NASA’s NuSTAR Pinpoints Elusive High-energy X-rays of Supermassive Black Holes in COSMOS Field

Heralding the growth of monster black holes pulling in surrounding material while belching out the cosmic x-ray background 

The blue dots in this field of galaxies, known as the COSMOS field, show galaxies that contain supermassive black holes emitting high-energy X-rays. The black holes were detected by NASA's Nuclear Spectroscopic Array, or NuSTAR, which spotted 32 such black holes in this field and has observed hundreds across the whole sky so far. The other colored dots are galaxies that host black holes emitting lower-energy X-rays, and were spotted by NASA's Chandra X-ray Observatory. Chandra data show X-rays with energies between 0.5 to 7 kiloelectron volts, while NuSTAR data show X-rays between 8 to 24 kiloelectron volts. Credits: NASA/Caltech/NuSTAR
The blue dots in this field of galaxies, known as the COSMOS field, show galaxies that contain supermassive black holes emitting high-energy X-rays. The black holes were detected by NASA’s Nuclear Spectroscopic Array, or NuSTAR, which spotted 32 such black holes in this field and has observed hundreds across the whole sky so far.
The other colored dots are galaxies that host black holes emitting lower-energy X-rays,  and were spotted by NASA’s Chandra X-ray Observatory. Chandra data show X-rays with energies between 0.5 to 7 kiloelectron volts, while NuSTAR data show X-rays between 8 to 24 kiloelectron volts. Credits: NASA/Caltech/NuSTAR

Space news (astrophysics: x-ray bursts; detecting high-energy x-rays emitted by supermassive black holes) – searching the COSMOS field for elusive, high-energy x-rays with a high-pitched voice – 

The picture is a combination of infrared data from Spitzer (red) and visible-light data (blue and green) from Japan's Subaru telescope atop Mauna Kea in Hawaii. These data were taken as part of the SPLASH (Spitzer large area survey with Hyper-Suprime-Cam) project. Credits: NASA/JPL/Spitzer/Subaru
The picture is a combination of infrared data from Spitzer (red) and visible-light data (blue and green) from Japan’s Subaru telescope atop Mauna Kea in Hawaii. These data were taken as part of the SPLASH (Spitzer large area survey with Hyper-Suprime-Cam) project. Credits: NASA/JPL/Spitzer/Subaru

Astronomers searching for elusive, high-energy x-rays emitted by supermassive black holes recently made a discovery using NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR). A chorus of high-energy x-rays emitted by millions of supermassive black holes hidden within the cores of galaxies spread across a field of galaxies called the COSMOS field. Singing the elusive, high-pitched song of a phenomenon scientists call the cosmic x-ray background they emitted when they pulled surrounding matter closer. A significant step in resolving the high-energy x-ray background and understanding more about the feeding habits of supermassive black holes as they grow and evolve. 

NuSTAR scans the sky looking at nine galaxies for supermassive black holes. Credits: NASA/NuSTAR/JPL/Caltech
NuSTAR scans the sky looking at nine galaxies for supermassive black holes. Credits: NASA/NuSTAR/JPL/Caltech

“We’ve gone from resolving just two percent of the high-energy X-ray background to 35 percent,” said Fiona Harrison, the principal investigator of NuSTAR at Caltech in Pasadena and lead author of a new study describing the findings in an upcoming issue of The Astrophysical Journal.  “We can see the most obscured black holes, hidden in thick gas and dust.” 

Fiona Harrison, the principal investigator of NuSTAR, has been awarded the top prize in high-energy astrophysics. Image credit: Lance Hayashida/Caltech Marcomm
Fiona Harrison, the principal investigator of NuSTAR, has been awarded the top prize in high-energy astrophysics. Image credit: Lance Hayashida/Caltech Marcomm

The Monster of the Milky Way, the supermassive black hole believed to reside at the core of our galaxy, bulked up by siphoning off surrounding gas and dust in the past and will continue to grow. The data obtained here by NASA’s NuSTAR will help scientists learn more concerning the growth and evolution of black holes and our host galaxy. It will also give astrophysicists more insight into the processes involved the next time the Monster of the Milky Way wakes up and decides to have a little snack. 

This image, not unlike a pointillist painting, shows the star-studded centre of the Milky Way towards the constellation of Sagittarius. The crowded centre of our galaxy contains numerous complex and mysterious objects that are usually hidden at optical wavelengths by clouds of dust — but many are visible here in these infrared observations from Hubble. However, the most famous cosmic object in this image still remains invisible: the monster at our galaxy’s heart called Sagittarius A*. Astronomers have observed stars spinning around this supermassive black hole (located right in the centre of the image), and the black hole consuming clouds of dust as it affects its environment with its enormous gravitational pull. Infrared observations can pierce through thick obscuring material to reveal information that is usually hidden to the optical observer. This is the best infrared image of this region ever taken with Hubble, and uses infrared archive data from Hubble’s Wide Field Camera 3, taken in September 2011. It was posted to Flickr by Gabriel Brammer, a fellow at the European Southern Observatory based in Chile. He is also an ESO photo ambassador.
This image, not unlike a pointillist painting, shows the star-studded centre of the Milky Way towards the constellation of Sagittarius. The crowded centre of our galaxy contains numerous complex and mysterious objects that are usually hidden at optical wavelengths by clouds of dust — but many are visible here in these infrared observations from Hubble. However, the most famous cosmic object in this image still remains invisible: the monster at our galaxy’s heart called Sagittarius A*. Astronomers have observed stars spinning around this supermassive black hole (located right in the centre of the image), and the black hole consuming clouds of dust as it affects its environment with its enormous gravitational pull. Infrared observations can pierce through thick obscuring material to reveal information that is usually hidden to the optical observer. This is the best infrared image of this region ever taken with Hubble, and uses infrared archive data from Hubble’s Wide Field Camera 3, taken in September 2011. It was posted to Flickr by Gabriel Brammer, a fellow at the European Southern Observatory based in Chile. He is also an ESO photo ambassador.

“Before NuSTAR, the X-ray background in high energies was just one blur with no resolved sources,” said Harrison. “To untangle what’s going on, you have to pinpoint and count up the individual sources of the X-rays.” 

NASA’s NuSTAR’s the first telescope capable of focusing high-energy x-rays into a sharp image, but it only gives us part of the picture. Additional research’s required to clear up the picture a little more and give us a better view of the real singers in the choir. NuSTAR should allow astronomers to decipher individual voices of x-ray singers in one of the cosmos’ rowdiest choirs. 

“We knew this cosmic choir had a strong high-pitched component, but we still don’t know if it comes from a lot of smaller, quiet singers, or a few with loud voices,” said co-author Daniel Stern, the project scientist for NuSTAR at NASA’s Jet Propulsion Laboratory in Pasadena, California. “Now, thanks to NuSTAR, we’re gaining a better understanding of the black holes and starting to address these questions.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

What’s next?

Astronomers plan on collecting more data on the high-energy x-ray choir of the COSMOS field, which should help clear up a few mysteries surrounding the birth, growth, and evolution of black holes. Hopefully, it gives also gives us more clues to many of the mysteries we discover during the human journey to the beginning of space and time. 

Read more about active supermassive black holes found at the center of galaxies.

Learn more about the Unified Theory of Active Supermassive Black Holes.

Learn about magnetic lines of force emanating from supermassive black holes.

You can learn more about the COSMOS field here

Journey across spacetime aboard the telescopes of NASA

Discover NASA’s NuSTAR here

Learn more about the work of NASA’s Jet Propulsion Laboratory

Read and learn more about the Monster of the Milky Way here

 

 

Hubble Views New Galaxy Being Formed

Galaxy NGC 6052 is being formed into a single structure from the merging of two galaxies of similar mass 

Two become one
NGC 6052 still shows definite signs of a recent collision between two smaller galaxies of similar mass. Credits: NASA/ESA

Space news ( February 18, 2016) – 230 million light-years away in the constellation Hercules – 

This breathtaking Hubble image of galaxy NGC 6052 was taken with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. Astronomers originally classified this different looking island universe as an irregular galaxy, but after more study, they believe it’s a new galaxy in the process of being formed.  

Also called Mrk 297, LEDA 57039 and Arp 209, NGC 6052 has previously been described as having a rather unusual structure, as seen in the regions of strong emission and the irregular appendage on its eastern side as seen in this image. 

Looking at the image, it’s not easy to see the traces of two separate galaxies in the act of merging. Attracted by gravity, two smaller galaxies with similar mass were slowly drawn together, before colliding to form NGC 6052.  

As the merging process progresses, individual stars are knocked out of their original orbits and onto new ones that take them far outside the galaxy. The starlight in the image appears quite chaotic in shape and form, but over time, the chaotic shape of this new galaxy will settle down.  

Astronomers conducting a survey of nearby galaxies detected all types on the Hubble Tuning Fork, with about ten percent on average being classified as irregular or unusual using the Hubble classification system. The sample size in this survey is rather small, though, when you compare it to the size of the cosmos. 

The percentages of different galaxy types seem to vary according to the environment, so astronomers expect these numbers to change as the survey sample size increases. 

A titanic collision

Billions of years in the future, Andromeda and the Milky Way will have a similarly fated meeting, but this galactic merger will be a cosmic collision of a different sort. Andromeda has much more mass and is bigger than the Milky Way and astronomers expect this meeting to produce a different looking island universe than NGC 6052. 

Learn more about NASA past and future here

Take the journey of the Hubble Space Telescope

Learn more about the Hubble classification system

Learn more about NGC 6052

Discover galaxy types and the Hubble Tuning Fork here

Read about the Nebra Sky Disk, a portable instrument used by stone-age astronomers to sync the lunar and solar calendars.

Discover Goseck Henge, a 7,000-year-old solar observatory.

Learn more about the evolution and formation of the Milky Way.