The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA's NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right). Credits: NASA
The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA’s NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right).
Credits: NASA

Space news (June 06, 2015) – The human search for life beyond Earth reaches for new horizons this week with the announcement NASA’s bringing together space scientists spanning a variety of scientific fields to form Nexus for Exoplanet System Science (NExSS).

Nexus for Exoplanet System Science (NExSS) brings together top research teams in Earth and planetary science and Helio and Astrophysics in an effort to determine the habitability of exoplanets discovered during the human journey to the beginning of space and time.

“This interdisciplinary endeavor connects top research teams and provides a synthesized approach in the search for planets with the greatest potential for signs of life,” says Jim Green, NASA’s Director of Planetary Science. “The hunt for exoplanets is not only a priority for astronomers, it’s of keen interest to planetary and climate scientists as well.”

Since the beginning of NASA’s Kepler Space Mission six years ago planet hunters have discovered 1852 exoplanets. Currently, there are another 4661 candidates detected by the Kepler Space Telescope, being examined closely for evidence to prove the existence of life beyond Earth. NExSS space scientists will develop techniques to confirm the habitability of these exoplanets by searching for ‘signs of life’.

Earth and planetary scientists, Heliophysicists and Astrophysicists use a “System Science” approach to better understand the ‘signs of life’ they need to look for on exoplanets discovered. They want to understand how life-on-Earth interacts with the atmosphere, geology, oceans and interior of the planet, and how this is affected by our sun. In an effort to develop better techniques to detect life on distant planets.

Dr. Paul Hertz, Director of the Astrophysics Division at NASA notes, “NExSS scientists will not only apply a systems science approach to existing exoplanet data, their work will provide a foundation for interpreting observations of exoplanets from future exoplanet missions such as TESS, JWST, and WFIRST.” The Transiting Exoplanet Survey Satellite (TESS) is working toward a 2017 launch, with the James Webb Space Telescope (JWST) scheduled for launch in 2018. The Wide-field Infrared Survey Telescope (WFIRST) is currently being studied by NASA for a launch in the 2020’s.

The search for life goes on

NExSS is led by Natalie Batalha of NASA’s Ames Research Center, Dawn Gelino of NASA’s Exoplanet Science Institute, and Anthony del Genio of NASA’s Goddard Institute for Space Studies. They’ll lead team members from ten universities and two research institutes as they search for exoplanets with signs of life.

Humans have searched for signs of life in the night sky for thousands of years and some claim to have met and interacted with extraterrestrial beings during this time.

Now, humans desire to meet and communicate with beings from another world, and NExSS is the next step towards finding the answer to the eternal question.

Are we alone in the universe?

To learn more about NExSS and the search for life visit here.

You can learn more about NASA’s space mission to the stars here.

Learn more about planets in four star systems

Read about NASA reaching out to private and business concerns to help enable the human desire to travel to Mars and beyond.

Learn how to calculate the orbits of asteroids within the Main Asteroid Belt.

Companion Star Eclipses X-Ray Neutron Star

X-ray pulsar Swift J1749.4-2807 is the first pulsar astronomers have witnessed being eclipsed by its companion star

April signal from Sagittarius the Archer reveals pulsar (Photo courtesy of NASA)

Astronomy News

Friday, December 30, 2011 – “Astronomy delights the soul because of the mystery

Astronomers recently detected a signal emanating from the constellation Sagittarius the Archer which after study turned out to be a type of x-ray pulsar often called an accretion-powered pulsar. Accretion-powered pulsars have to this point in the human journey to the beginning of time and space always appeared as part of a binary star system with a normal type star. In this scenario the powerful gravity field of the neutron star is able to pull material from the surface of the normal star during a process referred too as accretion. Astronomers have designated this new x-ray pulsar Swift J1749.4-2807 and believe it’s the remnant of a supernova. Spinning wildly out of control, this accretion-powered pulsar is thought to be composed of dense material with properties we know nothing about.

Astronomers believe the signal emanating from the constellation Sagittarius the Archer was produced during the accretion process as the material torn from the surface of the normal star spirals around the neutron star.  NASA scientists believe the material heats up to the point where it radiates x-rays during the process of spiralling into the region of the neutron star’s magnetic poles. X-ray detectors on near Earth telescopes detect these x-rays when a spinning neutron star lines up directly with the line of sight to Earth.

Check out astronomy.com or NASA for the latest in breaking news on the human journey to the beginning of space and time.

Click this link to watch a You Tube video on Sagittarius the Archer

Sagittarius the Archer

Check out my astronomy website at http://astronomytonight.yolasite.com/.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion

NASA’s Curiosity Almost Ready to Journey to Mars

NASA scientists and engineers preparing Curiosity for her journey to Mars

NASA images

One of the latest envoys of the human journey to the beginning of space and time, the Mars rover Curiosity

Astronomy News – The human journey to the beginning of space and time will get a detailed view of Mars using the Mast Camera on NASA’s Mars rover Curiosity, once the spacecraft lands on the surface of Mars, sometime around August 2012, according to the latest estimates by NASA astronomers. Space travel is by necessity extremely well planned and every detail must be worked out to a set time table if Curiosity is to accomplish its mission. All aspects of the mission parameters must be analysed and reanalysed to ensure everything works as expected and the mission sticks to the timetable set by engineers and scientists working to get the spacecraft ready to journey to Mars, sometime between November 25 and December 18, 2011. The Mast Camera on Curiosity is in fact two digital color cameras riding high on the mast, each capable of recording high-definition video at about 8 frames per second, and taking and storing thousands of full-color images of the Red Planet in an eight-gigabyte flash memory. Once they combine the information taken by both cameras scientists and engineers will get detailed 3-D images of Mars as good as or better than any taken before.

This sensor head will play a key role in the mission success of Curiosity

 

Curiosity  will conduct chemical tests of the soil and rocks of Mars

NASA’s Mars Rover will also have onboard a “chemical element reader” to measure the different chemical ingredients making up the soil and rocks of Mars. This particular instrument, along with nine others on board the spacecraft will be looking at the present and past ability habitability of a specific spot on the Red Planet. The Alpha Particle X-Ray Spectrometer (APXS) instrument viewed here was designed by physics professor Ralf Gellert of the University of Guelph in Ontario, Canada. This instrument uses alpha particles, or helium nuclei, and X-rays to bombard the Martian soil or a rock, which will cause the target to emit its own characteristic alpha particles and X-ray radiation. This emitted radiation will be detected by an X-ray detector inside the sensor head, which will be analysed by Mars scientists to see which elements are within the soil or rock. The exact identification of the elements that make up the Martian soil and rocks will help planet scientists determine the building blocks of the Martian crust, and any possible weathering of the soil or rock since it was formed.

Check out NASA’s Curiosity here

The Mars Science Laboratory is managed by JPL, a division of the California Institute of Technology in Pasadena. For more information, visit http://www.nasa.gov/msl . You can follow the mission on Facebook at http://www.facebook.com/MarsCuriosity and on Twitter @marscuriosity . A full listing of JPL social media accounts is at: http://www.jpl.nasa.gov/social .

Check out my newest astronomy website at http://astronomytonight.yolasite.com/.

 

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion