New Satellite “Hitomi” (Pupil of the Eye) Observes Wider X-ray Universe

Japan successfully launched an H-2A rocket carrying the next generation of X-ray space observatory into orbit on Wednesday

pct05_b.jpg

Space news (February 17, 2016) – The Yoshinobu Launch Complex at Tanegashima Space Center in Kagoshima Prefecture in southwestern Japan –  

Anxious astronomers, engineers, and scientists in Japan, Canada and NASA headquarters watched nervously Wednesday as a two-stage H-2A carrier vehicle carrying years of their work and dedication rose slowly from Tanegashima Space Center in Japan.

IMG_0193PorterAstroH.jpg

The H-2A rocket carried the next generation of X-ray space observatory “Hitomi”, formerly known as the Astro-H satellite, to its launch point 580 kilometers above the surface of the Earth.

We see X-rays from sources throughout the universe, wherever the particles in matter reach sufficiently high energies,” said Robert Petre, chief of Goddard’s X-ray Astrophysics Laboratory and the U.S. project scientist for ASTRO-H. “These energies arise in a variety of settings, including stellar explosions, extreme magnetic fields, or strong gravity, and X-rays let us probe aspects of these phenomena that are inaccessible by instruments observing at other wavelengths.”

As part of the launching of Astro-H, the satellite had been recently renamed “Hitomi”, which means “pupil of the eye” in Japanese. Using this eye-in-the-sky, astronomers around the world will study neutron stars, galaxy clusters and black holes in a wider bandwidth of x-rays from soft X-ray to the softest Gamma-ray.

This has been an extraordinary undertaking over many years to build this powerful new X-ray spectrometer jointly in the U.S. and Japan,” said Goddard’s Richard Kelley, the U.S. principal investigator for the ASTRO-H collaboration. “The international team is extremely excited to finally be able to apply the fundamentally new capabilities of the SXS, supported by the other instruments on the satellite, to observations of a wide range of celestial sources, especially clusters of galaxies and black hole systems.”

“Hitomi” is the sixth in a series of X-ray astronomy satellites designed and engineered by Japan Aerospace Exploration Agency’s (JAXA) Institute of Space and Astronautical Science (ISAS). All of the satellites in the series have been extremely successful X-ray observatories that have contributed to human knowledge of the cosmos. The latest satellite to launch into space is expected to offer breakthroughs in understanding and knowledge of the evolution of the largest structures observed in the cosmos.  

Canada’s connection to “Hitomi” is the Canadian ASTRO-H Metrology System (CAMS), which sharpens blurry images using lasers and detectors to correct for the movement of the boom used to support the ends of the extremely long detectors on the satellite. Needed to observe the highest-energy x-rays, the CAMS system was built in consultation with Canadian scientists and researchers by Ottawa-based Neptec.

The technology used in the SXS is leading the way to the next generation of imaging X-ray spectrometers, which will be able to distinguish tens of thousands of X-ray colors while capturing sharp images at the same time,” said Caroline Kilbourne, a member of the Goddard SXS team.

Hitomi starts work

Ultimately “Hitomi” was designed, engineered and launched by the three partners in this venture to conduct a survey of black holes and distant galaxies. They will use the results of the survey to help lift the veil of mystery surrounding the evolution of the most mysterious celestial objects in the cosmos. This is just the start of the space mission of “Hitomi”, once this initial mission concludes, we expect the newest automated-envoy of the human journey to the beginning of space and time to offer insights into the way matter acts in extreme gravitational fields, study the rotation of spinning black holes and the internal structure of neutron stars, and the dynamics and detailed physics of relativistic jets during its mission.

You can follow the space mission of “Hitomi” here.

Learn more about the things we learn about the cosmos each day here.

Learn more about Japan’s Institute of Space and Astronautical Science.

Learn more about the future space missions of the Japan Aerospace Exploration Agency. 

Read about the recent observation of gravitational waves by astronomers.

Learn about the things astronomers discovered recently about young, newborn stars.

Learn more about the things NASA’s New Horizons spacecraft is telling us about Pluto and its moons.

Spiral Galaxy NGC 4845

A flat and dust-filled disk orbiting a bright galactic bulge

Image credit: NASA/ESA/Hubble
Deep within the dusty center of spiral galaxy NGC 4845, hides a monster with hundreds of thousands of times the mass of our sun. Image credit: NASA/ESA/Hubble

Space news (February 20, 2016) – over 65 million light-years away in the constellation Virgo (The Virgin) –

This startling Hubble Space Telescope image of spiral galaxy NGC 4845 highlights its spiral structure but hides a monster. Deep within the center astronomers have detected a supermassive black hole, estimated to be in the hundreds of thousands of times the mass of Sol. 

By following the movements of the innermost stars of NGC 4845, astronomers were able to determine they orbit around the center of the galaxy at a velocity indicating the presence of a supermassive black hole. 

Scientists previously used the same method to discover the presence of the supermassive black hole at the center of the Milky Way – Sagittarius A*. The Monster of the Milky Way has a mass around 4 million times that of our sun, which is slightly bigger than the supermassive black hole at the center of NGC 4845.

Astronomers also discovered the supermassive black hole deep within the center of NGC 4845 is a hungry monster that devours anything that falls too far into its gravity well. In 2013 astronomers studying a different island universe, noticed a violent flare erupting from the center of NGC 4845. 

Astronomers discovered an object many times the mass of Jupiter had fallen into the gravity well of this monster and was devoured. The violent flare erupting from the center of NGC 4845 was the death throes of a brown dwarf or large planet as it was being torn apart and drawn deeper into the gravity well of the supermassive black hole.

Learn more about supermassive black holes here.

Learn more about NGC 4845 here.

Learn more about the ESA.

Take the journey of NASA.

Learn more about the Monster of the Milky Way – Sagittarius A.

Learn more about the formation of new stars.

Read about astronomers recent observation of something Einstein predicted, but until now we have never observed, gravitational waves.

Learn about private firm Planetary Resources plans to mine an asteroid within the next decade.

Astronomers Discover Disks Surrounding Supermassive Black Holes Emit X-ray Flares when Corona is Ejected

But why is the Corona ejected?

Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.
Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.

Space news (November 02, 2015) – 

Bizarre and mysterious stellar objects, studying black holes keeps astronomers up all night. One of the more puzzling mysteries of these unique objects are gigantic flares of X-rays (relativistic jets) detected erupting from disks of hot, glowing dust surrounding them. X-ray flares astronomers are presently studying in order to better understand these enigmatic, yet strangely attractive stellar objects.

Astronomers observing supermassive black holes using NASA’s Swift spacecraft and Nuclear Spectroscopic Telescope Array (NuSTAR) recently caught one in the middle of a gigantic X-ray flare. After analysis, they discovered this particular flare appeared to be a result of the Corona surrounding the supermassive black hole – region of highly energetic particlesbeing launched into space. A result making scientists and astronomers rethink their theories on how relativistic jets are created and sustained.

This result suggests to scientists that supermassive black holes emit X-ray flares when highly energized particles (Coronas) are launched away from the black hole. In this particular case, X-ray flares traveling at 20 percent of the speed of light, and directly pointing toward Earth. The ejection of the Corona caused the X-ray light emitted to brighten a little in an effect called relativistic Doppler boosting. This slightly brighter X-ray light has a different spectrum due to the motion of the Corona, which helped astronomers detect this unusual phenomenon leaving the disk of dust and gas surrounding this supermassive black hole.

This is the first time we have been able to link the launching of the Corona to a flare,” said Dan Wilkins of Saint Mary’s University in Halifax, Canada, lead author of a new paper on the results appearing in the Monthly Notices of the Royal Astronomical Society. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.

Astronomers currently propose two different scenarios for the source of coronas surrounding supermassive black holes. The “lamppost” scenario indicates coronas are analogous to light bulbs sitting above and below the supermassive black hole along its axis of rotation. This idea proposes coronas surrounding supermassive black holes are spread randomly as a large cloud or a “sandwich” that envelopes the disk of dust and material surrounding the black hole. Some astronomers think coronas surrounding supermassive black holes could alternate between both the lamppost and sandwich configurations.

The latest data seems to lean toward the “lamppost” scenario and gives us clues to how the coronas surrounding black holes move. More observations are needed to ascertain additional facts concerning this unusual phenomenon and how massive X-ray flares and gamma rays emitted by supermassive black holes are created.

Something very strange happened in 2007, when Mrk 335 faded by a factor of 30. What we have found is that it continues to erupt in flares but has not reached the brightness levels and stability seen before,” said Luigi Gallo, the principal investigator for the project at Saint Mary’s University. Another co-author, Dirk Grupe of Morehead State University in Kentucky, has been using Swift to regularly monitor the black hole since 2007.

The Corona gathered inward at first and then launched upwards like a jet,” said Wilkins. “We still don’t know how jets in black holes form, but it’s an exciting possibility that this black hole’s Corona was beginning to form the base of a jet before it collapsed.”

The nature of the energetic source of X-rays we call the Corona is mysterious, but now with the ability to see dramatic changes like this we are getting clues about its size and structure,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena, who was not affiliated with the study.

Study continues

Astronomers will now continue their study of supermassive black holes in the cosmos in order to remove the veil of mystery surrounding the X-ray flares they emit and other bizarre mysteries surrounding these enigmatic stellar objects. In particular, they would love to discover the reasons for the ejection of Coronas surrounding black holes.

You can learn more about black holes here.

Discover the Swift spacecraft here.

Take the voyage of NASA’s NuSTAR spacecraft here.

Take part in NASA’s mission to the stars here.

Read about ripples in the spacetime astronomers detected moving across the planet-making region of AU Microscopii.

Learn more about climatic collisions between galaxy clusters.

Read about NASA and its partners plans to travel to Mars for an extended stay in the next few decades.

Magnetar Extremely Close to Supermassive Black Hole at Center of Milky Way

Exhibiting a higher surface temperature and slower decrease in the rate of x-rays emitted than previous neutron stars detected during the human journey to the beginning of space and time

The x-ray image here taken by the Chandra X-ray Observatory shows a view of the region surrounding the supermassive black hole thought to exist at the center of the Milky Way. The red, green and blue seen in the main image are low, medium and high-energy x-rays respectively. The inset image to the left was taken between 2005 and 2008, when the magnetar wasn't detected. The image to the right was taken in 2013, when the neutron star appeared as the bright x-ray source viewed.
The x-ray image here taken by the Chandra X-ray Observatory shows a view of the region surrounding the supermassive black hole thought to exist at the center of the Milky Way. The red, green and blue seen in the main image are low, medium and high-energy x-rays respectively. The inset image to the left was taken between 2005 and 2008, when the magnetar wasn’t detected. The image to the right was taken in 2013, when the neutron star appeared as the bright x-ray source viewed.

Space news (August 15, 2015) –

Space scientists working with NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory in 2013 discovered a magnetar dangerously close to the supermassive black hole (Sagittarius A) thought to exist at the center of the Milky Way. At a distance of around 0.3 light-years or 2 trillion miles from the 4-million-solar mass black hole, the neutron star (called SGR 1745-2900) detected is likely orbiting slowly into the gravitational pool of the supermassive black hole. One day, far in the future, the two will merge during an event likely spectacular and unfathomable to both the scientist and layperson.

For the last two years, NASA and European space agency scientists have been monitoring SGR 1745-2900, and have discovered its acting unlike any magnetar discovered during the human journey to the beginning of space and time.

The rate of X-rays emitted by the magnetar is decreasing slower than other neutron stars viewed and its surface temperature is higher. Facts that are making astrophysicists rethink their theories on neutron stars and develop new ideas to explain how this happens.

Could the close proximity of the supermassive black hole Sagittarius A be the cause?

Considering the extreme distance between the supermassive black hole and magnetar, astrophysicists don’t think this could be the reason for the slower decrease in X-ray emissions and higher surface temperature of SGR 1745-2900. At the distance of 2 trillion miles, they believe the magnetar is too far away for the gravity and magnetic fields of the two to interact enough for this to occur.

The current model developed by astrophysicists to explain the unexpected slower rate of X-ray emissions and higher surface temperature of SGR 1745-2900 involves “starquakes”. Seismic waves astrophysicists think are more energetic than a 23rd magnitude earthquake on Earth, scientists found the starquake model doesn’t explain the slow decrease in X-ray brightness and the higher surface temperature detected.

To explain the new data obtained through study using the Chandra X-ray Observatory NASA astrophysicists have suggested a new model. The bombardment of the surface of SGR 1745-2900 by charged particles trapped within magnetic fields above its surface could add enough heat to account for the higher surface temperature and account for the slower decrease in X-ray emissions.

Study continues

NASA scientists will now continue their study of magnetar SGR 1745-2900 as it orbits Sagittarius A looking for clues to verify their new model. Study and understanding of this and other magnetars will provide clues to the events that occurred during the earliest moments of the universe. Events that can tell us more about the universe we reside in and the true nature of spacetime.

You can learn more about supermassive black holes here.

Read and learn more about magnetars here.

You can read about and follow NASA’s mission to the stars here.

Read about some of the discoveries made by NASA’s New Horizons spacecraft during its visit to Pluto.

Learn more about the human search for Earth 2.0.

Learn about and take part in the search for near-Earth objects space scientists indicate could be a problem in the future.

Hubble Finds the The Biggest Black Hole

This conceptualized drawing of black hole Cygnus x-1 shows the black hole drawing matter from a nearby blue star
This conceptualized drawing of black hole Cygnus x-1 shows the black hole drawing matter from a nearby blue star

The nature of the beast

Astronomy news (November 26, 2013) – Astronomers believe the size of a black hole should be related to the size of the galaxy in which it resides, so the smaller a galaxy, the less massive its black hole should be. The lenticular galaxy NGC 1277 appears to have a black hole near its center with a mass out of proportion to its size, which indicates this theory will have to be looked at again.

Astronomers measured the velocities of stars in orbit around NGC 1277
Astronomers measured the velocities of stars in orbit around NGC 1277

Watch this animation on the possible orbit of the massive black hole in NGC 1277, https://www.youtube.com/watch?v=pFkBKmAj0G4.

NASA astronomers conducting a study of black holes at the Max Planck Institute for Astronomy recently used the Hubble Space Telescope and Hobby-Eberly Telescope in Fort Davis, Texas to measure the velocities of stars in orbit around NGC 1277. The higher the velocity of these stars, the greater the mass of the central object. NGC 1277 is located at a distance of around 250 million light-years, toward the constellation Perseus.

This Hubble image shows lenticular galaxy NGC1277
This Hubble image shows lenticular galaxy NGC1277

Astronomers measured the mass of the object at the center of NGC 1277 to be around 17 billion times the mass of the Sun, which is over four thousand times more massive than the 4 million solar mass black hole at the center of the Milky Way. Until recently, the two most massive central bodies found in any galaxy measured by astronomers reside in galaxies NGC 3842 and NGC 4889. This would make the central object in NGC 1277 the most massive found to date during the current study of black holes by NASA astronomers at the Max Planck Institute for Astronomy.

Astronomers measured the central mass in NGC 1277 to be over 4 times as massive as the one in our own Milky Way
Astronomers measured the central mass in NGC 1277 to be over 4 times as massive as the one in our own Milky Way

NASA astronomers estimate the central mass in NGC 1277 has about 14 percent of the total mass of this smaller galaxy, which when compared to the expected 0.1 percent of the mass of the stellar bulge of the galaxy, could mean astronomers will have to rethink current astrophysical theories on galaxy-black hole systems.

What now?

NASA astronomers at the Max Planck Institute for Astronomy are currently going over the data obtained during their study of NGC 1277, to see if they can come up with a new theory on how the central mass could be so massive as compared to other galaxy-black hole systems studied.

Current ideas include the possibility the black hole at the center of NGC 1277 could have been ejected from nearby galaxy NGC 1275 and then subsequently captured. We’ll keep you updated as more information and data comes in on theories concerning galaxy-black hole systems during the continuing human journey to the beginning of space and time.

The leader of the team surveying black holes at the Max Planck Institute for Astronomy talks about the black hole in NGC 1277, https://www.youtube.com/watch?v=12FJVvqn1YE.

Can NASA astronomers detect extraterrestrial moons orbiting distant suns? Read this article to find out https://spaceshipearth1.wordpress.com/2013/12/31/searching-for-extraterrestrial-moons/.

Read about the latest discovery in the search for life beyond Earth https://spaceshipearth1.wordpress.com/2013/12/25/the-search-for-life-beyond-earth-takes-a-turn-at-jupiter/.

Read about the latest images of the solar system sent back by the Cassini spacecraft https://spaceshipearth1.wordpress.com/2013/12/22/cassini-spacecraft-show-views-of-the-solar-system-in-natural-color/.