Traveling Across the Tarantula Nebula on a Runaway Star

hs-2010-14-a-web_print (1)
This image of the 30 Doradus nebula, a rambunctious stellar nursery, and the enlarged inset photo show a heavyweight star that may have been kicked out of its home by a pair of heftier siblings. In the inset image at right, an arrow points to the stellar runaway and a dashed arrow to its presumed direction of motion. The image was taken by the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA’s Hubble Space Telescope. The heavyweight star, called 30 Dor #016, is 90 times more massive than the Sun and is traveling at more than 250,000 miles an hour. In the wider view of 30 Doradus, the homeless star, located on the outskirts of the nebula, is centered within a white box. The box shows Hubble’s field of view. The image was taken by the European Southern Observatory’s (ESO) Wide Field Imager at the 2.2-meter telescope on La Silla, Chile. Credits: NASA/ESA/Hubble

Traveling at 250,000 mph would be a windy, visually spectacular ride to hell 

Space news (Astrophysics: stellar nursery dynamics; runaway stars) – 170,000 light-years from Earth, near the edge of the Tarantula Nebula – 

hs-2010-14-b-full_jpg
Hubble/WFPC2 and ESO/2.2-m Composite Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

If you want to travel through the galaxy, hitch a ride on a runaway star like the one astronomers have been tracking since it came screaming out of 30 Doradus (Tarantula Nebula) in 2006. Data collected by the newly installed Cosmic Origins Spectrograph on the Hubble Space Telescope suggests a massive star, as much as 90 times the mass of Sol, was knocked out of the nebula by gravitational interactions with even more massive suns. Traveling at around 250,000 mph, voyaging through the cosmos on this runaway star would be an adventure to write home about.  

hs-2010-14-c-large_web
ESO 2.2-m WFI Image of the Tarantula Nebula. Credits: NASA/ESA/Hubble

The trail leads back to a star-forming region deep within the Tarantula Nebula called R136, where over 2,400 massive stars near the center of this huge nebula produce an intense wind of radiation. Astronomers think interactions with some of the 100 plus solar mass stars detected in this stellar nursery resulted in this runaway star being flung over 375 light-years by its bigger siblings.  

hs-2010-14-d-web_print
Massive Star is Ejected from a Young Star Cluster. Credits: NASA/ESA/Hubble

These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region,” says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. “Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters.”   

walbornq75sm
Nolan Walborn. Credits: NASA/ESA/Hubble Heritage Site

Astrophysicists studying the runaway star and the region in the Tarantula region where the trail ended believe it’s likely a massive, blue-white sun at least ten times hotter than Sol and only a few million years old. It’s far from home and in a region of space where no clusters with similar stars are found. It’s also left an egg-shaped cavity in its wake with glowing edges pointing in the direction of the center of 30 Doradus and the region of R136. A flaming trail you would see behind the star as you traveled across the cosmos and onto eternity.  

hs-2010-14-e-web_print
Compass/Scale Image of 30 Dor Runaway Star. Credits: NASA/ESA/Hubble

 “It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster’s most massive stars have not yet exploded as supernovae,” says COS team member Danny Lennon of the Space Telescope Science Institute. “This implies that the star must have been ejected through dynamical interaction.” 

This runway star continues to scream across the cosmos, nearing the outskirts of 30 Doradus a star-forming region in the Large Magellanic Cloud, it will one day end its existence in a titanic explosion or supernova, and possibly leave behind one of the most mysterious and enigmatic objects discovered during the human journey to the beginning of space and time, a black hole.  

hs-2010-14-f-web_print
Hubble Observations of Massive Stars in the Large Magellanic Cloud. Credits: NASA/ESA/Hubble

Imagine riding this runaway star until it contracted into a black hole and left our universe altogether. Where would we travel? To a random location in spacetime? To another reality or universe? The possibilities abound and far exceed our ability to imagine such a reality. Scientists tell us such a journey wouldn’t be possible, but they’re just stumbling around in the dark looking for ideas to grasp. For handholds on the dark cliff we climb as we search for answers to the mysteries before us.  

What’s next?

Astronomers continue to study the Tarantula Nebula and the star-forming region R136 looking for signs of impending supernovae among the zoo of supermassive stars within. They also continue to track this runaway star and two other blue hot, supermassive stars outside the boundary of 30 Doradus that appear to have also been ejected from their host systems. We’ll update you with any news on it, and other runaway stars as it continues to scream across the cosmos. 

You can follow the space journey of NASA here

Experience the space voyage of the ESA

Learn more about the Tarantula Nebula here

Read about the discoveries of the Hubble Space Telescope

Explore NASA’s Space Telescope Institute here

Discover everything astronomers know about the star-forming region R136

Discover the mysteries of the Large Magellanic Cloud here

Read about the discoveries of the Chandra X-ray Observatory

Read and learn more about ancient navigators “The Incredible Polynesian Navigators Followed the Stars“.

Learn what astronomers are discovering about the first black holes to exist in the universe.

Read about astronomers observe the shock wave of a supernova in visible light for the first time.

Advertisements

Crucible of the Building Blocks of Life

Just add water, gasses, and simple organic molecules 

Space news (July 27, 2015) – the search for life beyond Earth – a simple recipe for extraterrestrial life –

The simple building blocks of life could have traveled to Earth on icy grains of dust carried on asteroids and meteorites during the early moments of the Solar System.
The simple building blocks of life could have traveled to Earth on icy grains of dust carried on asteroids and meteorites during the early moments of the Solar System.

NASA scientists studying the origins of organic compounds important to the development of life on Earth think they’re on the trail of a cosmic “Crucible of the Building Blocks of Life”. Recent experiments conducted by astrobiologists working at the Goddard Space Flight Center in Greenbelt, Maryland indicate asteroids and meteorites could have been the source of complex organic compounds essential to the evolution of life on Earth. Essential organic compounds they have been able to reproduce in laboratory experiments from simpler organic compounds, water, and gasses in simulations of the space environments of meteorites and asteroids. 

“We found that the types of organic compounds in our laboratory-produced ices match very well to what is found in meteorites,” said Karen Smith of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This result suggests that these important organic compounds in meteorites may have originated from simple molecular ices in space. This type of chemistry may also be relevant for comets, which contain large amounts of water and carbon dioxide ices. These experiments show that vitamin B3 and other complex organic compounds could be made in space and it is plausible that meteorite and comet impacts could have added an extraterrestrial component to the supply of vitamin B3 on ancient Earth.”

“This work is part of a broad research program in the field of Astrobiology at NASA Goddard. We are working to understand the origins of biologically important molecules and how they came to exist throughout the Solar System and on Earth. The experiments performed in our laboratory demonstrate an important possible connection between the complex organic molecules formed in cold interstellar space and those we find in meteorites.”

The Crucible of the Building Blocks of Life

Deep within immense clouds of gas and dust created by exploding stars (supernovae) and the winds of red giant stars coming to the end of their days are countless dust grains. Many of these dust grains will end up part of asteroids and meteorites like the millions of bodies in the Main Asteroid Belt, Kuiper Belt, and Oort Cloud. Asteroids and meteorites that bombarded the Earth from space during the formation of the planets and Solar System.

Cosmic dust grains carried on asteroids and meteorites that struck the Earth during the first moments of the birth of the Solar System could have carried complex organic compounds that contributed to the birth and evolution of life on Earth.
Cosmic dust grains carried on asteroids and meteorites that struck the Earth during the first moments of the birth of the Solar System could have carried complex organic compounds that contributed to the birth and evolution of life on Earth.

NASA space scientists were able to reproduce a “Crucible of the Building Blocks of Life” using an aluminum plate cooled to minus 423 degrees Fahrenheit (minus 253 Celsius) as the cold surface of an interstellar dust grain carried by an asteroid or meteorite heading to Earth 4.5 billion years ago. The experiments were conducted in a vacuum chamber used to replicate conditions in space to which they added gasses containing water, carbon dioxide, and the simple organic compound pyridine. Bombarding the cold surface with high energy protons from a particle accelerator to simulate cosmic radiation and other radiation found in space produced more complex organic compounds like vitamin B3.  

Data collected by the European Space Agency's Rosetta Mission during the months and years ahead could shine more light on this subject. Rosetta's lander, Philae, is currently sitting on the surface of Comet 67P/Churyumov-Gerasimenko awaiting its closest approach to the Sun in August 2015. Presently, the surface of the comet is warming and gases we can test to validate the results of these experiments are expected to be released as it nears Sol. 
Data collected by the European Space Agency’s Rosetta Mission during the months and years ahead could shine more light on this subject. Rosetta’s lander, Philae, is currently sitting on the surface of Comet 67P/Churyumov-Gerasimenko awaiting its closest approach to the Sun in August 2015. Presently, the surface of the comet is warming and gasses we can test to validate the results of these experiments are expected to be released as it nears Sol.

To learn more about the European Space Agency and its work with the Rosetta mission go here.

To learn more about NASA’s space mission and the search for life beyond Earth visit here.

Learn more about the Goddard Space Flight Center here.

Learn more about plans to visit Jupiter’s moon Europa to have a look for the ingredients that make life possible.

Read about the search for the missing link in black hole evolution.

Learn about the planets space scientists are finding orbiting four star systems.

The Search for the Missing Link in Black Hole Evolution

Space scientists think they have found a black hole family member they thought should exist; an intermediate-mass black hole

A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.
A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.

Space news (June 09, 2015) – 100 million light-years away in the direction of the constellation Camelopardalis – 

Mysterious celestial objects space scientists study to better understand the universe, black holes could hold the keys to unlocking the nature of reality. In fact, a celestial object just discovered may turn out to be the key to a long sought after question about how black holes evolve and alter the surrounding environment. 

Space scientists conducting a study of ultraluminous x-ray sources (ULXs) looking for intermediate-mass black holes using NASA’s Chandra X-ray Observatory believe they have found a candidate. An interesting object, called NGC 2276-3c, located in an arm of spiral galaxy NGC 2276, appears to have the right characteristics.  

“Astronomers have been looking very hard for these medium-sized black holes,” said co-author Tim Roberts of the University of Durham in the UK. “There have been hints that they exist, but the IMBHs have been acting like a long-lost relative that isn’t interested in being found.” 

Space scientists studying black holes have observed objects residing at the center of galaxies with masses millions and even billions of times that of the sun. They have also observed objects with characteristics of smaller black holes, with masses about five to thirty times that of the sun. 

NGC 2276-3c is a middle-class black hole, with a mass about 50,000 times that of the sun, which could grow over the next few billions of years. In fact, space scientists think its home galaxy could at the moment be interacting with elliptical galaxy NGC 2300, which could account for its asymmetrical shape. 

How did space scientists locate and study NGC 2276-3c? Researchers observed the object almost at the same time using both the Chandra X-ray Observatory and European Very Long Baseline Interferometry Network (VLBI). Using the X-ray and radio data obtained, along with known facts concerning the relationship between radio and X-ray luminosities for sources powered by black holes, they estimated the mass of the object to be around 50,000 solar masses. This puts the black hole in the range of mass expected for an IMBH. 

“We found that NGC2276-3c has traits similar to both stellar-mass black holes and supermassive black holes,” said co-author Andrei Lobanov of the Max Planck Institute for Radio Astronomy in Bonn, Germany. “In other words, this object helps tie the whole black hole family together.” 

During the study, space scientists also determined NGC 2276-3c has a characteristic seen in many supermassive black holes, a powerful radio jet extending up to 2,000 light years from the black hole. A region of the radio jet extending for about 1,000 light years, also seems to be missing young stars, which they think could mean the radio jet cleared out a cavity in the surrounding gas and prevented the formation of new stars. Powerful evidence to suggest IMBHs could alter their surrounding environments in amazing ways. 

NGC 2276-3c’s location in the spiral arm of its home galaxy is also making space scientists ask questions. Was it formed in the galaxy, or did it come from the center of a dwarf galaxy that collided and merged with NGC 2276 in the past? 

A recent study by a team of researchers led by Anna Wolter of the National Institute of Astrophysics in Milan, Italy seems to support the merger theory. It concluded that new stars are forming at the rate of about five to fifteen solar masses each year in NGC 2276. A high rate of new star formation they believe was possibly triggered by a possible collision with another galaxy in the past, which points to the formation of this IMBH during a merger between galaxies.   

What’s next?

Now astronomers will do more research on NGC 2275-3c and the radio jet extending from it, in order to look for clues to the effects supermassive black hole seeds existing during the first days of the universe could have had on their surroundings.  

You can learn more about NASA’s flagship X-ray telescope, the Chandra X-ray Observatory here

Learn more about NASA’s space mission to the stars here

Read about space scientists on the trail of a cosmic mystery.  

Learn more about the physical things astronauts deal with.

Learn about the ancient astronomy knowledge of ancient Peruvians.

  

Something Unusual, Something New

Some of the biggest explosions in the universe

Astronomy News – Supernovas are some of the most powerful and visually striking events observed during the human “Journey to the Beginning of Space and Time. Releasing more energy in a single moment than Sol will over its entire lifetime, a supernova is luminous enough to shine brighter in the night sky than entire galaxies during one moment in space and time, before slowly fading from view over several weeks or months. The force of a supernova expels a large percentage of a star’s mass into the darkness of space and time at about 10 percent of the speed of light and creates a shock wave that sweeps up the expanding shell of gas and dust released during the explosion referred to by astronomers as a supernova remnant. 

 Astronomers search for new supernovae

Astronomers using NASA’s Spitzer Space Telescope to search the night sky for active galactic nuclei (AGN), super-massive black holes at the center of galaxies, recently reported the discovery of a supernova smothered in the remnants of its own star-dust during their search. This has astronomers scratching their heads in amazement at something they have never viewed during the human “Journey to the Beginning of Space and Time. Scientists think supernovas like this one probably occurred during the early universe, more than they do during present time, and this discovery has astronomers looking for answers to questions they never thought they would be asking.
 

Astronomers realised something was different

The recorded temperature of the object they were viewing was about 1,000 Kelvin (about 700 degrees Celsius), which is slightly hotter than the surface of Venus. This means something was dissipating the light energy of the supernova as heat? Astronomers wondered if the dust from the supernova could be choking off the light from the supernova and creating the heat they were viewing? Taking data from studies of NASA’s Spitzer Space Telescope astronomers worked backward in space and time to see if they could figure out what kind of star could have theoretically created this supernova and if they could recreate a scenario where the dust from a supernova obscures the universe from the light released during the supernova. They calculated that the star in this supernova would have to be a giant star at least 50 times as massive as Sol. Astronomers have viewed these types of stars releasing huge clouds of dust as they near the end of their lives, but they calculated this particular star probably released clouds of stardust several times during this same period of time. The last cloud of stardust expelled would, therefore, be closer to this massive star, than earlier released clouds of stardust, they reasoned. If the earlier dust cloud was also opaque, it would absorb the light energy released during later energy releases, and this could certainly account for the hot dust cloud they observed through NASA’s Spitzer Space Telescope.
 
This dust cloud obscures the dust from its parent star

Check out my latest astronomy website at http://astronomytonight.yolasite.com/.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion

Astronomers Bring Another Strange Creature to the Pulsar Zoo

Neutron star SGR 0418+5729 is a slowly rotating neutron star astronomers recently added to the Pulsar Zoo
This is an artist’s conception of a slowly rotating neutron star

Neutron star SGR 0418+5729 shows off

Astronomy News – The human “Journey to the Beginning of Space and Time’ discovered another neutron star on June 5, 2009, that’s currently keeping astronomers and space scientists busy looking into the unusual properties of this newest member of the pulsar zoo. Astronomers using NASA’s Chandra, Swift and Rossi X-ray observatories, the Fermi Gamma-ray Space Telescope and ESA’s XMM-Newton telescope have been taking a look at this slowly rotating neutron star with an ordinary surface magnetic field as it gives off x-rays and gamma rays. Astronomers think the facts they have collected during their study of neutron star SGR 0418+5729 could indicate the presence of an internal magnetic field much more powerful than the surface magnetic field of this pulsar. This has definite implications in relation to the evolution of the most powerful magnets we have observed during the human “Journey to the Beginning of Space and Time” and astronomers are now delving into the mysteries they see within this neutron star to determine the facts.

Another strange neutron star

Astronomers looking at neutron star SGR 0418+5729 think this pulsar is one of a strange breed of neutron stars they refer too as magnetars, which normally have strong to extreme magnetic fields 20 to 100 times above the average for galactic radio pulsars they have viewed in the universe. What really has astronomers viewing SGR 0418+5729 scratching their heads is the fact that over a 490 day period of observing this pulsar astronomers saw no detectable decrease in this neutron stars rotational rate.

Astronomers think that the lack of rotational slowing of this neutron star could mean that the radiation of low-frequency waves is pretty weak, which leads them to believe the surface magnetic field of this pulsar must be quite a bit less powerful than normal. This conclusion gives astronomers another puzzle to solve, since with this thought astronomers are wondering where the energy for this neutron stars power bursts and x-ray emissions come from.

Does the power and energy creating this neutron stars power bursts and x-ray emissions originate in the twisting and amplifying of this pulsars internal magnetic field in the chaotic interior of this neutron star?

Present theories on this indicate that astronomers believe that if the internal magnetic field becomes ten or more times stronger than the surface magnetic field, the twisting or decay of the magnetic field could lead to the production of steady and bursting x-rays through the heating of the pulsar’s crust or the acceleration of particles in the magnetic field.

The question astronomers want to answer now is how large can the imbalance between the surface and interior magnetic fields be? If further observations indicate that the surface magnetic field limit is pushed too low, then astronomers will have to dig a little deeper into SGR 0418+5729 to find out why this neutron star is rotating slower.

Check out my latest astronomy website at http://astronomytonight.yolasite.com/.

Learn why astronomy binoculars are a popular choice with amateur astronomers

Read about the Anasazi Indians

Read about astronomers viewing a supernova they think might have given birth to a black hole

Worshipping Sol

 The energy of the sun affects all life on Earth in ways we don’t even imagine

Three separate instruments aboard Hinode will study Sol

Humans have worshipped Sol for thousands of years

The original source of energy for all life on Earth, Sol has always ruled the lives and minds of human beings in many ways. The ruler of the daytime sky in ancient times and still today, Sol was worshipped by ancient humans of many cultures, and will always be a major force in the life of every human being on Earth. The Sumerians worshiped Utu as their sun god over two thousand years ago and modern humans worship the sun in their own way. We send spacecraft toward Sol, to study the lifecycle and physical and chemical characteristics of our sun, and determine everything we can about the sun.

Astronomy News – Hinode (Solar-B) is one spacecraft humans have sent out toward Sol in an attempt to delve deeper into the mysteries of the sun. A highly sophisticated observational satellite equipped with three solar telescopes, Hinode has recently revealed that the solar corona isn’t quite as static as solar scientists were first thinking. Hinode has surprised solar scientists of late with views of complex structures in the solar chromosphere, solar scientists use to think were static, but now believe to be dynamic structures flowing in time. This is making solar scientists rethink some of the previous ideas they had about the heating mechanisms and dynamics of the active solar corona.

Astronomers study the Sun continuously in an attempt to understand its mysteries

What questions will solar scientists working with Hinode try to answer next? They’ll be looking into why a hot corona exists above a cooler atmosphere? The origins and driving forces behind solar flares and the Sol’s magnetic field? The changes that the release of solar energy in its many forms has on interplanetary space in our solar system and life on Earth? The answers to these questions could be a key to eventually answering many of the questions the first stargazers and all humans have been asking for thousands of years. Solar scientists are also interested in knowing how magnetic changes near Sol’s surface effect the heliosphere, the outer atmosphere of Sol that extends beyond Pluto, and how severe changes in the heliosphere can cause satellites to malfunction and electrical blackouts on Earth.

Check out my latest astronomy site at http://astronomytonight.yolasite.com/.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion