WISE & Spitzer Detect Faintest, Coolest Brown Dwarf Star to Date

pia18001-main_0
WISE J085510.83-071442.5 is the coolest, faintest brown dwarf star located and it’s also only 7.2 light-years away from Earth. Credits: NASA/ESA/Spitzer/WISE

A frosty, chilly star about the same temperature as the North Pole, minus 54 and 9 degrees Fahrenheit (minus 48 to minus 13 degrees Celsius)

Space news (astrophysics: faint, cool stars; brown dwarfs) – the fourth closest detected star system to Earth, just 7.2 light-years toward the constellation Hydra – 

A young, ambitious astronomer working at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds discovered the dimmest, coolest brown dwarf detected during the human journey to the beginning of space and time. Kevin Lehman first noticed a fast moving object, quickly dubbed WISE J085510.83-071442.5, in March of 2013. Excited at a new discovery, he spent the next few days analyzing more images of the same part of the sky taken by NASA’s Spitzer Space Telescope and Gemini South Telescope on Cerro Pachon in Chile.

pia18003-full
Welcome to the Sun’s Neighborhood This diagram illustrates the locations of the star systems closest to the sun. The year when the distance to each system was determined is listed after the system’s name. NASA’s Wide-field Infrared Survey Explorer, or WISE, found two of the four closest systems: the binary brown dwarf WISE 1049-5319 and the brown dwarf WISE J085510.83-071442.5. NASA’s Spitzer Space Telescope helped pin down the location of the latter object. The closest system to the sun is a trio of stars that consists of Alpha Centauri, a close companion to it and the more distant companion Proxima Centauri. Image credit: Penn State University

“It’s very exciting to discover a new neighbor of our solar system that is so close,” said Kevin Luhman, an astronomer at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds, University Park. “And given its extreme temperature, it should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures.” 

Kevin Luhman originally spotted the fast motion of WISE J085510.83-071442.5 in infrared images taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Later analysis of infrared images taken by NASA’s Spitzer Space Telescope were needed to determine its chilly temperature of between minus (54-9) Fahrenheit [minus (13 – 48) degrees Celsius]. Astronomers would use measurements taken by Spitzer and WISE at different positions around the sun to determine its distance of 7.2 light-years from Earth using the parallax effect. To scientists, it added up to a brown dwarf or maybe a large Jupiter-size planet lost in space. 

“This object appeared to move really fast in the WISE data,” said Luhman. “That told us it was something special.” 

pia18002-full-640_0
Cold and Quick: a Fast-Moving Brown Dwarf This animation shows the coldest brown dwarf yet seen, and the fourth closest system to our sun. Called WISE J085510.83-071442.5, this dim object was discovered through its rapid motion across the sky. It was first seen in two infrared images taken six months apart in 2010 by NASA’s Wide-field Infrared Survey Explorer, or WISE (see orange triangles). Two additional images of the object were taken with NASA’s Spitzer Space Telescope in 2013 and 2014 (green triangles). All four images were used to measure the distance to the object — 7.2 light-years — using the parallax effect. › See animation The Spitzer data were used to show that the body is as cold as the North Pole (or between minus 54 and 9 degrees Fahrenheit, which is minus 48 to minus 13 degrees Celsius). Image credit: NASA/JPL-Caltech/Penn State

Additional calculations estimated the mass of WISE J085510.83-071442.5 at between 3 and 10 times the mass of Jupiter. It could be a gas giant like Jupiter that was flung out of its host star system by gravitational interactions with more massive bodies. Astronomers determined it was more likely a very cool brown dwarf than a large gas giant planet since they have been detected more often. If this is the case, it’s the coldest brown dwarf star discovered during the human journey to the beginning of space and time. A nice shiny feather in the hat of a young, aspiring astronomer on the rise.  

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the sun’s nearest neighbors,” said Michael Werner, the project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. JPL manages and operates Spitzer. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.” 

Work’s never done

Never one to rest on his laurels, in March of 2013, Kevin Luhman discovered a pair of warmer brown dwarf stars just 6.5 light-years from Earth during his analysis of WISE images. Since this time, his search for rapidly moving bodies close to Earth has also shown that the outer solar system probably doesn’t contain a large, undiscovered planet X or Nemesis, as people often refer to it. I did mention he was ambitious. 

Learn more about WISE J085510.83-071442.5.

You can learn more about Kevin Luhman here

Take the space journey of NASA

Learn more about the Spitzer Space Telescope

Tour NASA’s Jet Propulsion Laboratory here

Learn more about the Wide-field Infrared Survey Explorer

Discover the work being done by Pennsylvania State University’s Center for Exoplanets and Habitable Worlds. 

Discover the Gemini South Telescope on Cerro Pachon in Chile. 

Read about a recent observation by the Kepler Space Telescope of a supernova shock wave in visible light.

Learn more about the incredible polynesian navigators and how they populated the islands of the Pacific Ocean.

Read about a supermassive black hole astronomers recently found residing in a galactic backwater.

Astronomers Witness First Cosmic-moments of Rare, Newborn Supernovae

Three Type Ia supernovae they study in order to measure cosmic distances and lift the veil of mystery surrounding dark energy

This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA's Kepler spacecraft. The light curve shows a star's brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected 'bump' in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast. Credits: NASA Ames/W. Stenzel
This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA’s Kepler spacecraft. The light curve shows a star’s brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected ‘bump’ in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast.
Credits: NASA Ames/W. Stenzel

Space news (astrophysics: supernovae; 3 new candidates) – billions of light-years from Earth –

A team of determined astronomers studying the largest explosions viewed during the human journey to the beginning of space and time recently found three new candidates. Three candidates, they found after viewing 400 galaxies for two years using NASA’s Kepler Space Telescope.

Kepler’s unprecedented pre-event supernova observations and Swift’s agility in responding to supernova events have both produced important discoveries at the same time but at very different wavelengths,” says Paul Hertz, Director of Astrophysics for NASA’s Science Mission Directorate. “Not only do we get insight into what triggers a Type Ia supernova, but these data allow us to better calibrate Type Ia supernovae as standard candles, and that has implications for our ability to eventually understand the mysteries of dark energy.”

In the data they collected over this two year period using NASA’s Kepler Space Telescope, this amazing team of explorers found three new and distant Type Ia supernovae, designated KSN 2011b, KSN 2011c, KSN 2012a. Due to the frequent observations of Kepler in the direction of the three distant supernovae, the data collected even contains the first moments of each tremendous blast. Measurements that will allow scientists to piece together the events leading to these events and the reasons for such a tremendous release of energy.

Astrophysicists believe Type Ia supernovae erupt with the same apparent brightness because in all cases the exploding body is a white dwarf star. It’s this property scientists use as a standard candle to more accurately measure the distance to objects around the cosmos than was previously possibly.

Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen
Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen

Astronomers also believe that every Type Ia supernovae are either the result of two white dwarf stars merging, or a white dwarf gathering so much material from a nearby companion star, it causes a thermonuclear reaction resulting in the white dwarf going supernova.

Our Kepler supernova discoveries strongly favor the white dwarf merger scenario, while the Swift study, led by Cao, proves that Type Ia supernovae can also arise from single white dwarfs,” said Robert Olling, a research associate at the University of Maryland and lead author of the study. “Just as many roads lead to Rome, nature may have several ways to explode white dwarf stars.”

In the case of KSN 2011b, KSN 2011c, and KSN 2012a, astronomers found no evidence to support the existence of material being taken from a companion star. This leads them to believe the cause in these cases is collision and merger between two closely orbiting white dwarf stars. 

Now, astronomers will use NASA’s Kepler Space Telescope and other Earth and space-based telescopes to search for Type Ia supernovae among thousands of galaxies included in the study. This will allow them to determine the distance of stellar objects across the cosmos more accurately. It will also help them delve deeper into the mystery surrounding dark energy and its true nature. 

The search for supernovae continues

The Kepler spacecraft has delivered yet another surprise, playing an unexpected role in supernova science by providing the first well-sampled early time light curves of Type Ia supernovae,” said Steve Howell, Kepler project scientist at NASA’s Ames Research Center in Moffett Field, California. “Now in its new mission as K2, the spacecraft will search for more supernovae among many thousands of galaxies.”

Learn more about supernovae here.

Take the journey of the Kepler Space Telescope here.

Learn more about the search for the identity of dark energy here.

Learn more about the things astronomers are learning about the formation of new stars.

Read about plans of private firm Planetary Resources Inc. to mine an asteroid in the near future.

Discover and learn about the things NASA’s New Horizons mission has told us about Pluto and its system of moons.

Astrophysicists Detect Mysterious Radio Emissions Emanating From Brown Dwarf Stars

Clues indicate “failed stars” generate Auroral displays a million times more powerful than on Earth 

This artist's concept shows an auroral display on a brown dwarf. If you could see an aurora on a brown dwarf, it would be a million times brighter than an aurora on Earth. Credits: Chuck Carter and Gregg Hallinan/Caltech
This artist’s concept shows an auroral display on a brown dwarf. If you could see an aurora on a brown dwarf, it would be a million times brighter than an aurora on Earth.
Credits: Chuck Carter and Gregg Hallinan/Caltech

Space news (August 16, 2015) – 18.6 light-years from Earth

Called “failed stars” because they don’t have enough mass to fuse hydrogen in their cores and being too big to be classified as planets, brown dwarfs have been a focus of study for astrophysicists because their atmospheres’ are thought to be very similar to conditions on many of the exoplanets we have discovered.

Studying the atmosphere of cool brown dwarfs is easier than trying to gather data on the atmosphere of an exoplanet. Light from the parent star interferes with the readings taken of the atmosphere of an exoplanet, making it harder to view through all the glare.

“It’s challenging to study the atmosphere of an exoplanet because there’s often a much brighter star nearby, whose light muddles observations. But we can look at the atmosphere of a brown dwarf without this difficulty,” Greg Hallinan said.

Astrophysicists studying brown dwarfs since the early 2000s using a trio of observatories have detected brilliant auroras dancing across the atmosphere of brown dwarf LSRJ1835+3259. Vivid red auroras, due to the higher hydrogen content of its atmosphere, estimated to be a million times more energetic than any viewed on Earth. 

This is a whole new manifestation of magnetic activity for that kind of object,” said Leon Harding, a technologist at NASA’s Jet Propulsion Laboratory, Pasadena, California, and co-author of the study.

Auroras viewed on Earth are produced when charged particles, mostly electrons, from the solar wind strike atoms of oxygen and nitrogen in the atmosphere above the poles, resulting in vivid displays of mostly green colors that dance across the sky.

As the electrons spiral down toward the atmosphere, they produce radio emissions, and then when they hit the atmosphere, they excite hydrogen in a process that occurs on Earth and other planets,” said Gregg Hallinan, assistant professor of astronomy at the California Institute of Technology in Pasadena, who led the team. “We now know that this kind of auroral behavior is extending all the way from planets up to brown dwarfs.

What’s next?

Astrophysicists will now continue their studies of brown dwarfs using the Astronomy Observatory Very Large Array in New Mexico, the W.M. Keck Observatory in Hawaii, and the Hale Telescope at the Palomar Observatory in California. Plans to map the auroras of LSRJ1835+3259 are being discussed to see if they can find the source of the solar winds generating them. Brown dwarfs don’t generate a solar wind like other stars, so they’re kind of at a loss at this point as to the source. 

My vote is for an orbiting exoplanet moving through the magnetosphere of LSRJ1835+3259 generating a current producing spectacular, vivid red auroras that light up the atmosphere. A show one of our robot explorers may view up close one day, but for now, astrophysicists will have to settle for studying it from a distance.

At the very least, studying brown dwarfs will help astrophysicists understand the atmospheres’ of exoplanets viewed during the human journey to the beginning of space and time, better. 

Hallinan and the rest of the team are also hoping to take a close look at the magnetic fields of exoplanets in the future. The Owens Valley Long Wavelength Array is coming online and plans are to take a few measurements of candidates in the Exoplanet Zoo.

You can learn more about NASA’s mission to the stars here.

You can discover the Owens Valley Long Wavelength Array here.

Take a look at all the discoveries of the National Radio Astronomy Observatory here.

Discover the W.M. Keck Observatory here.

Learn more about the mission of the Palomar Observatory here.

Learn about the way galaxies merge to become one.

Read about the discovery of the first nearly Earth-sized exoplanet.

Learn about the discovery of geysers on the southern polar region of Enceladus erupting icy grains of water and organic materials into the E ring of Saturn.