Astronomers Witness First Cosmic-moments of Rare, Newborn Supernovae

Three Type Ia supernovae they study in order to measure cosmic distances and lift the veil of mystery surrounding dark energy

This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA's Kepler spacecraft. The light curve shows a star's brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected 'bump' in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast. Credits: NASA Ames/W. Stenzel
This graphic depicts a light curve of the newly discovered Type Ia supernova, KSN 2011b, from NASA’s Kepler spacecraft. The light curve shows a star’s brightness (vertical axis) as a function of time (horizontal axis) before, during and after the star exploded. The white diagram on the right represents 40 days of continuous observations by Kepler. In the red zoom box, the agua-colored region is the expected ‘bump’ in the data if a companion star is present during a supernova. The measurements remained constant (yellow line) concluding the cause to be the merger of two closely orbiting stars, most likely two white dwarfs. The finding provides the first direct measurements capable of informing scientists of the cause of the blast.
Credits: NASA Ames/W. Stenzel

Space news (astrophysics: supernovae; 3 new candidates) – billions of light-years from Earth –

A team of determined astronomers studying the largest explosions viewed during the human journey to the beginning of space and time recently found three new candidates. Three candidates, they found after viewing 400 galaxies for two years using NASA’s Kepler Space Telescope.

Kepler’s unprecedented pre-event supernova observations and Swift’s agility in responding to supernova events have both produced important discoveries at the same time but at very different wavelengths,” says Paul Hertz, Director of Astrophysics for NASA’s Science Mission Directorate. “Not only do we get insight into what triggers a Type Ia supernova, but these data allow us to better calibrate Type Ia supernovae as standard candles, and that has implications for our ability to eventually understand the mysteries of dark energy.”

In the data they collected over this two year period using NASA’s Kepler Space Telescope, this amazing team of explorers found three new and distant Type Ia supernovae, designated KSN 2011b, KSN 2011c, KSN 2012a. Due to the frequent observations of Kepler in the direction of the three distant supernovae, the data collected even contains the first moments of each tremendous blast. Measurements that will allow scientists to piece together the events leading to these events and the reasons for such a tremendous release of energy.

Astrophysicists believe Type Ia supernovae erupt with the same apparent brightness because in all cases the exploding body is a white dwarf star. It’s this property scientists use as a standard candle to more accurately measure the distance to objects around the cosmos than was previously possibly.

Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen
Astronomers use computer simulations to simulate the debris field of a Type Ia supernovae (brown) slamming into a companion star (blue) at tens of millions of miles per hour. Resulting ultraviolet light escapes as the supernova shell sweeps over the companion star, which is detected by the Swift Gamma-ray Burst Alert Telescope and other instruments. Credits: UC Berkeley, Daniel Kasen

Astronomers also believe that every Type Ia supernovae are either the result of two white dwarf stars merging, or a white dwarf gathering so much material from a nearby companion star, it causes a thermonuclear reaction resulting in the white dwarf going supernova.

Our Kepler supernova discoveries strongly favor the white dwarf merger scenario, while the Swift study, led by Cao, proves that Type Ia supernovae can also arise from single white dwarfs,” said Robert Olling, a research associate at the University of Maryland and lead author of the study. “Just as many roads lead to Rome, nature may have several ways to explode white dwarf stars.”

In the case of KSN 2011b, KSN 2011c, and KSN 2012a, astronomers found no evidence to support the existence of material being taken from a companion star. This leads them to believe the cause in these cases is collision and merger between two closely orbiting white dwarf stars. 

Now, astronomers will use NASA’s Kepler Space Telescope and other Earth and space-based telescopes to search for Type Ia supernovae among thousands of galaxies included in the study. This will allow them to determine the distance of stellar objects across the cosmos more accurately. It will also help them delve deeper into the mystery surrounding dark energy and its true nature. 

The search for supernovae continues

The Kepler spacecraft has delivered yet another surprise, playing an unexpected role in supernova science by providing the first well-sampled early time light curves of Type Ia supernovae,” said Steve Howell, Kepler project scientist at NASA’s Ames Research Center in Moffett Field, California. “Now in its new mission as K2, the spacecraft will search for more supernovae among many thousands of galaxies.”

Learn more about supernovae here.

Take the journey of the Kepler Space Telescope here.

Learn more about the search for the identity of dark energy here.

Learn more about the things astronomers are learning about the formation of new stars.

Read about plans of private firm Planetary Resources Inc. to mine an asteroid in the near future.

Discover and learn about the things NASA’s New Horizons mission has told us about Pluto and its system of moons.

Advertisements

Exploding Stars Seed the Cosmos with the Building Blocks of the Universe

The debris fields of supernova remnants spreads iron, silicon, sulfur and other elements through the universe  

Space news (June 04, 2015) – 16,000 light-years away and 4,500 years ago in the constellation Musca –

G299 was left over by a particular class of supernovas called Type Ia. Astronomers think that a Type Ia supernova is a thermonuclear explosion – involving the fusion of elements and release of vast amounts of energy − of a white dwarf star in a tight orbit with a companion star. If the white dwarf’s partner is a typical, Sun-like star, the white dwarf can become unstable and explode as it draws material from its companion. Alternatively, the white dwarf is in orbit with another white dwarf, the two may merge and can trigger an explosion.
G299 was left over by a particular class of supernovas called Type Ia. Astronomers think that a Type Ia supernova is a thermonuclear explosion – involving the fusion of elements and release of vast amounts of energy − of a white dwarf star in a tight orbit with a companion star. If the white dwarf’s partner is a typical, Sun-like star, the white dwarf can become unstable and explode as it draws material from its companion. Alternatively, the white dwarf is in orbit with another white dwarf, the two may merge and can trigger an explosion. Image Credit Chandra and NASA.

The new Chandra image above shows the remnant of supernova G299.2-2.9 (or G299 for short), a Type Ia supernova space scientists are studying intensely. Current computer models and data suggests the remnant should be almost perfectly spherical, but analysis of this image shows asymmetrical regions making astronomers rethink their ideas.

Space scientists use the uniform brightness of Type Ia supernovae as “Standard Candles” or “Mileposts” to measure distances in the universe accurately. By measuring how bright a supernova appears, space scientists can estimate its distance from Earth. This allows them to determine the distance of other celestial objects viewed during our journey.

Brian Schmidt of the Australian National University in Canberra and Adam Riess of John Hopkins University in Baltimore used the similarity in Type Ia supernova to figure out how fast the cosmos is expanding in real time in 1989. They would eventually be awarded the 2011 Nobel Prize in Physics for their groundbreaking work.

Space scientists conducting further analysis of this new Chandra image believe data indicates the amount of iron and silicon in the region of the remnant just above center is larger than the region just below center. This is shown in the greener color of the upper region compared to the blue color of the lower region.

They also point to the slightly elongated region extending to the right in the image, indicating varying rates of expansion, and a lopsided explosion. In this region, the relative amounts of iron to silicon is similar to that found in the southern region of the remnant.

The pattern space scientists see in this image suggest to them they need to rethink their ideas on the uniformity of Type Ia supernovae. It appears they’re more varied than first thought, which really isn’t a surprise.

Why would Type Ia supernovae vary more than first thought?

There could be hot gases and other things in the regions supernova remnant G299 has traveled through during the past 4,500 years. This would create uneven rates of expansion.

We have also only looked at a small sample of Type Ia supernovae and supernovas in whole during our journey to the beginning of space and time. Our limited knowledge of these cosmic events is probably part of the reason things didn’t quite turn out as predicted by space scientists.

As space scientists gather more data and view more of these cosmic wonders they’ll alter their ideas and develop theories to help uncover more mysteries sure to entrance the human soul during our journey.

For more information on NASA’s space mission to the stars visit here.

To learn more about the Chandra X-ray Observatory go here.

Learn more about the first solar flare emitted by Sol in 2015.

Learn about one of the mysteries revealed by the Cassini Spacecraft during its journey to Saturn’s moon Titan.

Learn how ancient Peruvians created a functional calendar they used to accurately predict the rising and setting of the sun through the year.

MACS 0647-JD could be the most distant galaxy viewed so far during the human journey to the beginning of space and time

Hubble Views Most Distant Galaxy Ever

MACS 0647-JD could be the most distant galaxy viewed so far during the human journey to the beginning of space and time
Astronomers looking at images of MACS 0647-JD believe it’s only about 600 light-years wide

The first galaxies

Astronomy news (November 28, 2013) – The Hubble Space Telescope, along with the light magnifying ability of the effect called gravitational lensing, has provided the first views of the most distant galaxy seen during the human journey to the beginning of space and time. The astronomers of the Cluster Lensing and Supernova Survey with Hubble (CLASH) recently discovered three gravity-lensed images of a galaxy that existed over 13.7 billions years ago taken using Hubble’s new panchromatic imaging capabilities. Designated MACS 0647-JD, this ancient star city is currently the most distant galaxy located to date using the Hubble Space Telescope and gravitational lensing.

Astronomers used the Hubble Space Telescope and gravitational lensing to look at MACS 0647-JD
Astronomers used the Hubble Space Telescope to help view MACS 0647-JD

The CLASH program

The astronomers of CLASH used the Hubble Space Telescope to look at 25 distant galaxy clusters during the period from November 2010 to July 2013. They were looking for light which had been magnified due to the effect known as gravitational lensing as predicted by Einstein’s General Theory of Relativity. They wanted to detect additional Type Ia supernovae, map the distribution of dark matter in galaxy clusters, detect the most distant galaxies ever and study the internal structure and evolution of the galaxies in and behind these clusters.

The three gravity-lensed images taken by Hubble are of a small galaxy, now designated MACS 0647-JD, which could have been one of the first galaxies to exist in the universe. Astronomers’ analysis of the images suggests this small galaxy was less than 600 light-years across, which may indicate it was in the first stages of galaxy formation. In fact, this smaller galaxy may have been just one building block in the construction of a larger galaxy, and during the past 13.7 billions years could have been part of dozens, hundreds and even thousands of merging events with other galaxies.

Astronomers look at other possibilities

The astronomers of the Cluster Lensing and Supernova Survey with Hubble recently used the ability of NASA’s Spitzer Space Telescope to help rule out other possible identities of the three images they found. Next, astronomers will use the Spitzer Space Telescope, and other telescopes, to confirm the existence of the galaxy and try to get a better estimate of its age.

Astronomers hope to use the data they obtain from the study of galaxies like MACS 0647-JD to learn more about the early universe
Astronomers hope to use the James Webb Space Telescope to look even further back in time and space

Can NASA astronomers detect extraterrestrial moons orbiting distant suns? Read this article to find out https://spaceshipearth1.wordpress.com/2013/12/31/searching-for-extraterrestrial-moons/.

Read about the latest discovery in the search for life beyond Earth https://spaceshipearth1.wordpress.com/2013/12/25/the-search-for-life-beyond-earth-takes-a-turn-at-jupiter/.

Read about the latest images of the solar system sent back by the Cassini spacecraft https://spaceshipearth1.wordpress.com/2013/12/22/cassini-spacecraft-show-views-of-the-solar-system-in-natural-color/.