WISE & Spitzer Detect Faintest, Coolest Brown Dwarf Star to Date

pia18001-main_0
WISE J085510.83-071442.5 is the coolest, faintest brown dwarf star located and it’s also only 7.2 light-years away from Earth. Credits: NASA/ESA/Spitzer/WISE

A frosty, chilly star about the same temperature as the North Pole, minus 54 and 9 degrees Fahrenheit (minus 48 to minus 13 degrees Celsius)

Space news (astrophysics: faint, cool stars; brown dwarfs) – the fourth closest detected star system to Earth, just 7.2 light-years toward the constellation Hydra – 

A young, ambitious astronomer working at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds discovered the dimmest, coolest brown dwarf detected during the human journey to the beginning of space and time. Kevin Lehman first noticed a fast moving object, quickly dubbed WISE J085510.83-071442.5, in March of 2013. Excited at a new discovery, he spent the next few days analyzing more images of the same part of the sky taken by NASA’s Spitzer Space Telescope and Gemini South Telescope on Cerro Pachon in Chile.

pia18003-full
Welcome to the Sun’s Neighborhood This diagram illustrates the locations of the star systems closest to the sun. The year when the distance to each system was determined is listed after the system’s name. NASA’s Wide-field Infrared Survey Explorer, or WISE, found two of the four closest systems: the binary brown dwarf WISE 1049-5319 and the brown dwarf WISE J085510.83-071442.5. NASA’s Spitzer Space Telescope helped pin down the location of the latter object. The closest system to the sun is a trio of stars that consists of Alpha Centauri, a close companion to it and the more distant companion Proxima Centauri. Image credit: Penn State University

“It’s very exciting to discover a new neighbor of our solar system that is so close,” said Kevin Luhman, an astronomer at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds, University Park. “And given its extreme temperature, it should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures.” 

Kevin Luhman originally spotted the fast motion of WISE J085510.83-071442.5 in infrared images taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Later analysis of infrared images taken by NASA’s Spitzer Space Telescope were needed to determine its chilly temperature of between minus (54-9) Fahrenheit [minus (13 – 48) degrees Celsius]. Astronomers would use measurements taken by Spitzer and WISE at different positions around the sun to determine its distance of 7.2 light-years from Earth using the parallax effect. To scientists, it added up to a brown dwarf or maybe a large Jupiter-size planet lost in space. 

“This object appeared to move really fast in the WISE data,” said Luhman. “That told us it was something special.” 

pia18002-full-640_0
Cold and Quick: a Fast-Moving Brown Dwarf This animation shows the coldest brown dwarf yet seen, and the fourth closest system to our sun. Called WISE J085510.83-071442.5, this dim object was discovered through its rapid motion across the sky. It was first seen in two infrared images taken six months apart in 2010 by NASA’s Wide-field Infrared Survey Explorer, or WISE (see orange triangles). Two additional images of the object were taken with NASA’s Spitzer Space Telescope in 2013 and 2014 (green triangles). All four images were used to measure the distance to the object — 7.2 light-years — using the parallax effect. › See animation The Spitzer data were used to show that the body is as cold as the North Pole (or between minus 54 and 9 degrees Fahrenheit, which is minus 48 to minus 13 degrees Celsius). Image credit: NASA/JPL-Caltech/Penn State

Additional calculations estimated the mass of WISE J085510.83-071442.5 at between 3 and 10 times the mass of Jupiter. It could be a gas giant like Jupiter that was flung out of its host star system by gravitational interactions with more massive bodies. Astronomers determined it was more likely a very cool brown dwarf than a large gas giant planet since they have been detected more often. If this is the case, it’s the coldest brown dwarf star discovered during the human journey to the beginning of space and time. A nice shiny feather in the hat of a young, aspiring astronomer on the rise.  

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the sun’s nearest neighbors,” said Michael Werner, the project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. JPL manages and operates Spitzer. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.” 

Work’s never done

Never one to rest on his laurels, in March of 2013, Kevin Luhman discovered a pair of warmer brown dwarf stars just 6.5 light-years from Earth during his analysis of WISE images. Since this time, his search for rapidly moving bodies close to Earth has also shown that the outer solar system probably doesn’t contain a large, undiscovered planet X or Nemesis, as people often refer to it. I did mention he was ambitious. 

Learn more about WISE J085510.83-071442.5.

You can learn more about Kevin Luhman here

Take the space journey of NASA

Learn more about the Spitzer Space Telescope

Tour NASA’s Jet Propulsion Laboratory here

Learn more about the Wide-field Infrared Survey Explorer

Discover the work being done by Pennsylvania State University’s Center for Exoplanets and Habitable Worlds. 

Discover the Gemini South Telescope on Cerro Pachon in Chile. 

Read about a recent observation by the Kepler Space Telescope of a supernova shock wave in visible light.

Learn more about the incredible polynesian navigators and how they populated the islands of the Pacific Ocean.

Read about a supermassive black hole astronomers recently found residing in a galactic backwater.

Advertisements

New Evidence Suggests Some Early Supermassive Black Holes Formed During the Direct Collapse of a Gas Cloud

 

black_seed_images_1920x1200.jpg (1)
Combined data from Spitzer, Hubble and the Chandra X-ray Observatory were used to create this illustration of the direct collapse of a gas cloud into a supermassive black hole. Credit: NASA/Chandra/Spitzer/Hubble/ESA.

The seed out of which some of these mysterious, lurking monsters were born

Space news (astrophysics: black hole formation: early black holes) – supermassive black holes scattered around the observable universe – 

Astronomers believe and data suggests at the center of nearly all large galaxies, including the Milky Way, lurks a supermassive black hole with millions and even billions of times the mass of our sun. Gigantic black holes that in some cases formed less than a billion years after the birth of the cosmos. For the first time, they have uncovered evidence suggesting some of these early supermassive black holes formed directly during the collapse of a giant gas cloud. A finding making astronomers rethink current theories on the formation of these enigmatic, invisible monsters.

 

behemoth_blackhole
This illustration shows a supermassive black hole at the core of a galaxy far, far away. Light skimming past the event horizon (black area) is stretched and distorted like light hitting a fun house mirror.Credits: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI)

“Our discovery, if confirmed, explains how these monster black holes were born,” said Fabio Pacucci of Scuola Normale Superiore (SNS) in Pisa, Italy, who led the study. “We found evidence that supermassive black hole seeds can form directly from the collapse of a giant gas cloud, skipping any intermediate steps.”

 

511366main_image_1846_full
This Hubble Space Telescope’s spectrograph image shows a zig-zag pattern representing rapidly rotating gas (880, 000 mph) within 26 light-years of the supermassive black hole at the core of galaxy M84. Credit: NASA/ESA/Hubble.

Intermediate steps like the formation of a supermassive star and its subsequent destruction during a supernova. Evidence to date suggests black holes are formed during this process and then supermassive black holes are produced by mergers between black holes. But this new finding suggests things get a little weirder than first thought. Maybe things are weirder than we could ever imagine. It could be the first supermassive black holes seeds were intermediate mass black holes, monsters in the 20,000 solar mass range. Watch this YouTube video on black hole formation.

 

sgr_lg
Within the inset region in this composite Hubble and Chandra X-ray image is shown the Monster of the Milky Way -Sagittarius A- A 4 million solar mass supermassive black hole astronomers believe lurks at the core of the Milky Way’s nuclear star cluster. Credit: NASA/ESA/Chandra/Hubble.

Imagine the volume of a gas cloud capable of contracting directly into an object tens times, or more, the mass of Sol. Black hole seeds built up by drawing in cold gas and dust appear to have formed within the first billion years of the cosmos. Maybe once they confirm the existence of the two black hole seeds they think they detected. They can try to get some data on the mass of these early black hole seeds. At the moment, no mass data is available. Watch this YouTube video on black hole seeds.

14-251_0
This artist’s conception of an estimated 20 million solar mass supermassive black hole at the core of one of the smallest, densest galaxies ever discovered during the human journey to the beginning of space and time. 

The forming of a supermassive black hole directly from the collapse of a massive cloud of gas seems even weirder than the observed formation process for supermassive black holes. But we’re not in Kansas anymore, so anything could theoretically be possible. I am certain, things are even weirder than we can imagine.

PIA17562_hires
This artist’s conception of two supermassive holes entwined in a death spiral destined to end in the birth of a bigger version of the two monsters is called WISE J233237.05-505643.5. At 3.8 billion light-years this is one of the most distant suspected supermassive black holes binary systems detected. Credit: NASA/ESA/STScI.

“There is a lot of controversy over which path these black holes take,” said co-author Andrea Ferrara, also of SNS. “Our work suggests we are narrowing in on an answer, where the black holes start big and grow at the normal rate, rather than starting small and growing at a very fast rate.”

A black hole located in the middle of the spiral galaxy NGC 4178
The inset image in this Chandra X-ray Observatory image of spiral galaxy NGC 4178 shows an X-ray source at the location of a suspected 200,000 solar mass supermassive black hole. This monster is one of the lowest mass supermassive black holes ever detected at the core of a galaxy. Astronomers are studying this supermassive black hole closely since its also located in a galaxy not expected to host such a monster. All of the data collected seems to indicate a slightly different origin, which makes astronomers a little curious. Drredit: NASA/ESA/ Chandra/.

The team used computer models of the formation of black hole seeds combined with new techniques and methods to identify two possible candidates for early supermassive black holes in long-exposure Hubble, Chandra, and Spitzer images. The data collected on these two candidates matches the theoretical profile expected and estimates of their age suggest they formed when the cosmos was less than a billion years old. But more study is needed to verify the data and existence of these theoretical early black hole seeds.

 

chandra20140105
Astronomers recently detected the Monster of the Milky Way -Sagittarius A- snacking on material passing too close, possibly an asteroid. The resulting X-ray flares detected in September 2013 were the largest ever recorded during the human journey to the beginning of space and time, so far. Credit: NASA/ESA/Chandra.

“Black hole seeds are extremely hard to find and confirming their detection is very difficult,” said Andrea Grazian, a co-author from the National Institute for Astrophysics in Italy. “However, we think our research has uncovered the two best candidates to date.”

 

550259main_arctAfull
Astronomers combined X-ray data from Chandra with microwave and visible images to reveal jets and radio-emitting lobes emanating from the 55 million solar mass central supermassive black hole in galaxy Centaurus A (NGC 5128). Credit: NASA/ESA/Chandra.

What’s next?

The team plans additional observations to see if these two candidates have other properties of black hole seeds as computer simulations predict. Real evidence to prove or disprove their early supermassive black hole formation theory might have to wait for a few years. Until the James Webb Space Telescope, European Extremely Large Telescope and other assets come online. The team and other astronomers are currently designing the theoretical framework needed to interpret future data and pinpoint the existence of some of the first supermassive black holes ever to exist. Watch this YouTube video on the jet of Centaurus A.

 

550300main_Cen_A_inner_jet_English_labels
This optical/radio composite image shows the vast radio-emitting lobes of Centaurus A in orange extending nearly a million light-years from the galaxy. The image of the right here shows the inner 4.16 light-years of the jet and counter-jet of this estimated 55 million solar mass monster. Credit: NASA.

Read the scientific paper released on the first identification of black hole seeds here

Take the space voyage of NASA.

Learn more about the James Webb Space Telescope.

Learn more about supermassive black holes here.

Learn more about the National Institute for Astrophysics in Italy.

Learn more about the things the Hubble Space Telescope has shown us about our universe here.

Learn more about the European Extremely Large Telescope.

Learn about the things the Chandra X-ray Observatory has taught us about the cosmos.

Read about the adventures of the Spitzer Space Telescope.

Explore NASA’s Jet Propulsion Laboratory here.

Learn more about the Milky Way’s nuclear star cluster, the densest star cluster in the galaxy.

Read about the next generation Giant Magellan Telescope.

Learn more about two dancing, merging supermassive black holes astronomers are watching closely.