X-ray Light Source CX330 Detected in Bulge of Milky Way

Most isolated young star discovered launching jets of material into surrounding gas and dust

An unusual celestial object called CX330 was first detected as a source of X-ray light in 2009. It has been launching “jets” of material into the gas and dust around it. Credits: NASA/JPL-Caltech
An unusual celestial object called CX330 was first detected as a source of X-ray light in 2009. It has been launching “jets” of material into the gas and dust around it.
Credits: NASA/JPL-Caltech

Space news (astrophysics: massive, young stars in star-forming regions; unusual, isolated young star baffles astronomers) – approximately 27,000 light-years from Earth in an isolated region of the bulge of the Milky Way – 

704250main_chandra-telescope_full
NASA’s Chandra X-ray Observatory first detected unusual stellar object CX330. Credits: NASA/Chandra

Astronomers surveying the universe looking for unusual celestial objects to study to add to human knowledge and understanding have found something they haven’t seen before. Unusual celestial object CX 330 was first noticed in data obtained during a survey of the bulge of the Milky Way in 2009 by NASA’s Chandra X-ray Observatory as a source of X-ray light. Additional observations of the source showed it also emitted light in optical wavelengths, but with so few clues to go on, astronomers had no idea what they were looking at. 

During more recent observations of CX 330 during August of 2015, astronomers discovered it had recently been active, launching jets of material into gas and dust surrounding it. During a period from 2007 to 2010, it had increased in brightness by hundreds of times, which made scientists curious to examine previous data obtained from the same region of the bulge. 

Using the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist's concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception. Credits: NASA/Spitzer
Using the unique orbit of NASA’s Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist’s concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception. Credits: NASA/Spitzer

Looking at data obtained by NASA’s Wide-field Infrared Survey Explorer (WISE) in 2010, they realized the surrounding gas and dust was heated to the point of ionization.  Comparing this data to observations taken with NASA’s Spitzer Space Telescope in 2007, astronomers determined they were looking at a young star in an outburst phase, forming in an isolated region of the cosmos.

cbritt
Chris Britta Credits: Texas Tech University

“We tried various interpretations for it, and the only one that makes sense is that this rapidly growing young star is forming in the middle of nowhere,” said Chris Britta postdoctoral researcher at Texas Tech University in Lubbock, and lead author of a study on CX330 recently published in the Monthly Notices of the Royal Astronomical Society.

By combining this data with observations taken by a variety of both ground and space-based telescopes they were able to get an even clearer picture of CX330. An object very similar to FU Orionis, but likely more massive, compact, and hotter, and lying in a less populated region of space. Launched faster jets of outflow that heated a surrounding disk of gas and dust to the point of ionization, and increased the flow of material falling onto the star.

tom_maccarone
Tom Maccarone Credits: Texas Tech University

“The disk has probably heated to the point where the gas in the disk has become ionized, leading to a rapid increase in how fast the material falls onto the star,” said Thomas Maccarone, study co-author and associate professor at Texas Tech.

The fact CX 330 lies in an isolated region of space, unlike the previous nine examples of this type of star observed during the human journey to the beginning of space and time, tweaks the interest of astronomers. The other nine examples all lie in star-forming regions of the Milky Way galaxy with ample material for new stars to form from, but the closest star-forming region to this young star is over 1,000 light-years away.

Joel Green Credits: NASA/Space Telescope Science Institute
Joel Green Credits: NASA/Space Telescope Science Institute

“CX330 is both more intense and more isolated than any of these young outbursting objects that we’ve ever seen,” said Joel Green, study co-author and researcher at the Space Telescope Science Institute in Baltimore. “This could be the tip of the iceberg — these objects may be everywhere.”

We really know nothing about CX 330. More observations are required to determine more. It’s possible all young stars go through a similar outburst period as observed in the case of CX 330. The periods are just too brief in cosmological time for astronomers to observe with current technology. The real clue’s the isolation of this example as compared to previous models. 

How did CX 330 become so isolated? One idea often floated is the possibility it formed in a star-forming region, before being ejected to a more isolated region of space. This seems unlikely considering astronomers believe this young star’s only about a million years old. Even if this age’s wrong, this star’s still consuming its surrounding disk of dust and gas and must have formed near its current location. It just couldn’t have traveled the required distance from a star-forming region to its current location, without completely stripping away its surrounding disk of gas and dust. 

Astronomers are learning more about the formation of stars studying CX 330, that’s for sure. Using two competing ideas, called “hierarchical” and “competitive” models, scientists search for answers to unanswered questions concerning CX 330. At this point, they favor the chaotic and turbulent environment of the “hierarchical” model, as a better fit for the theoretical formation of a lone star.

What’s next?

It’s still possible material exists nearby CX 330, such as intermediate to low-mass stars, that astronomers haven’t observed, yet.  When last viewed in August 2015, this young star was still in an outburst phase. During future observations planned with new telescopes in different wavelengths, we could get a better picture of events surrounding this unusual celestial object. Stay tuned to this channel for more information.

For people wondering if planets could form around this young star? Some astronomers are hoping planets will form from the disk of CX 330, they’ll be able to examine closer for the chemical signature of the scars left by the outbursts observed. Unfortunately, at the rate this star’s consuming its surrounding disk of gas and dust, having enough left over for the formation of planets seems unlikely. 

“You said you like it hot, right!” If CX 330’s a really massive star, which seems likely. It’s short, violent lifespan would be a truly hot time for any planet and inhabitants. 

Help NASA discover and classify young planetary systems by becoming a Disk Detective.

Read about China’s recent rejoining of the human journey to the beginning of space and time.

Read about Japan’s new X-ray satellite Hitomi.

For more information on the travel plans to CX 330, contact NASA.

Learn more about NASA’s Wide-field Infrared Survey Explorer (WISE) here.

Discover NASA’s Chandra X-ray Observatory.

For more information of NASA’s Spitzer Space Telescope visit.

Learn more about the work being done by NASA’s Jet Propulsion Laboratory.

Discover astronomy at Texas Tech University.

Discover the Space Telescope Science Institute.

 

Advertisements

Simple Elliptical Galaxy UGC 1382 Astonishes Astronomers

With 10 times the mass than first estimates and a younger inner region than outer, this out-of-the-way galaxy appears to be composed of assorted parts from other island universes 

pia20695-16

Space news (astrophysics: unusual, rare galaxy types; UGC 1382) – 250 million light-years from Earth in an out-of-the-way, isolated little corner of the cosmos – 

Living in a suburban neighborhood of an out-of-the-way little town or city is beneficial if you want to stop change due to foreign influences and exchanges. In a similar way, astronomers believe humongous, bizarre galaxy UGC 1382 kept its stunning size and the backward ages of its inner and outer components. At around 720,000 light-years across its more than seven times wider than the Milky Way and one of the largest isolated galaxies detected during the human journey to the beginning of space and time. The inner regions of this unusual galaxy are also younger than its outer parts, which would be like finding a tree whose inner growth rings are younger than its outer rings. It’s like UGC 1382 was put together from different parts of other galaxies that are held together by a delicate balance between processes and forces. An equilibrium scientists study in order to gain more understanding and knowledge of the evolution of galaxies and the universe. 

Mark Seibert Credits: Carnegie Observatories
Mark Seibert Credits: Carnegie Observatories

“This rare, ‘Frankenstein’ galaxy formed and is able to survive because it lies in a quiet little suburban neighborhood of the universe, where none of the hubbub of the more crowded parts can bother it,” said study co-author Mark Seibert of the Observatories of the Carnegie Institution for Science, Pasadena, California. “It is so delicate that a slight nudge from a neighbor would cause it to disintegrate.” 

The Galaxy Evolution Explorer Credits: NASA/JPL/Cal-tech
The Galaxy Evolution Explorer Credits: NASA/JPL/Cal-tech

Seibert and graduate student Lea Hagen discovered the massive size and backward ages of the inner and outer portions of UGC 1382 while looking at images of the galaxy taken by NASA’s Galaxy Evolution Explorer (GALEX) in ultraviolet wavelengths. They had been searching for data on star formation in average elliptical galaxies, instead, a titan with intangible arms extending far outside UGC 1382 emerged from the darkness.   

“We saw spiral arms extending far outside this galaxy, which no one had noticed before, and which elliptical galaxies should not have,” said Hagen, who led the study. “That put us on an expedition to find out what this galaxy is and how it formed.” 

Painstakingly searching through data of the galaxy obtained by a team of telescopes astronomers built a new model of the structure and dimensions of this mysterious behemoth. Spanning nearly 720,000 light-years, UGC 1382 is one of the largest galaxies ever discovered. Very few new stars form in this island universe because gas is spread thinly along its rotating disk. Astronomers are studying the history of star formation and evolution of this unusual galaxy looking for clues to explain the mysteries uncovered. 

The most tantalizing clue’s the relative ages of the various parts of galaxy UGC 1382 are backward compared to previous galaxies observed during the human journey to the beginning of space and time. Normally, astrophysicists expect to see new star formation primarily in the outer, newer regions of a galaxy, while the older, inner regions contain mainly older stars. By combining data collected by the team, scientists determined the unusual structure and evolution of star formation in this massive galaxy. 

“The center of UGC 1382 is actually younger than the spiral disk surrounding it,” Seibert said. “It’s old on the outside and young on the inside. This is like finding a tree whose inner growth rings are younger than the outer rings.” 

The final conclusion

Astronomers think this unique galaxy resulted around 3 billion years ago when two smaller galaxies began orbiting a larger, possibly lenticular galaxy, which eventually settled into current galaxy UGC 1382. They continue to study this unusual galaxy looking for additional clues to explain its unique structure and evolution compared to other members of the Galaxy Zoo. This data will enable the search for more examples of this galaxy to help explain its unusual structure and evolution. 

“By understanding this galaxy, we can get clues to how galaxies form on a larger scale, and uncover more galactic neighborhood surprises,” Hagen said. 

Learn how astronomers think galaxy CGCG254-021 Got Its Tail.

Read about giant elliptical galaxy Centaurus A.

Learn more about lenticular galaxies.

Take the space voyage of NASA

Learn more about the space discoveries of the ESA here

Read and learn more about galaxy UGC 1382

Learn more about the discoveries made by the GALEX mission here

Discover NASA’s Jet Propulsion Laboratory

Learn more about NASA’s Wide-field Infrared Survey Explorer (WISE) here

Learn more about the Sloan Sky Survey

Read about the discoveries made by the Two Micron All-Sky Survey (2MASS) here

Discover the cosmos on board the National Radio Astronomy Observatory’s Very Large Array

Read about the space discoveries of Carnegie’s du Pont Telescope at Las Campanas Observatory here

The Helix Nebula: The Eye of God

Expelled outer layers of white dwarf glowing brightly in the infrared 

693952main_pia15817-full_full

Space news (astrophysics: planetary nebula; Helix Nebula) – 650 light-years from Earth toward the constellation Aquarius – 

This composite image shows a visually stunning planetary nebula labeled “The Eye of God” more serious observers call the Helix Nebula (NGC 7293). Planetary nebula are the remains of a dying star much like our own Sol, only 5 billion years in the future. At this time the Sun will run out of hydrogen to use as its fuel source for the fusion process and will start using helium to create heavier carbon, nitrogen, and oxygen. Once it runs out of helium to fuse, it will die and expel its outer gas layers, leaving a tiny, hot core called a white dwarf. An Earth-sized core so dense a teaspoon full would weigh more than a few black rhinos. 

First discovered in the 18th century, planetary nebula like the Helix Nebula emit across a similar, broad spectrum from ultraviolet to infrared. The image shown at the top uses a combination of ultraviolet radiation collected by NASA’s Galaxy Evolution Explorer ((GALEX in blue(0.15 to 2.3 microns)) and infrared light detected by their Spitzer Space Telescope ((red(8 to 24 microns) and green(3.6 to 4.5 microns)) and Wide-field Infrared Survey Explorer ((WISE in red(3.4 to 4.5 microns)) showing the subtle differences observed in the different wavelengths of light emitted by ghostly celestial objects like NGC 7293 and NGC 6369 (The Little Ghost). 

Dust makes this cosmic eye look red. This eerie Spitzer Space Telescope image shows infrared radiation from the well-studied Helix Nebula (NGC 7293), which is a mere 700 light-years away in the constellation Aquarius. The two light-year diameter shroud of dust and gas around a central white dwarf has long been considered an excellent example of a planetary nebula, representing the final stages in the evolution of a sun-like star. Spitzer data show the nebula's central star is itself immersed in a surprisingly bright infrared glow. Models suggest the glow is produced by a dust debris disk. Even though the nebular material was ejected from the star many thousands of years ago, the close-in dust could be generated by collisions in a reservoir of objects analogous to our own solar system's Kuiper Belt or cometary Oort cloud. Formed in the distant planetary system, the comet-like bodies have otherwise survived even the dramatic late stages of the star's evolution. Image credit: NASA, JPL-Caltech, Kate Su (Steward Obs, U. Arizona) et al.
Dust makes this cosmic eye look red. This eerie Spitzer Space Telescope image shows infrared radiation from the well-studied Helix Nebula (NGC 7293), which is a mere 700 light-years away in the constellation Aquarius. The two light-year diameter shroud of dust and gas around a central white dwarf has long been considered an excellent example of a planetary nebula, representing the final stages in the evolution of a sun-like star.
Spitzer data show the nebula’s central star is itself immersed in a surprisingly bright infrared glow. Models suggest the glow is produced by a dust debris disk. Even though the nebular material was ejected from the star many thousands of years ago, the close-in dust could be generated by collisions in a reservoir of objects analogous to our own solar system’s Kuiper Belt or cometary Oort cloud. Formed in the distant planetary system, the comet-like bodies have otherwise survived even the dramatic late stages of the star’s evolution.
Image credit: NASA, JPL-Caltech, Kate Su (Steward Obs, U. Arizona) et al.

Astronomers have studied planetary nebulae like the Helix Nebula and M2-9 (Wings of a Butterfly Nebula) as much as any recorded during the human journey to the beginning of space and time. The remnant of a rapidly evolving star near the end of its lifespan, the white dwarf star is a tiny, barely perceptible point of light at the center of the nebula in this composite image. Thousands of planetary nebula have been detected within a distance of about 100 million light-years of Earth and astronomers estimate about 10,000 exist in the Milky Way. Making planetary nebula a relatively common celestial mystery observed as we trace our roots to their beginning. 

Watch this YouTube video on the Helix Nebula.

pn_block-1
This collage of planetary nebula images was put together by NASA technicians to express the beauty and wonder of planetary nebula. Credits: NASA

Read and learn about the icy blue wings of planetary nebula Hen 2-437.

Read about planetary nebula Menzel 2.

Learn about the last days of planetary nebula Hen 2-362.

Learn more about the Helix Nebula here

Read and learn more about planetary nebulae

Join the space journey of NASA here

Learn more about NASA’s GALEX

Discover the Spitzer Space Telescope here

Read and discover more about NGC 6369. 

Learn more about what NASA’s WISE has discovered about the infrared cosmos here

Discover the Wings of a Butterfly Nebula.  

WISE Data Pokes Holes in Unified Theory of Active, Supermassive Black Holes

Survey of 170,000 supermassive black holes says “we need to re-examine present theory” 

WISE's large field of view and multi-wavelength infrared sight allowed it to form this complete view of the cluster, containing dozens of bright galaxies and hundreds of smaller ones. Old stars show up at the shorter infrared wavelengths, color coded blue. Dust heated by new generations of stars lights up at longer infrared wavelengths, colored red here. The center of the cluster is dominated by the galaxy known as NGC 1399, a large spheroidal galaxy whose light is almost exclusively from old stars and thus appears blue. The most spectacular member of Fornax is the galaxy known as NGC 1365, a giant barred spiral galaxy, located in the lower right of the mosaic. Against a backdrop of blue light from old stars, the dusty spiral arms in NGC 1365 stand out. The arms contain younger stars that are heating up their dust-enshrouded birth clouds, causing them to glow at longer infrared wavelengths. This galaxy is one of only a few in the Fornax cluster where prolific star formation can be seen. WISE will search the sky out to distances of 10 billion light-years looking for the most luminous cousins of NGC 1365. In this image, 3.4- and 4.6-micron light is colored blue; 12-micron light is green; and 22-micron light is red.
WISE’s large field of view and multi-wavelength infrared sight allowed it to form this complete view of the cluster, containing dozens of bright galaxies and hundreds of smaller ones. Old stars show up at the shorter infrared wavelengths, color coded blue. Dust heated by new generations of stars lights up at longer infrared wavelengths, colored red here.
The center of the cluster is dominated by the galaxy known as NGC 1399, a large spheroidal galaxy whose light is almost exclusively from old stars and thus appears blue. In this image, 3.4- and 4.6-micron light is colored blue; 12-micron light is green; and 22-micron light is red. Credits: WISE. Image credit: NASA/JPL-Caltech/NOAO/AURA/NSF/ESO
pia18013-full
This infographic explains a popular theory of active supermassive black holes, referred to as the unified model — and how new data from NASA’s Wide-field Infrared Survey Explorer, or WISE, is at conflict with the model. Astronomers say the model could still be correct but needs adjusting to account for the unexpected observations by WISE. Image credit: NASA/JPL-Caltech/NOAO/AURA/NSF/ESO

Space news (astrophysics: Unified Theory of Active, Supermassive Black Holes; rethinking the present theory) – supermassive black holes scattered around the cosmos –

One common theme in astronomy and science is “the more we test a current theory, the more we need to re-examine our ideas and thoughts”. Theory one day is tomorrows’ old idea. Astronomers looking at archived WISE data found this out the other day. After examining data collected by NASA’s Wide-field Infrared Survey Explorer, they determined varying appearances of similar supermassive black holes could be a more complicated than present theory indicates. That it could be time to rethink the Unified Theory of Active, Supermassive Black holes, now that we have a little data to base our ideas and theories on. 

The Unified Theory of Active, Supermassive Black Holes was first proposed in the late 1970s to explain the different appearance of active supermassive black holes with similar natures. Why some active monsters appear to be shrouded by dust and gas, while others are more exposed and easier to view. 

“The main purpose of unification was to put a zoo of different kinds of active nuclei under a single umbrella,” said Emilio Donoso of the Instituto de Ciencias Astronómicas, de la Tierra y del Espacio in Argentina. “Now, that has become increasingly complex to do as we dig deeper into the WISE data.” 

This theory answered this query by suggesting all supermassive black holes are encased in a dusty, doughnut-shaped structure called a torus. That the appearance of the supermassive black hole and torus is dependent on the orientation of the system in space in relation to Earth. For instance, if the torus is viewed edge-on in relation to Earth, the supermassive black hole is hidden from view. However, if the torus is viewed from above or below, the monster within is visible. 

“The unified theory was proposed to explain the complexity of what astronomers were seeing,” said Daniel Stern of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “It seems that simple model may have been too simple. As Einstein said, models should be made ‘as simple as possible, but not simpler.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Time to rethink the theory

WISE data collected before it was put on standby in 2011 indicates The Unified Theory of Active, Supermassive Black Holes isn’t the whole story and needs to be re-examined. That something other than the shape of the structures surrounding supermassive black holes determines whether a monster is viewable from Earth. Astronomers working on theories concerning supermassive black holes are looking at the data and thinking of new ways for supermassive black holes surrounded by structures of dust and gas to become visible from Earth. They hope their work and findings inspire further study and investment in uncovering more clues to the mysteries surrounding supermassive black holes and understanding of these enigmatic, yet fascinating objects.  

“Our finding revealed a new feature about active black holes we never knew before, yet the details remain a mystery,” said Lin Yan of NASA’s Infrared Processing and Analysis Center (IPAC), based at the California Institute of Technology in Pasadena. “We hope our work will inspire future studies to better understand these fascinating objects.” 

Proving scientific theory prescribes usage of the old adage, “the more things change, the more they stay the same” when developing theories. 

You can learn more about the United Theory of Active, Supermassive Black holes here

Take the space journey of NASA’s Wide-Field Infrared Survey Explorer

Read and learn more about supermassive black holes here

Learn more about the work being done by scientists and engineers at NASA’s Jet Propulsion Laboratory

Discover and learn about the current mission of WISE, after being reactivated and renamed NEOWISE in 2013, and given the job of identifying potentially dangerous objects near Earth here

Learn how astronomers study the formation of stars.

Learn about the formation of the first black holes to exist in the cosmos.

Read about NASA’s Chandra X-Ray Observatory’s observations of blasts from galaxy Pictor A.

 

WISE Infrared All-Sky Survey Reveals Millions of Supermassive Black Hole Candidates

Plus nearly a thousand extremely bright, dusty objects nicknamed hot DOGS 

With its all-sky infrared survey, NASA's Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes "feed" off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles. Image credit: NASA/JPL-Caltech/UCLA
With its all-sky infrared survey, NASA’s Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes “feed” off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles.
Image credit: NASA/JPL-Caltech/UCLA

Space news (All-sky surveys: infrared; candidate supermassive black holes and dust-obscured galaxies) – The visible universe – 

Astronomers working with data provided by an infrared survey of the visible sky conducted by NASA’s Wide-field Infrared Survey Explorer (WISE) have identified millions of new candidates for the quasar section in the Galaxy Zoo. All-sky images taken by WISE revealed around 2.5 million candidate supermassive black holes actively feeding on material, some over 10 billion light-years away. They also pinpointed nearly a 1,000 very bright, extremely dusty objects nicknamed hot DOGS believed to be among the brightest galaxies discovered during the human journey to the beginning of space and time.

The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist's concept of the WISE satellite superimposed. Image credit: NASA/JPL-Caltech/UCLA
The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist’s concept of the WISE satellite superimposed.
Image credit: NASA/JPL-Caltech/UCLA

“These dusty, cataclysmically forming galaxies are so rare WISE had to scan the entire sky to find them,” said Peter Eisenhardt, lead author of the paper on the first of these bright, dusty galaxies, and project scientist for WISE at JPL. “We are also seeing evidence that these record setters may have formed their black holes before the bulk of their stars. The ‘eggs’ may have come before the ‘chickens.” 

Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST
Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST

“WISE has exposed a menagerie of hidden objects,” said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. “We’ve found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust.” 

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view. Image credit: NASA/ESA
This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.
Image credit: NASA/ESA

Astronomers detected Trojan asteroid TK7 in October 2010 in images of the sky taken by NASA’s WISE, before verifying its existence on optical images taken by the Canada-France-Hawaii Telescope. Additional study and computer modeling indicate Earth’s small dance partner should stay in a safe orbit for the next 10,000 years at least.  

This zoomed-in view of a portion of the all-sky survey from NASA's Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE's infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars. The circular inset images, obtained with NASA's Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen. Image credit: NASA/JPL-Caltech/UCLA/STScI
This zoomed-in view of a portion of the all-sky survey from NASA’s Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE’s infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars.
The circular inset images, obtained with NASA’s Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen.
Image credit: NASA/JPL-Caltech/UCLA/STScI

In March 2014 astronomers studying infrared images taken by WISE announced the discovery of around 3,500 new stars lying within 500 light-years of Earth. At the same time, they searched the data looking for evidence of Planet X, or Nemesis, the mythical planet some believe to exist somewhere beyond the orbit of Pluto. Scientists analyzed millions of infrared images taken by WISE out to a distance well beyond the orbit of our former ninth planet. They didn’t detect any objects the size of a planet out to a distance of around 25,000 times the distance between the Earth and Sol. Many times beyond the orbit of Pluto. No Planet X was found. 

NASA's Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or "hot DOGs," are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy. Image credit: NASA/JPL-Caltech/UCLA
NASA’s Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or “hot DOGs,” are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy.
Image credit: NASA/JPL-Caltech/UCLA

The vast majority of the latest candidates for the Galaxy Zoo are objects previously undetected by astronomers due to dust blocking visible light. Fortunately, the infrared eyes of WISE detected glowing dust around the candidates, which allowed scientists to detect them. These latest findings are clues astronomers use to better understand the processes creating galaxies and the monster black holes residing in their centers

This image zooms in on the region around the first "hot DOG" (red object in magenta circle), discovered by NASA's Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun. WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles). Image credit: NASA/JPL-Caltech/UCLA
This image zooms in on the region around the first “hot DOG” (red object in magenta circle), discovered by NASA’s Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun.
WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles).
Image credit: NASA/JPL-Caltech/UCLA

“We’ve got the black holes cornered,” said Daniel Stern of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., lead author of the WISE black hole study and project scientist for another NASA black-hole mission, the Nuclear Spectroscopic Telescope Array (NuSTAR). “WISE is finding them across the full sky, while NuSTAR is giving us an entirely new look at their high-energy X-ray light and learning what makes them tick.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Organizing the Monster Zoo

The Monster of the Milky Way, the estimated 4 million solar mass black hole astronomers believe resides at the center, periodically feeds upon material falling too deep into its gravity well, and heats up surrounding disks of dust and gas. Astronomers have even witnessed 1 billion solar mass monster black holes change their surrounding environments enough to shut down star formation processes in their host galaxy. Now, astronomers need to go through the millions of candidates and put them in the correct section of the zoo. We might even need to open a few new sections to accommodate unusual candidates found during a closer examination.  

You can learn more about supermassive black holes here

Watch this YouTube video about the Monster of the Milky Way

Tour NASA’s Jet Propulsion Laboratory here

Journey across the x-ray universe aboard NASA’s WISE

Learn everything NASA has learned during its journey. 

Learn more about the mission of NASA’s Nuclear Spectroscopic Telescopic Array (NuStar). 

Read more about Quasars

Learn more about dust-obscured galaxies (hot DOGS) here

Learn more about Trojan asteroid TK7

Learn more about the Canada-France-Hawaii Telescope

Learn more about How Astronomers Study the Formation of Stars.

Read more about a Wolf-Rayet star astronomers have nicknamed Nasty 1.

Read about the next-generation telescope the Giant Magellan Telescope.

WISE & Spitzer Detect Faintest, Coolest Brown Dwarf Star to Date

pia18001-main_0
WISE J085510.83-071442.5 is the coolest, faintest brown dwarf star located and it’s also only 7.2 light-years away from Earth. Credits: NASA/ESA/Spitzer/WISE

A frosty, chilly star about the same temperature as the North Pole, minus 54 and 9 degrees Fahrenheit (minus 48 to minus 13 degrees Celsius)

Space news (astrophysics: faint, cool stars; brown dwarfs) – the fourth closest detected star system to Earth, just 7.2 light-years toward the constellation Hydra – 

A young, ambitious astronomer working at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds discovered the dimmest, coolest brown dwarf detected during the human journey to the beginning of space and time. Kevin Lehman first noticed a fast moving object, quickly dubbed WISE J085510.83-071442.5, in March of 2013. Excited at a new discovery, he spent the next few days analyzing more images of the same part of the sky taken by NASA’s Spitzer Space Telescope and Gemini South Telescope on Cerro Pachon in Chile.

pia18003-full
Welcome to the Sun’s Neighborhood This diagram illustrates the locations of the star systems closest to the sun. The year when the distance to each system was determined is listed after the system’s name. NASA’s Wide-field Infrared Survey Explorer, or WISE, found two of the four closest systems: the binary brown dwarf WISE 1049-5319 and the brown dwarf WISE J085510.83-071442.5. NASA’s Spitzer Space Telescope helped pin down the location of the latter object. The closest system to the sun is a trio of stars that consists of Alpha Centauri, a close companion to it and the more distant companion Proxima Centauri. Image credit: Penn State University

“It’s very exciting to discover a new neighbor of our solar system that is so close,” said Kevin Luhman, an astronomer at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds, University Park. “And given its extreme temperature, it should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures.” 

Kevin Luhman originally spotted the fast motion of WISE J085510.83-071442.5 in infrared images taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Later analysis of infrared images taken by NASA’s Spitzer Space Telescope were needed to determine its chilly temperature of between minus (54-9) Fahrenheit [minus (13 – 48) degrees Celsius]. Astronomers would use measurements taken by Spitzer and WISE at different positions around the sun to determine its distance of 7.2 light-years from Earth using the parallax effect. To scientists, it added up to a brown dwarf or maybe a large Jupiter-size planet lost in space. 

“This object appeared to move really fast in the WISE data,” said Luhman. “That told us it was something special.” 

pia18002-full-640_0
Cold and Quick: a Fast-Moving Brown Dwarf This animation shows the coldest brown dwarf yet seen, and the fourth closest system to our sun. Called WISE J085510.83-071442.5, this dim object was discovered through its rapid motion across the sky. It was first seen in two infrared images taken six months apart in 2010 by NASA’s Wide-field Infrared Survey Explorer, or WISE (see orange triangles). Two additional images of the object were taken with NASA’s Spitzer Space Telescope in 2013 and 2014 (green triangles). All four images were used to measure the distance to the object — 7.2 light-years — using the parallax effect. › See animation The Spitzer data were used to show that the body is as cold as the North Pole (or between minus 54 and 9 degrees Fahrenheit, which is minus 48 to minus 13 degrees Celsius). Image credit: NASA/JPL-Caltech/Penn State

Additional calculations estimated the mass of WISE J085510.83-071442.5 at between 3 and 10 times the mass of Jupiter. It could be a gas giant like Jupiter that was flung out of its host star system by gravitational interactions with more massive bodies. Astronomers determined it was more likely a very cool brown dwarf than a large gas giant planet since they have been detected more often. If this is the case, it’s the coldest brown dwarf star discovered during the human journey to the beginning of space and time. A nice shiny feather in the hat of a young, aspiring astronomer on the rise.  

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the sun’s nearest neighbors,” said Michael Werner, the project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. JPL manages and operates Spitzer. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.” 

Work’s never done

Never one to rest on his laurels, in March of 2013, Kevin Luhman discovered a pair of warmer brown dwarf stars just 6.5 light-years from Earth during his analysis of WISE images. Since this time, his search for rapidly moving bodies close to Earth has also shown that the outer solar system probably doesn’t contain a large, undiscovered planet X or Nemesis, as people often refer to it. I did mention he was ambitious. 

Learn more about WISE J085510.83-071442.5.

You can learn more about Kevin Luhman here

Take the space journey of NASA

Learn more about the Spitzer Space Telescope

Tour NASA’s Jet Propulsion Laboratory here

Learn more about the Wide-field Infrared Survey Explorer

Discover the work being done by Pennsylvania State University’s Center for Exoplanets and Habitable Worlds. 

Discover the Gemini South Telescope on Cerro Pachon in Chile. 

Read about a recent observation by the Kepler Space Telescope of a supernova shock wave in visible light.

Learn more about the incredible polynesian navigators and how they populated the islands of the Pacific Ocean.

Read about a supermassive black hole astronomers recently found residing in a galactic backwater.

WISE Spies Asteroid Passing in Front of Telescope in Images of Tadpole Nebula

Along with two satellites orbiting Earth above WISE 

453494main_pia13110-full-a

Space news (November 09, 2015) – 12,000 light-years from Earth in the Auriga constellation –

A part of the universe full of young, hot stars only a million years old, the Tadpole nebula is one of the best and closest places to study the formation of new stars. At a distance of 12,000 light-years from Sol in the constellation of Auriga, the two tadpole-shaped pillars that give this region of space its name contain numerous new stars with as much as ten times the mass of our sun. Called Sim 129 and 130, the chaotic areas near the heads of these pillars are believed to harbor new stars and protostars in the process of forming.

The mosaic of images above taken by NASA’s WISE spacecraft showcases the Tadpole nebula, plus two slow moving satellites orbiting above WISE, and two slower moving asteroids traveling through the solar system.

Asteroid 1719 left a line of yellow-green tracks running across the image and pictured in the boxes near the center. Discovered in 1950, this ancient wanderer orbits in the Main Asteroid Belt between Mars and Jupiter, and takes 4.3 years to orbit Sol. 

Asteroid 1992 UZ5 is also viewed traveling across the image and is highlighted in the boxes displayed at the upper left. Little data has been gathered on this ancient rock from the dawn of the solar system. Astronomers expect to know more about this visitor from the past in the years ahead.  

Highlighted in the off-center ovals near the center top and bottom right of the image are two satellites caught moving in front of WISE that appear as faint green trails.

You can learn more about asteroids from the dawn of the solar system here.

You can take the voyage of WISE here.

Discover the mission of NASA to take mankind to the stars here.

Learn about mysterious ripples astronomers viewed moving across the planet-forming region of AU Microscopii.

Read about a magnetar astronomers detected orbiting extremely close to the Monster of the Milky Way.

Learn about plans for the human journey to the beginning of space and time to head to Jupiter’s moon Europa to look for signs of life.