NASA’s Next Generation Wide Field Infra-Red Survey Telescope

Will study dark energy, conduct a census of discovered exoplanets, and image and analysis their spectroscopy using coronagraphy.  

wfirstdarksidenominal
Credits: NASA/WFIRST

Space news (Astrophysics: next generation infrared telescope; WFIRST) – Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL) and Space Telescope Science Institute (STScI) –  

wfirstmcrbaseline
Credits: NASA.

Scheduled for launch sometime in 2020, the exact date hasn’t been set in stone, NASA’s Wide Field Infra-Red Survey Telescope (WFIRST)’s currently in the formation stage in various science institutions around the United States. NASA’s next generation wide-field infrared survey telescope, WFIRST’s expected to open a wider window on the infrared cosmos and unravel secrets of the universe. 

spin0828
Credits: NASA/Goddard Space Flight Center

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has,” said John Grunsfeld, astronaut and associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington. “This mission uniquely combines the ability to discover and characterize planets beyond our own solar system with the sensitivity and optics to look wide and deep into the universe in a quest to unravel the mysteries of dark energy and dark matter.”  

617284main_grunsfeld_226
Former astronaut and current NASA assistant director John Grunsfeld. Credits: NASA.

Utilizing a view 100 times bigger than the Hubble Space Telescope, it will compliment astrophysicists exploring dark energy, dark matter, and the origins and evolution of the cosmos. Carrying a chronograph capable of blocking the individual glare of a star, WFIRST will detect the faint light of planets, making it possible for the first time to make detailed measurements of the chemical makeup of alien atmospheres light-years away. By making a survey of the atmospheres of many alien worlds astronomers will add to our knowledge of their origins and physics and search for planetary atmospheres capable of sustaining life. 

Credits: NASA
Credits: NASA

“WFIRST is designed to address science areas identified as top priorities by the astronomical community,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington. “The Wide-Field Instrument will give the telescope the ability to capture a single image with the depth and quality of Hubble, but covering 100 times the area. The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.”  

Paul Hertz, Director of the Astrophysics Division in the Science Mission Directorate at NASA. Credits: NASA
Paul Hertz, Director of the Astrophysics Division in the Science Mission Directorate at NASA. Credits: NASA

Designed and engineered to compliment the discoveries of the Hubble Space Telescope, the Kepler Space Telescope, and future Transiting Exoplanet Survey Telescope (TESS), WFIRST will follow the launch of the James Webb Space Telescope around 2018. One of NASA’s next generation astrophysics observatories, WFIRST will offer a treasure trove of astronomical data and survey the cosmos to discover the mysteries of the universe. 

Credits: NASA
Credits: NASA

“In addition to its exciting capabilities for dark energy and exoplanets, WFIRST will provide a treasure trove of exquisite data for all astronomers,” said Neil Gehrels, WFIRST project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This mission will survey the universe to find the most interesting objects out there.” 

WFIRST’s sensitivity and wide view of the cosmos will allow astronomers to conduct a large-scale survey of exoplanets by monitoring the brightness of millions of stars. Utilizing numerous methods, astrophysicists will use this space observatory to investigate the ways dark energy and dark matter have altered, affected the evolution of the cosmos. 

Credits: NASA
Credits: NASA

Go for launch!

NASA’s chiseled a tentative date on paper of sometime in the 2020s for the launch of WFIRST, but delays and even improvements of this timetable are possible. After reaching space, NASA’s next generation wide-field infrared survey telescope will travel to an L2 point millions of miles from Earth, before starting astrophysical operations and improving and enhancing our view of the infrared cosmos. 

Watch this video on WFIRST.

Read about ASCA, Advanced Satellite for Cosmology & Astrophysics.

Read and learn about the discoveries of the Giant Magellan Telescope, located high up on an Andes Mountain peak in Las Campanas, Chile.

Learn more about the new Japanese X-ray satellite Hitomi, “Pupil of the Eye”.

Learn more about the mysteries of the universe discovered by NASA

Read more about WFIRST here

Discover the Hubble Space Telescope

Learn more about the James Webb Space Telescope here

Discover NASA’s Goddard Space Flight Center

Learn more about TESS here

Learn what scientists have discovered about dark energy

Discover dark matter here

Discover the Kepler Space Telescope

Advertisements

Initial Atmospheric Study of Two Earth-Sized Exoplanets

Data shows at least one of two exoplanets studied orbits within the habitable zone of host red dwarf star in system TRAPPIST-1

This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)
This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)

Space news (the search for Earth 2.0: the first atmospheric study of Earth-sized exoplanets; TRAPPIST-1 system) – searching for possible atmospheres surrounding exoplanets TRAPPIST-1b and TRAPPIST-1c 40 light-years from Earth toward the constellation Aquarius – 

This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

Astronomers using the Hubble Space Telescope to search for suitable exoplanets to act as a cradle for a new human genesis recently sampled the atmospheres of two exoplanets orbiting a red dwarf star 40 light-years from Earth. They used Hubble’s Wide Field Camera 3 to observe TRAPPIST-1b and TRAPPIST-1c in near-infrared wavelengths to look for signs of an atmosphere. They discovered these two exoplanets probably don’t have the fluffy, hydrogen-dominated atmospheres found around larger, gaseous exoplanets.  

This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.
This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.

The image seen at the top of the page is an artist’s portrayal of TRAPPIST-1b and 1c, two Earth-sized exoplanets shown passing in front of their host red dwarf star. Astronomers used the Hubble Space Telescope to look for hints of atmospheres surrounding these distant worlds and detected signs increasing the chances of habitability.  

This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in colour.
This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in color. Credit: ESO

“The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.” 

Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis' work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope
Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis’ work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope

Julien de Wit of the Massachusetts Institute of Technology in Cambridge and a team of astronomers used spectroscopy to decipher the light, revealing clues to the chemical composition of an atmosphere surrounding these candidates. By taking advantage of a rare double-transit of both exoplanets across the face of their host star, they collected starlight passing through any gas envelope surrounding these exoplanets. This event only occurs every two years, but it allowed for a simultaneous measurement of atmospheric characteristics. The exact composition’s still a mystery at this point, further observations are required to determine more clues. This is an exciting and promising start. 

This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

“These initial Hubble observations are a promising first step in learning more about these nearby worlds, whether they could be rocky like Earth, and whether they could sustain life,” says Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington. “This is an exciting time for NASA and exoplanet research.” 

Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.
Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.

Estimates put the age of the host red dwarf star at around 500 million years, which is young for a star with a potential lifespan of trillions of years. Red dwarf stars burn a lot cooler, but completely consume their supply of hydrogen, unlike more massive types of stars. The most common star in the cosmos, astronomers think 20 out of 30 near-Earth suns could be red dwarfs. The numbers indicate searching nearby red dwarfs for an exoplanet with the right ingredients for habitability is a good place to begin our search. 

Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, "For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”
Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, “For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”

The team and other astronomers plan on making follow-up measurements of these two exoplanets using the Hubble Space Telescope, the Kepler Space Telescope, the TRAPPIST telescope at ESO’s La Silla Observatory, and other assets to look for thinner gas layers containing heavier atoms than hydrogen as in Earth’s atmosphere.  

“With more data, we could perhaps detect methane or see water features in the atmospheres, which would give us estimates of the depth of the atmospheres,” said Hannah Wakeford, the paper’s second author, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

AAEAAQAAAAAAAAb9AAAAJGFjNDRlNjYzLWFjYWYtNDU5NC05MTdkLWViYmEzNzJmZmE3ZA
Hannah Wakeford. Credits: Linked

Toward the future

In the years ahead, using assets like NASA’s James Webb Space Telescope, astronomers should be able to determine the exact composition of any atmospheres surrounding these exoplanets and others. Finding the signatures of water vapor and methane, or even carbon dioxide and ozone is a significant step toward possible habitability for lifeforms. The power of Webb should also allow planetary scientists to measure the surface and atmospheric temperature and pressure of each exoplanet. Both key factors to determining if these exoplanets orbiting red dwarf TRAPPIST-1 are possible cradles for the genesis of life. 

“Thanks to several giant telescopes currently under construction, including ESO’s E-ELT and the NASA/ESA/CSA James Webb Space Telescope due to launch for 2018, we will soon be able to study the atmospheric composition of these planets and to explore them first for water, then for traces of biological activity. That’s a giant step in the search for life in the Universe,” says Julien de Wit. 

Julien De Witt: Credits: Linked
Julien De Witt: Credits: Linked

“These Earth-sized planets are the first worlds that astronomers can study in detail with current and planned telescopes to determine whether they are suitable for life,” said de Wit. “Hubble has the facility to play the central atmospheric pre-screening role to tell astronomers which of these Earth-sized planets are prime candidates for more detailed study with the Webb telescope.” 

Read about a recent discovery about supermassive black holes changing current theories.

Read and learn about the new space technology being developed.

Read about the first observation of a supernova shockwave.

Read the official study here.

Check out NASA’s interactive exploration of the Exoplanet Zoo.

Learn more about NASA’s plans for the James Webb Space Telescope

Take the space journey of NASA here

Discover the Hubble Space Telescope. 

Read more about NASA’s plans for K2

Voyage across the cosmos on board the telescopes of the ESA here

Learn more about astronomy at the Massachusetts Institute of Technology

Read and learn more about TRAPPIST-1 and its planets here

Learn more about plans for the ESA’s E-ELT

Discover more about the work of NASA’s Space Telescope Science Institute here

Learn about the outstanding work being done by NASA’s Science Mission Directorate

Take a tour of NASA’s Goddard Space Flight Center here

 

Next Generation Explorer-class Planet Finder

TESS: Transiting Exoplanet Survey Satellite

This artist's depiction of the Transiting Exoplanet Survey Satellite (TESS). Credit: TESS team
This is an artist’s depiction of the Transiting Exoplanet Survey Satellite (TESS). Credit: TESS team

Space news (March 28, 2016) – Searching 200,000 stars looking for transiting Earth-togas giant size bodies passing in front of their home sun in relation to Sol

The Transiting Exoplanet Survey Satellite’s (TESS) a next generation planet-finding spacecraft designed to enable the search for Earth 2.0. TESS will conduct a three-year mission to monitor the brightness of over 200,000 suns, looking for temporary drops in brightness as exoplanets pass in front of their parent sun in relation to Earth. It will undertake the first two-year all-sky transit survey to identify exoplanets ranging from Earth-sized to gas giants, orbiting at a range of orbital distances and various stellar types. TESS will search for small rocky planets lying within the Goldilocks zone of their home stars we could call Earth 2.0.

Earth 2.0 refers to an exoplanet suitable for Earth-based life to survive and prosper, with the ingredients-of-life humans need to continue as a species. Astrophysicists expect TESS to detect more than 3000 transiting exoplanet candidates, including about 500 Earth-sized to Super-sized bodies, less than twice Earth’s radius. Planetary scientists will catalog the brightest and nearest suns to Sol with transiting rocky exoplanets. 

This catalog of prime candidates for Earth 2.0 is scheduled for additional study using current Earth and space-based telescopes. In the future, astrophysicists will use the James Webb Space Telescope and new ground-based instruments to take a closer look at each candidate. These follow-up observations will refine measurements of each planets’ mass, radius, density and atmospheric conditions. The hope is to identify exoplanets with the right ingredients-of-life, which could act as a cradle for the next human Genesis. The world we could one day live on!

Launch’s just months away

The tentative working launch date for TESS is August of 2017, but June 2018 could be closer to the mark. SpaceX’s Falcon 9 will liftoff from Cape Canaveral Air Force Station and deliver it to the correct orbital position. From its position high above the Earth, TESS will survey the night sky looking for slight dips in the brightness of distant stars as unseen exoplanets pass in front. Slight dips that could reveal the existence of an exoplanet where life could exist. A place called Earth 2.0!

Watch this YouTube video on TESS.

Read about the launch of X-ray satellite “Hitomi”, “Pupil of the Eye”.

Learn more about the recent observation of gravitational waves by LIGO.

Read about mysterious ripples observed moving across the planet-forming region of a young star.

Learn more about the search for Earth 2.0.

Take the voyage of NASA here.

Learn more about the James Webb Space Telescope.

Discover the mission of TESS here.

Superstar Binaries Like Eta Carinae More Common Than First Thought

Astronomers using NASA’s Spitzer and Hubble space telescopes discovered similar superstar binaries in four nearby galaxies

Eta Carinae's great eruption in the 1840s created the billowing Homunculus Nebula, imaged here by Hubble, and transformed the binary into a unique object in our galaxy. Astronomers cannot yet explain what caused this eruption. The discovery of likely Eta Carinae twins in other galaxies will help scientists better understand this brief phase in the life of a massive star. Credits: NASA, ESA, and the Hubble SM4 ERO Team
Eta Carinae’s great eruption in the 1840s created the billowing Homunculus Nebula, imaged here by Hubble, and transformed the binary into a unique object in our galaxy. Astronomers cannot yet explain what caused this eruption. The discovery of likely Eta Carinae twins in other galaxies will help scientists better understand this brief phase in the life of a massive star.
Credits: NASA, ESA, and the Hubble SM4 ERO Team

Space news (February 15, 2016) – 7,500 light-years away in the southern constellation of Carina

Astronomers combing through data provided by the Hubble and Spitzer space telescopes looking for superstar binaries like Eta Carinae think they have finally found a few additional instances in nearby galaxies. 

The signature balloon-shaped clouds of gas blown from a pair of massive stars called Eta Carinae have tantalized astronomers for decades. Eta Carinae has a volatile temperament, prone to violent outbursts over the past 200 years. Observations by the newly repaired Space Telescope Imaging Spectrograph (STIS) aboard NASA’s Hubble Space Telescope reveal some of the chemical elements that were ejected in the eruption seen in the middle of the 19th century. Image credit: NASA/ESA
The signature balloon-shaped clouds of gas blown from a pair of massive stars called Eta Carinae have tantalized astronomers for decades. Eta Carinae has a volatile temperament, prone to violent outbursts over the past 200 years.
Observations by the newly repaired Space Telescope Imaging Spectrograph (STIS) aboard NASA’s Hubble Space Telescope reveal some of the chemical elements that were ejected in the eruption seen in the middle of the 19th century.
Image credit: NASA/ESA

We knew others were out there,” said co-investigator Krzysztof Stanek, a professor of astronomy at Ohio State University in Columbus. “It was really a matter of figuring out what to look for and of being persistent.

Astrophysicists had previously conducted a survey of data on seven galaxies provided by the pair of space telescopes between 2012-2014. During this extensive study of the data, scientists found no superstar binaries similar to Eta Carinae. They determined they needed to devise a more sensitive way to identify possible candidates. 

Astronomers devised an optical and infrared fingerprint to detect and identify these five superstar binaries similar to Eta Carinae. With Spitzer we see a steady increase in brightness starting at around 3 microns and peaking between 8 and 24 microns,” explained Khan. “By comparing this emission to the dimming we see in Hubble’s optical images, we could determine how much dust was present and compare it to the amount we see around Eta Carinae.

During the follow-up survey conducted in 2015, astronomers discovered data indicating the existence of five superstar binaries similar to Eta Carinae in four nearby galaxies. 

The nearby spiral galaxy M83 is currently the only one known to host two potential Eta Carinae twins. This composite of images from the Hubble Space Telescope's Wide Field Camera 3 instrument shows a galaxy ablaze with newly formed stars. A high rate of star formation increases the chances of finding massive stars that have recently undergone an Eta Carinae-like outburst. Bottom: Insets zoom into Hubble data to show the locations of M83's Eta twins. Credits: NASA, ESA, the Hubble Heritage Team (STScI/AURA) and R. Khan (GSFC and ORAU)
The nearby spiral galaxy M83 is currently the only one known to host two potential Eta Carinae twins. This composite of images from the Hubble Space Telescope’s Wide Field Camera 3 instrument shows a galaxy ablaze with newly formed stars. A high rate of star formation increases the chances of finding massive stars that have recently undergone an Eta Carinae-like outburst. Bottom: Insets zoom into Hubble data to show the locations of M83’s Eta twins.
Credits: NASA, ESA, the Hubble Heritage Team (STScI/AURA) and R. Khan (GSFC and ORAU)

In nearby galaxy M83, just 15 million light-years away, astronomers discovered two superstar binaries similar to Eta Carinae. They also found one superstar binary each in NGC 6946, M101 and M51, located between 18-26 million light-years away.

Researchers found likely Eta twins in four galaxies by comparing the infrared and optical brightness of each candidate source. Infrared images from NASA's Spitzer Space Telescope revealed the presence of warm dust surrounding the stars. Comparing this information with the brightness of each source at optical and near-infrared wavelengths as measured by instruments on Hubble, the team was able to identify candidate Eta Carinae-like objects. Top: 3.6-micron images of candidate Eta twins from Spitzer's IRAC instrument. Bottom: 800-nanometer images of the same sources from various Hubble instruments. Credits: NASA, ESA, and R. Khan (GSFC and ORAU)
Researchers found likely Eta twins in four galaxies by comparing the infrared and optical brightness of each candidate source. Infrared images from NASA’s Spitzer Space Telescope revealed the presence of warm dust surrounding the stars. Comparing this information with the brightness of each source at optical and near-infrared wavelengths as measured by instruments on Hubble, the team was able to identify candidate Eta Carinae-like objects. Top: 3.6-micron images of candidate Eta twins from Spitzer’s IRAC instrument. Bottom: 800-nanometer images of the same sources from various Hubble instruments.
Credits: NASA, ESA, and R. Khan (GSFC and ORAU)

An additional study indicates each of these five candidates has the same optical and infrared fingerprint as Eta Carinae. Astronomers think within each a high mass star is buried in five to ten solar masses of gas and dust, like Eta Carinae. 

More study’s needed

They plan additional study of these five candidate superstar binaries similar to Eta Carinae, to determine if they’re indeed what they were looking for. The launch of the James Webb Space Telescope, late in 2018, will enable additional and better study of these five possible superstar binaries. 

The James Webb Telescope’s Mid-infrared instrument (MIRI) has ten times the angular resolution of the Spitzer Space Telescope. It’s also most sensitive to the wavelengths needed to detect superstar binaries at their brightest. 

Combined with Webb’s larger primary mirror, MIRI will enable astronomers to better study these rare stellar laboratories and to find additional sources in this fascinating phase of stellar evolution,” said Sonneborn, NASA’s project scientist for Webb telescope operations. It will take Webb observations to confirm the Eta twins as true relatives of Eta Carinae.

Take the journey of the Spitzer Space Telescope here.

Discover the Hubble Space Telescope here.

Learn more about NASA here.

Discover Eta Carinae here.

Read about astronomers witnessing the first moments of a rare, newborn supernovae.

Learn more about US congress recognizing the right of US citizens to own asteroid resources.

Are you one of the millions of earthlings thinking about moving to Mars in the near future.

Astronomers Detect Swirls in Disk of Dust Surrounding Young Suns

In this computer generated simulation the spot X marks the location astronomers believe we might find a planet nearby. The two spiral arms are possibly produced by the movement of the unseen planet through the surrounding hot dust and gas. Image NASA/ESA/ESO/M
In this computer generated simulation, the spot X marks the location astronomers believe we might find a planet nearby. The two spiral arms are possibly produced by the movement of the unseen planet through the surrounding hot dust and gas. Image NASA/ESA/ESO/M

They believe could be evidence for young, massive planets orbiting new stars

Space news (November 23, 2015) –

Astronomers working with ground-based telescopes are proposing massive swirl designs viewed encircling newborn stars could betray the presence of infant planets. Opening the door to a new method of possibly detecting exoplanets orbiting stars and offering a look at the processes forming planets in the cosmos.

The human journey to the beginning of space and time has detected over 1,000 exoplanets around distant stars during the last few years. Detecting infant planets being formed around a nearby, young star enveloped by a circumstellar disk of gas and dust is a different story. Presently, astronomers can’t detect nascent planets embedded inside a vast, pancaked-shaped circumstellar disk. 

Those infant planets being formed around young stars could be detected based on the changes they make in the circumstellar disk is a new concept. A new concept based on computer modeling of the birth and evolution of massive disks of dust and gas surrounding young stars. Computer modeling conducted by two NASA Hubble Fellows, Zhaohuan Zhu of Princeton University and Ruobing Dong of Lawrence Berkeley National Laboratory.

It’s difficult to see suspected planets inside a bright disk surrounding a young star. Based on this study, we are convinced that planets can gravitationally excite structures in the disk. So if you can identify features in a disk and convince yourself those features are created by an underlying planet that you cannot see, this would be a smoking gun of forming planets,” Dong said.

This new planet-finding technique could be significant in the desire to find young, newly-formed planets and understanding the processes the cosmos uses to make them. This approach could be the piece of the puzzle astronomers have been looking for to help unwrap the mystery surrounding the formation of planets. A mystery planetary scientists have been studying in depth for years and one they would love to understand more about.

Computer models show gaps and rings in circumstellar disks could be unseen planets embedded in massive, light-absorbing clouds of gas and dust. Gaps and rings possibly swept clean by the gravity field of a planet or planets, which makes it difficult to determine their number, individual mass, or location.  

Astronomers using ground-based telescopes have imaged two massive spiral arms surrounding two newly-formed stars called SAO 205462 and MWC 758. They have also detected similar looking spiral features in nearby stars they’re currently studying to try to gain a better understanding of exactly what’s going on beneath the veil of gas and dust surrounding these distant celestial bodies. 

How they are created has been a big mystery until now.  Scientists had a hard time explaining these features,” Dong said. If the disks were very massive, they would have enough self-gravity to become unstable and set up wave-like patterns. But the disks around SAO 206462 and MWC 758 are probably just a few percent of the central star’s mass and therefore are not gravitationally unstable.

Additional computer models suggest the dynamics of disks surrounding newly-formed suns are altered by the radiation of a star as it moves through a disk with embedded planets. Computer modeling closely resembling the spiral structures imaged by astronomers points to mutual gravitational fields of newly-formed stars and surrounding disks interacting. This interaction creates regions surrounding newly-formed stars where the density of gas and dust increases until they form spiral waves. Spiral waves that are spread out over these regions by the varying rates of rotation of the disk around the newly-formed star. 

Simulations also suggest that these spiral arms have rich information about the unseen planet, revealing not only its position but also its mass,” Zhu said. The simulations show that if there were no planet present, the disk would look smooth. To make the grand-scale spiral arms seen in the SAO 206462 and MWC 758 systems, the unseen planet would have to be bulky, at least 10 times the mass of Jupiter, the largest planet in our solar system.

The latest observations of newly-formed sun MWC 758, taken with the European Southern Observatory's Very Large Telescope, show a protoplanetary disk with two spiral arms extending over 10 billion miles into space from the star. Image NASA/ESA/ESO/M
The latest observations of newly-formed sun MWC 758, taken with the European Southern Observatory’s Very Large Telescope, show a protoplanetary disk with two spiral arms extending over 10 billion miles into space from the star. Image NASA/ESA/ESO/M

There are many theories about how planets form but very little work based on direct observational evidence confirming these theories,” Dong said. “If you see signs of a planet in a disk right now, it tells you when, where, and how planets form.”

Study continues

Astronomers and planetary scientists will now continue their studies of newly-formed star systems and the processes the cosmos uses to create them. They’re planning on using current ground and space-based telescopes to study young star systems. In the years ahead they also use the James Webb Space Telescope to lift the veil of mystery surrounding the birth and evolution of stars in the universe.  

Read more about the things astronomers have discovered about the planet-forming region around stars.

Learn more about the regions around young stars.

Learn about the things astronomers have discovered around newly-formed main sequence stars like our Sol.

Learn more about planet formation here.

Discover the James Webb Space Telescope here.

Take a tour of the European Southern Observatory’s Very Large Telescope here.

Astronomers Use to Think Red Dwarf Stars Only Exhibited Major Stellar Flares for a Period of a Day Maximum

Until NASA’s Swift Gamma-ray Burst Space Observatory detected a sequence of seven stellar flares over 10,000 times more powerful than the biggest ever recorded erupting from a red dwarf star in the binary system DG CVn 

DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger
DG CVn, a binary consisting of two red dwarf stars shown here in an artist’s rendering, unleashed a series of powerful flares seen by NASA’s Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions.
Image Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

Space news ( Oct. 30, 2014) – astrophysics: gamma-ray bursts; seven of the most intense, powerful gamma-ray bursts ever detected –

NASA space scientists operating NASA’s Swift Gamma-ray Burst Space Observatory detected a sequence of seven of the most intense, powerful, and long-lasting stellar flares ever seen at 5:07 p.m EDT on April 23, 2014. You can watch a video of the event here. They believe the gamma-rays detected are from stellar flares erupting from the surface of one of a pair of red dwarf stars 60 light-years away in the binary star system DG Canum Venaticorum (DG CVn). They are currently scratching their heads and rethinking theories on the intensity, power, and length of time of major stellar flaring episodes exhibited by red dwarf stars.

“For about three minutes after the BAT trigger, the superflare’s X-ray brightness was greater than the combined luminosity of both stars at all wavelengths under normal conditions,” noted Goddard’s Adam Kowalski, who is leading a detailed study on the event. “Flares this large from red dwarfs are exceedingly rare.”

“We used to think major flaring episodes from red dwarfs lasted no more than a day, but Swift detected at least seven powerful eruptions over a period of about two weeks,” said Stephen Drake, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who gave a presentation on the “superflare” at the August meeting of the American Astronomical Society’s High Energy Astrophysics Division. “This was a very complex event.”

At peak power and intensity, space scientist Rachael Osten of the Space Telescope Institute and Stephen Drake of NASA’s Goddard Space Flight Center indicate this sequence of stellar flares reached 360 million degrees Fahrenheit (200 million Celsius), which is over 12 times hotter than the center of our own sun. Currently, they’re trying to figure out which of the pair of red dwarf stars is the source of the sequence of seven stellar flares they observed.

Space scientists indicate the problem is the pair of red dwarf suns in this binary star system are only about three times the distance apart as the average distance of Earth from the sun. This is too close for instruments to determine which red dwarf star is the culprit in this case.

“This system is poorly studied because it wasn’t on our watch list of stars capable of producing large flares,” said Rachel Osten, an astronomer at the Space Telescope Science Institute in Baltimore and a deputy project scientist for NASA’s James Webb Space Telescope, now under construction. “We had no idea DG CVn had this in it.”

What’s next?

NASA space scientists will now turn their attention to stars within 100 light-years of DG DVn. The majority of these suns are middle-aged, like our own sun, but there are over a thousand young red dwarf stars drifting through this region of space. Studying red dwarf suns of the same age as DG CVn (around 30 million years) will allow the best opportunity to observe similar stellar flares as the seven seen recently. They also plan to keep an eye on DG CVn using the Swift Gamma-ray Burst Explorer in case it unleashes similar stellar flares in the future.

For more information on the Swift Gamma-ray Burst Explorer visit.

You can find more information on NASA and red dwarf stars here.

Read about things NASA’s Messenger spacecraft has told us about Mercury

Learn about the birth of a black hole

Learn about ancient Irish astronomers

 

Earth-size Planet Discovered Orbiting Within Habitable Zone of Star

Earth-sized planets could be more common than we first assumed

This artists conception of Kepler-186f is elegant, but still imagination at work
This artist’s conception of Kepler-186f is elegant, but still imagination at work

Space news (astrophysics: exoplanets; Kepler-186f )

NASA astronomers working with the Kepler Space Telescope have discovered the first Earth-sized planet orbiting within the ‘habitable zone’ of its host star. Kepler-186f, as its name implies, is in the Kepler-186 star system, around 500 light-years from Sol in the constellation Cygnus. A discovery that implies planets the size of Earth, residing within their host star’s habitable zone, could be more common than we first thought.

Space scientists believe there’s a good chance Kepler-186f is a rocky planet, similar in many ways to the Earth. The fact it resides within the habitable zone implies liquid water could exist on the surface of this planet and possibly life based on the same principles as on Earth. The M dwarf, or red dwarf, sun it orbits is a common star making up about 70 percent of the suns in our home galaxy and is only half the volume and mass of Sol. This star is also orbited by four other planets, according to the latest information, but this number could change as more data is obtained.

“The discovery of Kepler-186f is a significant step toward finding worlds like our planet Earth,” said Paul Hertz, NASA’s Astrophysics Division director at the agency’s headquarters in Washington. “Future NASA missions, like the Transiting Exoplanet Survey Satellite and the James Webb Space Telescope, will discover the nearest rocky exoplanets and determine their composition and atmospheric conditions, continuing humankind’s quest to find truly Earth-like worlds.”

NASA astronomers have no idea, yet, what Kepler-186f is made of, or even its mass. They’ll now focus more instruments and time to look into some of these facts, and hopefully, soon we’ll know a lot more about this possible twin-Earth.

“We know of just one planet where life exists — Earth. When we search for life outside our solar system we focus on finding planets with characteristics that mimic that of Earth,” said Elisa Quintana, a research scientist at the SETI Institute at NASA’s Ames Research Center in Moffett Field, Calif., and lead author of the paper published today in the journal Science. “Finding a habitable zone planet comparable to Earth in size is a major step forward.”

Earth-size planets are more familiar to scientists than the larger planets discovered lying within the habitable zone of their host stars. It will be easier to understand the data they obtain concerning Kepler-186f, and hopefully, this translates into a better picture of the planet.

M dwarfs are the most numerous stars,” said Quintana. “The first signs of other life in the galaxy may well come from planets orbiting an M dwarf.”

What would a day on Kepler-186f be like? This planet is near the outer boundary of its host star’s habitable zone, which results in it receiving about 30 percent of the energy Earth gets from Sol. Viewed from the surface of the planet at high noon, the host star would only be as bright as Sol an hour before sunset. A day on Kepler-186f isn’t going to be a walk in the park on a sunny day.

“Being in the habitable zone does not mean we know this planet is habitable. The temperature on the planet is strongly dependent on what kind of atmosphere the planet has,” said Thomas Barclay, a research scientist at the Bay Area Environmental Research Institute at Ames, and co-author of the paper. “Kepler-186f can be thought of as an Earth-cousin rather than an Earth-twin. It has many properties that resemble Earth.”

What’s next for the team?

The next step for NASA astronomers is to find Earth-size planets that are a true twin for Earth, which will be a day to remember. Determining the chemical composition of any planets found will be an exciting time for both astronomers and humankind. A planet with a similar chemical composition to Earth would open up eyes and change the prospect of the possibility of alien life in the galaxy and universe.

It would truly be something to experience.

What is the possibility of alien life existing in the universe? Read “The Possibility of Intelligent Lifeforms Existing in the Universe”.

What has Kepler discovered lately? Read “Kepler Mission Introduces 715 New Planets

Read about “The Search for Life Beyond Earth Takes a Turn at Jupiter

Watch this YouTube video on Kepler-186f