Wolf-Rayet Star “Nasty 1” Transitional Stage in Evolution of Massive Stars

A very rapidly evolving, supermassive star with a newly formed nebula only a few thousand years old

hs-2015-21-a-large_web

Space news (supermassive stars: Wolf-Rayet stars; star NaSt1) – 3,000 light-years away on the edge of a pancake-shaped disk of gas moving at 22,000 mph – 

Astronomers using the Hubble Space Telescope have discovered new clues concerning a nearby supermassive, rapidly aging star they have nicknamed “Nasty 1”. Designated NaSt1 in astronomy catalogs, “Nasty 1” when first discovered decades ago was identified as a non-typical Wolf-Rayet star with an orbiting disk-like structure. A vast disk estimated to be almost 2 trillion miles wide astronomers now think formed due to a companion star snacking on its outer envelope. Putting NaSt1 in a class of Wolf-Rayet stars astronomers haven’t observed often during the human journey to the beginning of space and time. A star type possibly representing a transition stage in the evolution of supermassive stars. 

hs-2015-21-b-large_web

“We were excited to see this disk-like structure because it may be evidence for a Wolf-Rayet star-forming from a binary interaction,” said study leader Jon Mauerhan of the University of California, Berkeley. “There are very few examples in the galaxy of this process in action because this phase is short-lived, perhaps lasting only a hundred thousand years, while the timescale over which a resulting disk is visible could be only ten thousand years or less.” 

me2
Study leader Jon Mauerhan of the University of California, Berkley. Credit: University of California, Berkley.

In the case of NaSt1, computer simulations show a supermassive star evolving really fast and swelling as it begins to run out of hydrogen. Its outer hydrogen envelope is loosely bound and is gravitationally stripped from the star- astronomers call this process stellar cannibalism – by a more compact, nearby companion star. In the process the more compact star gains mass, while the more massive star loses its hydrogen envelope, exposing its helium core and eventually becoming a Wolf-Rayet star. 

The mass-transfer model is the favored process for how Wolf-Rayet stars evolve at the moment and considering at least 70 percent of supermassive stars detected, so far, are members of binary star system, this seems logical. Astronomers used to think this type of star could also form when a massive sun ejects its hydrogen envelope. But the direct mass loss model by itself can’t account for the number of Wolf-Rayet stars observed relative to less-evolved supermassive suns in the Milky Way.  

hs-2015-21-c-web_print

“We’re finding that it is hard to form all the Wolf-Rayet stars we observe by the traditional wind mechanism because the mass loss isn’t as strong as we used to think,” said Nathan Smith of the University of Arizona in Tucson, who is a co-author on the new NaSt1 paper. “Mass exchange in binary systems seems to be vital to account for Wolf-Rayet stars and the supernovae they make, and catching binary stars in this short-lived phase will help us understand this process.” 

nsmith
Co-author of study Nathan Smith of the University of Arizona in Tucson. Credit: The University of Arizona.

Astronomers computer models show that the mass-transfer process isn’t always perfectly efficient. Matter can only transfer from NaSt1 at a certain rate, left over material begins orbiting, creating a disk-like structure. 

“That’s what we think is happening in Nasty 1,” Mauerhan said. “We think there is a Wolf-Rayet star buried inside the nebula, and we think the nebula is being created by this mass-transfer process. So this type of sloppy stellar cannibalism actually makes Nasty 1 a rather fitting nickname.” 

Observing Nasty 1 (star NaSt1) through the clock of gas and dust surrounding this star system hasn’t been easy. The intervening disk-like structure even blocks the view of the Hubble Space Telescope. Scientists haven’t been able to measure the distance between the stars, their mass, or the volume of material transferring to the smaller companion star.  

Astronomers have been able to discover a few items concerning the disk-like structure surrounding Nasty 1. Measurements indicate it’s traveling at around 22,000 mph in the outer nebula, a slower speed than recorded in other stars of this type. Scientists think this indicates a much less energetic supernova than was recorded for other events, like Era Carinae. In this case and other similar stars, the gas in the outer nebula has been recorded in the hundreds of thousands of miles per hour. Nasty 1 could be different supernova animal altogether.  

GMT-1-640x425
High atop the Cerro Manqui peak at the Las Campanas Observatory in Chile the twin the Walter Baade Telescope is the first of the twin 6.5-meter Magellan telescopes to be completed. Credit: Ico.cl

Nasty 1 could also lose its outer envelope of hydrogen intermittently. Previous studies in the infrared light provided clues indicating the existence of a dense pocket of hot gas and dust close to the central stars in the region. More recent observations using the Magellan Telescope located at the Las Campanas Observatory in Chile has also detected a bigger pocket of cooler gas and dust possibly indirectly blocking light from these stars. Astronomers think the existence of warm dust in the region implies it formed just recently, perhaps intermittently, as elementally enriched matter from the stellar winds of massive stars collides, mixes, flows away, and cools. Irregular stellar wind strength, the rate at which star NaSt1 loses its outer envelope, could also help explain the observed clumpy structure and gaps noted in the outer regions of the disk.  

Astrophysicists used NASA’s Chandra X-ray Observatory to measure the hypersonic winds screaming from each star. Readings showed a scorching hot plasma, indicating colliding stellar winds producing high-energy shockwaves that glow in X-rays. This is consistent with previous data collected on other evolving Wolf-Rayet star systems. We’ll get a better view once the outer hydrogen of Nasty 1’s (star NaSt1) depleted, and the mass-transfer process completes. Eventually, the gas and dust in the lumpy, disk-like structure will dissipate, giving us a clearer view of this mysterious binary star system.   

 

704250main_chandra-telescope_full
NASA’s Chandra X-ray Observatory has shown the cosmos is full of objects and events far beyond anything we imagined when we first started the human journey to the beginning of space and time. Credit: NASA/Chandra

Nasty 1’s still evolving!

“What evolutionary path the star will take is uncertain, but it will definitely not be boring,” said Mauerhan. “Nasty 1 could evolve into another Eta Carinae-type system. To make that transformation, the mass-gaining companion star could experience a giant eruption because of some instability related to the acquiring of matter from the newly formed Wolf-Rayet. Or, the Wolf-Rayet could explode as a supernova. A stellar merger is another potential outcome, depending on the orbital evolution of the system. The future could be full of all kinds of exotic possibilities depending on whether it blows up or how long the mass transfer occurs, and how long it lives after the mass transfer ceases.” 

Astronomers continue to study Nasty 1 and its peculiar, unusual disk-like structure looking for clues to explain the mysteries surrounding its origin. 

Join the conversation and learn more about NASA here

Take the space voyage of the ESA

Learn more about the things the Chandra X-ray Observatory has taught us about the universe we live in here

Learn more about Wolf-Rayet stars

Discover the universe through the eyes of the Hubble Space Telescope

Discover what the astronomy department at the University of California, Berkeley is up to here. 

Learn more about supernovae

Discover astronomy at the University of Arizona in Tucson

Discover the Magellan Telescope

Learn more about the Las Campanas Observatory in Chile

Watch a Kepler animation of a supernova shockwave in visible light.

Read about the things astronomers are finding out about a type of galaxy called lenticular galaxies.

Read about the plans to construct the next-generation planet-hunter The Magellan Giant Telescope.

NASA’s Chandra X-ray Observatory Views Blast from Material Falling into Supermassive Black Hole at Center of Galaxy Pictor A

Powerful beams of radiation continually shooting across 300,000 light-years of spacetime

This new composite image of the beam of particles was obtained by combining X-ray data (blue) from NASA’s Chandra X-ray Observatory at various times over a fifteen year period and radio data from the Australian Telescope Compact Array (Red). Astronomers gain understanding and knowledge of the true nature of these amazing jets by studying and analyzing details of the structure of X-ray and radio data obtained.
Image credit: NASA/JPL/Chandra

Image caption: This new composite image of the beam of particles was obtained by combining X-ray data (blue) from NASA's Chandra X-ray Observatory at various times over a fifteen year period and radio data from the Australian Telescope Compact Array (Red). Astronomers gain understanding and knowledge of the true nature of these amazing jets by studying and analyzing details of the structure of X-ray and radio data obtained. Image credit: NASA/JPL/Chandra

Space news (February 25, 2016) – 500 million light-years away in the constellation Pictor –

The stunning Chandra X-ray image of radio galaxy Pictor A seen here shows an amazing jet that reminds one of the death rays from Star Wars emanating from a black hole in the center of the galaxy. The “Death Star” as portrayed in the Star Wars movie Star Wars: Episode IV A New Hope was capable of totally destroying a planet using powerful beams of radiation. In just the same any planet finding itself in the direct path of the 300,000 light-years long, continuous jet emanating from the supermassive black hole in the center of a galaxy is toast.

Astronomers think the stunning jet observed is produced by huge amounts of gravitational energy released as material swirls toward the pointofnoreturn in the gravity well of the supermassive black hole at its center the event horizon. These jets are an enormous beam of particles traveling at nearly the speed of light into the vastness of intergalactic space scientists call relativistic jets. 

Astronomers also report additional data confirming the existence of another jet pointing in the opposite direction to the jet seen in this image that they call a counter jet. Data had previously pointed to the existence of a counter jet and the latest Chandra data obtained confirmed this. Unfortunately, due to the motion of this opposite jet away from the line-of-sight to Earth, it’s very faint and hard for even Chandra to observe. 

Image caption: The labeled image seen here shows the location of the supermassive black hole and both jet and counter jet. The radio lobe label is where the jet pushes into surrounding gas and hotspot produced by shock waves near the tip of the jet. Image credit: NASA/JPL?ESA
The labeled image seen here shows the location of the supermassive black hole and both jet and counter-jet. The radio lobe label is where the jet pushes into surrounding gas and hotspot produced by shock waves near the tip of the jet.
Image credit: NASA/JPL?ESA

Current theories and computer simulations indicate the continuous X-ray emissions observed by Chandra could be produced by electrons spiraling around magnetic field lines in a process astronomers call synchrotron emission. They’re still trying to figure out how electrons could be continuously accelerated as they travel the length of the jet. But plan additional observations in the future to obtain more data to help develop new theories and computer simulations to explain this. 

Watch this YouTube video on Pictor A.

We’ll update you on any new developments and theories on jets emanating from supermassive black holes at the center of nearby galaxies as they’re developed.

You can learn more about jets emanating from supermassive black holes here.

Follow the journey of the Chandra X-ray Observatory here.

Learn more about relativistic jets here.

Read about astronomers recent discovery that superstar binaries like Eta Carinae are more common than first thought.

Read about the Nebra Sky Disk, a 3,600-year-old bronze disk, archaeoastronomers believe is the oldest known astronomical clock ever discovered.

Read and observe the hydrocarbon dunes of Saturn’s moon Titan.

New Satellite “Hitomi” (Pupil of the Eye) Observes Wider X-ray Universe

Japan successfully launched an H-2A rocket carrying the next generation of X-ray space observatory into orbit on Wednesday

pct05_b.jpg

Space news (February 17, 2016) – The Yoshinobu Launch Complex at Tanegashima Space Center in Kagoshima Prefecture in southwestern Japan –  

Anxious astronomers, engineers, and scientists in Japan, Canada and NASA headquarters watched nervously Wednesday as a two-stage H-2A carrier vehicle carrying years of their work and dedication rose slowly from Tanegashima Space Center in Japan.

IMG_0193PorterAstroH.jpg

The H-2A rocket carried the next generation of X-ray space observatory “Hitomi”, formerly known as the Astro-H satellite, to its launch point 580 kilometers above the surface of the Earth.

We see X-rays from sources throughout the universe, wherever the particles in matter reach sufficiently high energies,” said Robert Petre, chief of Goddard’s X-ray Astrophysics Laboratory and the U.S. project scientist for ASTRO-H. “These energies arise in a variety of settings, including stellar explosions, extreme magnetic fields, or strong gravity, and X-rays let us probe aspects of these phenomena that are inaccessible by instruments observing at other wavelengths.”

As part of the launching of Astro-H, the satellite had been recently renamed “Hitomi”, which means “pupil of the eye” in Japanese. Using this eye-in-the-sky, astronomers around the world will study neutron stars, galaxy clusters and black holes in a wider bandwidth of x-rays from soft X-ray to the softest Gamma-ray.

This has been an extraordinary undertaking over many years to build this powerful new X-ray spectrometer jointly in the U.S. and Japan,” said Goddard’s Richard Kelley, the U.S. principal investigator for the ASTRO-H collaboration. “The international team is extremely excited to finally be able to apply the fundamentally new capabilities of the SXS, supported by the other instruments on the satellite, to observations of a wide range of celestial sources, especially clusters of galaxies and black hole systems.”

“Hitomi” is the sixth in a series of X-ray astronomy satellites designed and engineered by Japan Aerospace Exploration Agency’s (JAXA) Institute of Space and Astronautical Science (ISAS). All of the satellites in the series have been extremely successful X-ray observatories that have contributed to human knowledge of the cosmos. The latest satellite to launch into space is expected to offer breakthroughs in understanding and knowledge of the evolution of the largest structures observed in the cosmos.  

Canada’s connection to “Hitomi” is the Canadian ASTRO-H Metrology System (CAMS), which sharpens blurry images using lasers and detectors to correct for the movement of the boom used to support the ends of the extremely long detectors on the satellite. Needed to observe the highest-energy x-rays, the CAMS system was built in consultation with Canadian scientists and researchers by Ottawa-based Neptec.

The technology used in the SXS is leading the way to the next generation of imaging X-ray spectrometers, which will be able to distinguish tens of thousands of X-ray colors while capturing sharp images at the same time,” said Caroline Kilbourne, a member of the Goddard SXS team.

Hitomi starts work

Ultimately “Hitomi” was designed, engineered and launched by the three partners in this venture to conduct a survey of black holes and distant galaxies. They will use the results of the survey to help lift the veil of mystery surrounding the evolution of the most mysterious celestial objects in the cosmos. This is just the start of the space mission of “Hitomi”, once this initial mission concludes, we expect the newest automated-envoy of the human journey to the beginning of space and time to offer insights into the way matter acts in extreme gravitational fields, study the rotation of spinning black holes and the internal structure of neutron stars, and the dynamics and detailed physics of relativistic jets during its mission.

You can follow the space mission of “Hitomi” here.

Learn more about the things we learn about the cosmos each day here.

Learn more about Japan’s Institute of Space and Astronautical Science.

Learn more about the future space missions of the Japan Aerospace Exploration Agency. 

Read about the recent observation of gravitational waves by astronomers.

Learn about the things astronomers discovered recently about young, newborn stars.

Learn more about the things NASA’s New Horizons spacecraft is telling us about Pluto and its moons.

Dancing Black Holes Destined to Merge Emit Weird Light Signal

A collision triggering a titanic release of energy with the power of 100 million supernovae

This simulation helps explain an odd light signal thought to be coming from a close-knit pair of merging black holes, PG 1302-102, located 3.5 billion light-years away. Credits: Columbia University
This simulation helps explain an odd light signal thought to be coming from a close-knit pair of merging black holes, PG 1302-102, located 3.5 billion light-years away.
Credits: Columbia University

Space news (February 07, 2016) – A weird, odd light, 3.5 billion light-years away, called PG 1302-102 –

Astronomers working with NASA’s Hubble Space Telescope and Galaxy Evolution Explorer (GALEX) believe they have the most compelling data yet for the existence of merging black holes. Two black holes astronomers think are in the act of merging called PG 1302-102, appear to be emitting a strange, cyclical light signal. 

NASA's GALEX spacecraft scans the night sky. Credit: JPL/NASA
NASA’s GALEX spacecraft scans the night sky.
Credit: JPL/NASA

Trapped within their combined gravity well at a distance slightly bigger than our solar system, they’re destined to collide in less than a million years and trigger a titanic blast that will be heard across the universe. 

Astronomers first identified PG 1302-102 early this year as one of a number of candidate black hole pairs after they detected a weird light signal emanating from the center of a galaxy. After study and thought scientists demonstrated the varying signal detected is probably produced by the movement of two black holes orbiting each other every five years.

Black holes don’t emit light, but the material surrounding a black hole can. Astronomers used ultraviolet data to track the changing light patterns of PG 1302-102 during the past two decades to make this demonstration. 

We were lucky to have GALEX data to look through,” said co-author David Schiminovich of Columbia University in New York. “We went back into the GALEX archives and found that the object just happened to have been observed six times.”

Astronomers were able to test their prediction that black holes generate a cyclical light pattern. In the case of PG, 1302-102 scientists think one of the pairs of black holes emits more light, which means it’s devouring more material than its partner. During a five-year orbit of one pair of black holes, the light they emit changes and brightens to maximum when it points toward us.

It’s as if a 60-Watt light bulb suddenly appears to be 100 Watts,” explained Daniel D’Orazio, lead author of the study from Columbia University. “As the black hole light speeds away from us, it appears as a dimmer 20-Watt bulb.”

Astronomers call this a relativistic boosting effect, which has previously been detected using visible light. This pair of black holes is traveling toward us at speeds considered relativistic, with the fastest traveling at nearly seven percent the speed of light. 

At this speed, light is squeezed to shorter wavelengths as it travels toward us, in the same way, a train’s whistle squeals at higher frequencies as it comes towards you. This boosts and brightens the light detected, producing the periodic brightening and dimming observed.

D’Orazio, Schiminovich, and colleagues modeled the way it should look in ultraviolet light based on research done by other scientists in visible light. They calculated that if the previous brightening and dimming were due to the relativistic boosting effect as was seen in visible light? It should be detected at ultraviolet wavelengths but amplified about 2.5 times. After checking, they discovered their prediction matched ultraviolet light data provided by the Hubble Space Telescope and GALEX. 

We are strengthening our ideas of what’s going on in this system and starting to understand it better,” said Zoltán Haiman, a co-author from Columbia University who conceived the project.

Astronomers will now use the theories and ideas they develop through the study of PG 1302-102 to help understand merging black holes better and find more binary black hole pairs to observe. 

Once astronomers add the data they collect on merging black holes using the Hubble Space Telescope, GALEX and other observatories to the data they expect to achieve through the study and observation of gravitational waves. It will give us a better idea of the population of merging black holes across the universe and lift the veil on cosmic secrets sure to delight the soul.

Cosmic delights await!

You can learn more about the Hubble Space Telescope here.

Discover GALEX here.

Learn more about black holes here.

Learn more about the present theory on binary black holes here.

Read about astronomers stunning observations of gravitational waves.

Find out what astronomers believe hides beneath the icy shell of Saturn’s moon Enceladus.

Discover the secrets NASA’s New Horizons has been telling astronomers about Pluto.

Spiral Galaxy NGC 4845

A flat and dust-filled disk orbiting a bright galactic bulge

Image credit: NASA/ESA/Hubble
Deep within the dusty center of spiral galaxy NGC 4845, hides a monster with hundreds of thousands of times the mass of our sun. Image credit: NASA/ESA/Hubble

Space news (February 20, 2016) – over 65 million light-years away in the constellation Virgo (The Virgin) –

This startling Hubble Space Telescope image of spiral galaxy NGC 4845 highlights its spiral structure but hides a monster. Deep within the center astronomers have detected a supermassive black hole, estimated to be in the hundreds of thousands of times the mass of Sol. 

By following the movements of the innermost stars of NGC 4845, astronomers were able to determine they orbit around the center of the galaxy at a velocity indicating the presence of a supermassive black hole. 

Scientists previously used the same method to discover the presence of the supermassive black hole at the center of the Milky Way – Sagittarius A*. The Monster of the Milky Way has a mass around 4 million times that of our sun, which is slightly bigger than the supermassive black hole at the center of NGC 4845.

Astronomers also discovered the supermassive black hole deep within the center of NGC 4845 is a hungry monster that devours anything that falls too far into its gravity well. In 2013 astronomers studying a different island universe, noticed a violent flare erupting from the center of NGC 4845. 

Astronomers discovered an object many times the mass of Jupiter had fallen into the gravity well of this monster and was devoured. The violent flare erupting from the center of NGC 4845 was the death throes of a brown dwarf or large planet as it was being torn apart and drawn deeper into the gravity well of the supermassive black hole.

Learn more about supermassive black holes here.

Learn more about NGC 4845 here.

Learn more about the ESA.

Take the journey of NASA.

Learn more about the Monster of the Milky Way – Sagittarius A.

Learn more about the formation of new stars.

Read about astronomers recent observation of something Einstein predicted, but until now we have never observed, gravitational waves.

Learn about private firm Planetary Resources plans to mine an asteroid within the next decade.

Hubble Finds Youngest, Nearby Black Hole Candidate

Characteristics of 30-year old supernova remnant SN 1979C are consistent with predicted theory on birth of black hole or possibly a rapidly spinning neutron star

•If SN 1979C does indeed contain a black hole, it will give astronomers a chance to learn more about which stars make black holes and which create neutron stars. Image: NASA/Chandra
Far away in galaxy M100 we search for black holes. If SN 1979C does indeed contain a black hole, it will give astronomers a chance to learn more about which stars make black holes and which create neutron stars.
Image: NASA/Chandra

Space news (December 11, 2015) – 50 million light-years from Earth, in galaxy M100 –

One of the most enigmatic cosmic objects discovered during the human journey to the beginning of space and time, black holes continue to entrance and mystify both astronomers studying them and common people trying to imagine the possibility of such monsters existing. Black holes are also one of the most difficult celestial objects to detect since not even light rays can escape from the strength of their gravitational-embrace, once they travel beyond the imaginary point-of-no-return astronomers call the “event horizon” of a black hole.

Astronomers working with NASA’s Chandra X-ray Observatory, after analysis of additional data provided by NASA’s Swift Gamma-ray Burst Explorer, the European Space Agency’s XMM-Newton spacecraft, and German’s ROSAT Observatory, believe they have evidence to suggest 30-year old supernova remnant SN 1979C could be a black hole.

NASA and German ROSAT Observatory scans the x-ray sky.
The ROSAT Observatory scans the x-ray sky looking for supernovas that could have given birth to a black hole. Image: NASA.

Supernova remnant SN 1979C shined X-rays steadily during constant observation from 1995 to 2007. This suggests to astronomers either a black hole eating material left over from the supernova or a hidden binary companion feeding hot material to the monster hidden within 

“If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed,” said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study.

Astronomers have detected new black holes that existed during the ancient past through gamma-ray bursts (GRBs) associated with them. SN 1979C is listed in a class of supernovae not expected to produce GRBs, which theory predicts could be the most common way to make a black hole.   

This may be the first time the common way of making a black hole has been observed,” said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. “However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case.

The idea SN 1979C is a young, recently-formed black hole made from the remnants of a star with 20 times the mass of Sol, that went supernova some thirty Earth-years ago, is consistent with present theory. In 2005, a theory was put forth claiming the bright source of X-rays detected steaming from the supernova remnant is powered by a jet emanating from the monster that’s unable to penetrate the thick hydrogen envelope surrounding it.

Astronomers think there could be one other possibility for the identity of SN 1979C. It could be a rapidly spinning neutron star, with an extremely powerful wind of high energy particles. Present theory predicts this would produce the bright X-ray emissions detected during 12 years of constant observation. 

If this is true, this would make this supernova remnant the youngest known example of a celestial object called a pulsar wind nebula. The Crab Nebula is the best-known example of a bright pulsar wind nebula, but we would have to go back over 900 years to view it as a 30-year old. SN 1979C is a lot younger, which is a great opportunity to study one of the most enigmatic, yet difficult to detect celestial objects viewed during the human journey to the beginning of space and time.

It’s very rewarding to see how the commitment of some of the most advanced telescopes in space, like Chandra, can help complete the story,” said Jon Morse, head of the Astrophysics Division at NASA’s Science Mission Directorate.

Jon Morse is a pioneer, leader and hero of the human journey to the beginning of space and time
Jon Morse is a pioneer, leader and hero of the human journey to the beginning of space and time. Image: Space.com.

Study continues

Astronomers will now continue to study SN 1979C, to see if they can determine its identity. No matter it’s true identity or nature, we can expect this celestial object to be one of the most studied examples of a young supernova remnant during recent times. 

You can learn more about black holes here.

Discover the journey of NASA’s Chandra X-ray Observatory here.

Learn more about NASA’s Marshall Space Flight Center here.

Learn about the mission of the Harvard-Smithsonian Center for Astrophysics here.

Take NASA’s journey through space history here.

Learn about NASA’s Swift Gamma-ray Burst Explorer here.

Take the journey of the European Space Agency’s XMM-Newton spacecraft here.

Discover German’s ROSAT Observatory here.

Learn about hydrocarbon dunes detected by NASA’s Cassini spacecraft on Saturn’s frozen moon Titan.

Read about the Monster of the Milky Way as it comes to life.

Learn how astronomers study a galactic nursery using the Hubble Space Telescope.

Astronomers Discover Disks Surrounding Supermassive Black Holes Emit X-ray Flares when Corona is Ejected

But why is the Corona ejected?

Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.
Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.

Space news (November 02, 2015) – 

Bizarre and mysterious stellar objects, studying black holes keeps astronomers up all night. One of the more puzzling mysteries of these unique objects are gigantic flares of X-rays (relativistic jets) detected erupting from disks of hot, glowing dust surrounding them. X-ray flares astronomers are presently studying in order to better understand these enigmatic, yet strangely attractive stellar objects.

Astronomers observing supermassive black holes using NASA’s Swift spacecraft and Nuclear Spectroscopic Telescope Array (NuSTAR) recently caught one in the middle of a gigantic X-ray flare. After analysis, they discovered this particular flare appeared to be a result of the Corona surrounding the supermassive black hole – region of highly energetic particlesbeing launched into space. A result making scientists and astronomers rethink their theories on how relativistic jets are created and sustained.

This result suggests to scientists that supermassive black holes emit X-ray flares when highly energized particles (Coronas) are launched away from the black hole. In this particular case, X-ray flares traveling at 20 percent of the speed of light, and directly pointing toward Earth. The ejection of the Corona caused the X-ray light emitted to brighten a little in an effect called relativistic Doppler boosting. This slightly brighter X-ray light has a different spectrum due to the motion of the Corona, which helped astronomers detect this unusual phenomenon leaving the disk of dust and gas surrounding this supermassive black hole.

This is the first time we have been able to link the launching of the Corona to a flare,” said Dan Wilkins of Saint Mary’s University in Halifax, Canada, lead author of a new paper on the results appearing in the Monthly Notices of the Royal Astronomical Society. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.

Astronomers currently propose two different scenarios for the source of coronas surrounding supermassive black holes. The “lamppost” scenario indicates coronas are analogous to light bulbs sitting above and below the supermassive black hole along its axis of rotation. This idea proposes coronas surrounding supermassive black holes are spread randomly as a large cloud or a “sandwich” that envelopes the disk of dust and material surrounding the black hole. Some astronomers think coronas surrounding supermassive black holes could alternate between both the lamppost and sandwich configurations.

The latest data seems to lean toward the “lamppost” scenario and gives us clues to how the coronas surrounding black holes move. More observations are needed to ascertain additional facts concerning this unusual phenomenon and how massive X-ray flares and gamma rays emitted by supermassive black holes are created.

Something very strange happened in 2007, when Mrk 335 faded by a factor of 30. What we have found is that it continues to erupt in flares but has not reached the brightness levels and stability seen before,” said Luigi Gallo, the principal investigator for the project at Saint Mary’s University. Another co-author, Dirk Grupe of Morehead State University in Kentucky, has been using Swift to regularly monitor the black hole since 2007.

The Corona gathered inward at first and then launched upwards like a jet,” said Wilkins. “We still don’t know how jets in black holes form, but it’s an exciting possibility that this black hole’s Corona was beginning to form the base of a jet before it collapsed.”

The nature of the energetic source of X-rays we call the Corona is mysterious, but now with the ability to see dramatic changes like this we are getting clues about its size and structure,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena, who was not affiliated with the study.

Study continues

Astronomers will now continue their study of supermassive black holes in the cosmos in order to remove the veil of mystery surrounding the X-ray flares they emit and other bizarre mysteries surrounding these enigmatic stellar objects. In particular, they would love to discover the reasons for the ejection of Coronas surrounding black holes.

You can learn more about black holes here.

Discover the Swift spacecraft here.

Take the voyage of NASA’s NuSTAR spacecraft here.

Take part in NASA’s mission to the stars here.

Read about ripples in the spacetime astronomers detected moving across the planet-making region of AU Microscopii.

Learn more about climatic collisions between galaxy clusters.

Read about NASA and its partners plans to travel to Mars for an extended stay in the next few decades.

The Monster of the Milky Way Comes to Life

Erupting X-ray flares every day, a ten-fold increase in bright flares from previous observations of Sagittarius A

h-817-sgra_3paneld
Astronomers believe the ten-fold increase in X-ray flares during the past year could be connected to the passage of a mysterious object designated G2 near the supermassive black hole (Image credit NASA and ESO

Space news (October 01, 2015) – 26,000 light-years from Earth, near the center of the Milky Way

NASA's Chandra X-ray Observatory is part of a new breed of star hunting telescopes.
NASA’s Chandra X-ray Observatory is part of a new breed of star hunting telescopes.

Astrophysicists combining the telescopic talents of NASA’s Chandra X-ray Observatory and Swift spacecraft, with the European Space Agency’s X-ray Space Observatory XMM-Newton, recently detected an increase in X-ray flares erupting from the supermassive black hole (Sagittarius A) at the center of the Milky Way.

NASA's Swift Gamma Ray Burst Explorer scans the universe looking for gamma ray bursts.
NASA’s Swift Gamma Ray Burst Explorer scans the universe looking for gamma ray bursts.

By analyzing data collected during extensive periods of monitoring by all three spacecraft, space scientists determined the Monster of the Milky Way – the supermassive black hole at the center with more than 4 million times the mass of Sol– has been more active during the past 15 years than first thought. 

An artists impression of the ESO's Newton XMM-Newton telescope.
An artists impression of the ESO’s Newton XMM-Newton telescope.

Erupting a bright X-ray flare every ten days, the Monster of the Milky Way has been eating hot gas falling into its gravity pool. Even more interesting, Sagittarius A during the past year has been erupting ten times as much, producing a bright X-ray flare every day. A discovery that has astrophysicists going over the data looking for a reason for the sudden increase. 

“For several years, we’ve been tracking the X-ray emission from Sgr A*. This includes also the close passage of this dusty object” said Gabriele Ponti of the Max Planck Institute for Extraterrestrial Physics in Germany. “A year or so ago, we thought it had absolutely no effect on Sgr A*, but our new data raise the possibility that that might not be the case.”

The mystery started late in 2013, as G2 passed close to the supermassive black hole. At this time, there wasn’t any apparent change in G2 as it approached Sagittarius A, other than being slightly stretched by the gravity pool of the black hole.

Originally astronomers thought G2 was a stretched cloud of gas and dust, but this finding has led scientists to the possibility it could be a dense body embedded in a dusty cocoon. Currently, there’s no consensus among astronomers on the identity of this mysterious object. But the recent ten-fold increase in X-ray flares as G2 passed near the supermassive black hole suggests there could be a connection of some kind. 

“There isn’t universal agreement on what G2 is,” said Mark Morris of the University of California at Los Angeles. “However, the fact that Sgr A* became more active not long after G2 passed by suggests that the matter coming off of G2 might have caused an increase in the black hole’s feeding rate.”

At this point, astronomers don’t know if the increase in X-ray flares from the supermassive black hole is common or unusual in nature. These emissions could be part of the normal life cycle of supermassive black holes and totally unrelated to the passage of G2. The ten-fold increase in X-ray flares could also be due to changing solar winds from nearby massive stars feeding gas and dust into the black hole.

What’s next?

Scientists will keep observing Sagittarius A over the next little while to see what pops up next in this mystery. Hopefully, they can shed some light on the reason the Monster of the Milky Way, suddenly started emitting X-ray flares once a day.  

“It’s too soon to say for sure, but we will be keeping X-ray eyes on Sgr A* in the coming months,” said co-author Barbara De Marco, also of Max Planck. “Hopefully, new observations will tell us whether G2 is responsible for the changed behavior or if the new flaring is just part of how the black hole behaves.”

Read about plans of private firm Planetary Resources, Inc. to mine a near-Earth asteroid in the next decade or less.

Learn more about a magnetar astronomers believe is orbiting extremely close to the supermassive black hole at the center of the Milky Way, Sagittarius A.

Discover the Butterfly Nebula or Twin Jet Nebula.

You can learn more about NASA’s Chandra X-ray Observatory here.

Learn more about the discoveries made by NASA’s Swift spacecraft here.

Discover the European Space Agency’s X-ray Space Observatory XMM-Newton here.

Learn more about the Monster of the Milky Way: Sagittarius A here.

Discover NASA’s mission to the stars here.

Take part in the European Space Agency’s mission to the stars here.

Watch this Nova video on the Monster of the Milky Way.

Magnetar Extremely Close to Supermassive Black Hole at Center of Milky Way

Exhibiting a higher surface temperature and slower decrease in the rate of x-rays emitted than previous neutron stars detected during the human journey to the beginning of space and time

The x-ray image here taken by the Chandra X-ray Observatory shows a view of the region surrounding the supermassive black hole thought to exist at the center of the Milky Way. The red, green and blue seen in the main image are low, medium and high-energy x-rays respectively. The inset image to the left was taken between 2005 and 2008, when the magnetar wasn't detected. The image to the right was taken in 2013, when the neutron star appeared as the bright x-ray source viewed.
The x-ray image here taken by the Chandra X-ray Observatory shows a view of the region surrounding the supermassive black hole thought to exist at the center of the Milky Way. The red, green and blue seen in the main image are low, medium and high-energy x-rays respectively. The inset image to the left was taken between 2005 and 2008, when the magnetar wasn’t detected. The image to the right was taken in 2013, when the neutron star appeared as the bright x-ray source viewed.

Space news (August 15, 2015) –

Space scientists working with NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory in 2013 discovered a magnetar dangerously close to the supermassive black hole (Sagittarius A) thought to exist at the center of the Milky Way. At a distance of around 0.3 light-years or 2 trillion miles from the 4-million-solar mass black hole, the neutron star (called SGR 1745-2900) detected is likely orbiting slowly into the gravitational pool of the supermassive black hole. One day, far in the future, the two will merge during an event likely spectacular and unfathomable to both the scientist and layperson.

For the last two years, NASA and European space agency scientists have been monitoring SGR 1745-2900, and have discovered its acting unlike any magnetar discovered during the human journey to the beginning of space and time.

The rate of X-rays emitted by the magnetar is decreasing slower than other neutron stars viewed and its surface temperature is higher. Facts that are making astrophysicists rethink their theories on neutron stars and develop new ideas to explain how this happens.

Could the close proximity of the supermassive black hole Sagittarius A be the cause?

Considering the extreme distance between the supermassive black hole and magnetar, astrophysicists don’t think this could be the reason for the slower decrease in X-ray emissions and higher surface temperature of SGR 1745-2900. At the distance of 2 trillion miles, they believe the magnetar is too far away for the gravity and magnetic fields of the two to interact enough for this to occur.

The current model developed by astrophysicists to explain the unexpected slower rate of X-ray emissions and higher surface temperature of SGR 1745-2900 involves “starquakes”. Seismic waves astrophysicists think are more energetic than a 23rd magnitude earthquake on Earth, scientists found the starquake model doesn’t explain the slow decrease in X-ray brightness and the higher surface temperature detected.

To explain the new data obtained through study using the Chandra X-ray Observatory NASA astrophysicists have suggested a new model. The bombardment of the surface of SGR 1745-2900 by charged particles trapped within magnetic fields above its surface could add enough heat to account for the higher surface temperature and account for the slower decrease in X-ray emissions.

Study continues

NASA scientists will now continue their study of magnetar SGR 1745-2900 as it orbits Sagittarius A looking for clues to verify their new model. Study and understanding of this and other magnetars will provide clues to the events that occurred during the earliest moments of the universe. Events that can tell us more about the universe we reside in and the true nature of spacetime.

You can learn more about supermassive black holes here.

Read and learn more about magnetars here.

You can read about and follow NASA’s mission to the stars here.

Read about some of the discoveries made by NASA’s New Horizons spacecraft during its visit to Pluto.

Learn more about the human search for Earth 2.0.

Learn about and take part in the search for near-Earth objects space scientists indicate could be a problem in the future.

The Search for the Missing Link in Black Hole Evolution

Space scientists think they have found a black hole family member they thought should exist; an intermediate-mass black hole

A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.
A newly discovered cosmic object may help provide answers to some long-standing questions about how black holes evolve and influence their surroundings, according to a new study using NASA’s Chandra X-ray Observatory.

Space news (June 09, 2015) – 100 million light-years away in the direction of the constellation Camelopardalis – 

Mysterious celestial objects space scientists study to better understand the universe, black holes could hold the keys to unlocking the nature of reality. In fact, a celestial object just discovered may turn out to be the key to a long sought after question about how black holes evolve and alter the surrounding environment. 

Space scientists conducting a study of ultraluminous x-ray sources (ULXs) looking for intermediate-mass black holes using NASA’s Chandra X-ray Observatory believe they have found a candidate. An interesting object, called NGC 2276-3c, located in an arm of spiral galaxy NGC 2276, appears to have the right characteristics.  

“Astronomers have been looking very hard for these medium-sized black holes,” said co-author Tim Roberts of the University of Durham in the UK. “There have been hints that they exist, but the IMBHs have been acting like a long-lost relative that isn’t interested in being found.” 

Space scientists studying black holes have observed objects residing at the center of galaxies with masses millions and even billions of times that of the sun. They have also observed objects with characteristics of smaller black holes, with masses about five to thirty times that of the sun. 

NGC 2276-3c is a middle-class black hole, with a mass about 50,000 times that of the sun, which could grow over the next few billions of years. In fact, space scientists think its home galaxy could at the moment be interacting with elliptical galaxy NGC 2300, which could account for its asymmetrical shape. 

How did space scientists locate and study NGC 2276-3c? Researchers observed the object almost at the same time using both the Chandra X-ray Observatory and European Very Long Baseline Interferometry Network (VLBI). Using the X-ray and radio data obtained, along with known facts concerning the relationship between radio and X-ray luminosities for sources powered by black holes, they estimated the mass of the object to be around 50,000 solar masses. This puts the black hole in the range of mass expected for an IMBH. 

“We found that NGC2276-3c has traits similar to both stellar-mass black holes and supermassive black holes,” said co-author Andrei Lobanov of the Max Planck Institute for Radio Astronomy in Bonn, Germany. “In other words, this object helps tie the whole black hole family together.” 

During the study, space scientists also determined NGC 2276-3c has a characteristic seen in many supermassive black holes, a powerful radio jet extending up to 2,000 light years from the black hole. A region of the radio jet extending for about 1,000 light years, also seems to be missing young stars, which they think could mean the radio jet cleared out a cavity in the surrounding gas and prevented the formation of new stars. Powerful evidence to suggest IMBHs could alter their surrounding environments in amazing ways. 

NGC 2276-3c’s location in the spiral arm of its home galaxy is also making space scientists ask questions. Was it formed in the galaxy, or did it come from the center of a dwarf galaxy that collided and merged with NGC 2276 in the past? 

A recent study by a team of researchers led by Anna Wolter of the National Institute of Astrophysics in Milan, Italy seems to support the merger theory. It concluded that new stars are forming at the rate of about five to fifteen solar masses each year in NGC 2276. A high rate of new star formation they believe was possibly triggered by a possible collision with another galaxy in the past, which points to the formation of this IMBH during a merger between galaxies.   

What’s next?

Now astronomers will do more research on NGC 2275-3c and the radio jet extending from it, in order to look for clues to the effects supermassive black hole seeds existing during the first days of the universe could have had on their surroundings.  

You can learn more about NASA’s flagship X-ray telescope, the Chandra X-ray Observatory here

Learn more about NASA’s space mission to the stars here

Read about space scientists on the trail of a cosmic mystery.  

Learn more about the physical things astronauts deal with.

Learn about the ancient astronomy knowledge of ancient Peruvians.