NASA’s NuSTAR Studies X-ray Sources in Andromeda to Learn More About Distant Galaxies

Astronomers study 40 X-ray binaries comprised of black hole or neutron star feeding on material from companion star

NASA's Nuclear Spectroscope Telescope Array, or NuSTAR, has imaged a swath of the Andromeda galaxy -- the nearest large galaxy to our own Milky Way galaxy.
NASA’s Nuclear Spectroscope Telescope Array, or NuSTAR, has imaged a swath of the Andromeda galaxy — the nearest large galaxy to our own Milky Way galaxy.

Space news (February 05, 2016) – 2.5 million light-years away in Andromeda –

Astronomers using NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) to study 40 X-ray binaries in Andromeda Galaxy (M31). Astrophysicists study the critical role these energetic, intense sources of X-rays could have played in heating the intergalactic gasses in which the first galaxies were born. A study expected to help scientists view more distant galaxies and develop current and new theories on cosmic evolution. 

NASA's NuSTAR spacecraft scans the universe.
NASA’s NuSTAR spacecraft scans the universe looking for X-ray binaries and other anomalies.

Andromeda is the only large spiral galaxy where we can see individual X-ray binaries and study them in detail in an environment like our own,” said Daniel Wik of NASA Goddard Space Flight Center in Greenbelt, Maryland, who presented the results at the 227th meeting of American Astronomical Society in Kissimmee, Florida.­­­­ “We can then use this information to deduce what’s going on in more distant galaxies, which are harder to see.”

Andromeda and the Milky Way are fated to collide billions of years in the future, which will disrupt their spiral structures. Andromeda is slightly bigger than our home galaxy and is viewable from Earth by the naked human eye on dark, clear nights. The galaxy that results from their fated meeting in the dark of space will look nothing like the pair as we see them now. Watch this video on the Hubble site called “Clash of the Titans: Milky Way & Andromeda Collision“.

Study continues

Astronomers are currently going over the data obtained through their use of NuSTAR to study the 40 X-ray binaries in Andromeda. Astrophysicists are identifying the fraction containing black holes as compared to neutron stars in order to better understand X-ray binaries as a whole. 

We have come to realize in the past few years that it is likely the lower-mass remnants of normal stellar evolution, the black holes, and neutron stars, may play a crucial role in heating of the intergalactic gas at very early times in the universe, around the cosmic dawn,” said Ann Hornschemeier of NASA Goddard, the principal investigator of the NuSTAR Andromeda studies. 

She continued, “Observations of local populations of stellar-mass-sized black holes and neutron stars with NuSTAR allow us to figure out just how much power is coming out from these systems. The new research also reveals how Andromeda may differ from our Milky Way. 

Fiona Harrison, the principal investigator of the NuSTAR mission, added, “Studying the extreme stellar populations in Andromeda tells us about how its history of forming stars may be different than in our neighborhood.”

You can learn more about the mission of NASA’s NuSTAR here

Discover the history and future plans of NASA here.

Learn more about Andromeda galaxy here.

Learn more about the Milky Way here.

Learn about the mysteries surrounding X-ray binaries here.

Read about events astronomers detect happening near young, newly-formed star system Dl Cha.

Read about the coming to life of the Monster of the Milky Way.

Learn more about Pluto and New Horizons spacecraft.