Hubble Finds Youngest, Nearby Black Hole Candidate

Characteristics of 30-year old supernova remnant SN 1979C are consistent with predicted theory on birth of black hole or possibly a rapidly spinning neutron star

•If SN 1979C does indeed contain a black hole, it will give astronomers a chance to learn more about which stars make black holes and which create neutron stars. Image: NASA/Chandra
Far away in galaxy M100 we search for black holes. If SN 1979C does indeed contain a black hole, it will give astronomers a chance to learn more about which stars make black holes and which create neutron stars.
Image: NASA/Chandra

Space news (December 11, 2015) – 50 million light-years from Earth, in galaxy M100 –

One of the most enigmatic cosmic objects discovered during the human journey to the beginning of space and time, black holes continue to entrance and mystify both astronomers studying them and common people trying to imagine the possibility of such monsters existing. Black holes are also one of the most difficult celestial objects to detect since not even light rays can escape from the strength of their gravitational-embrace, once they travel beyond the imaginary point-of-no-return astronomers call the “event horizon” of a black hole.

Astronomers working with NASA’s Chandra X-ray Observatory, after analysis of additional data provided by NASA’s Swift Gamma-ray Burst Explorer, the European Space Agency’s XMM-Newton spacecraft, and German’s ROSAT Observatory, believe they have evidence to suggest 30-year old supernova remnant SN 1979C could be a black hole.

NASA and German ROSAT Observatory scans the x-ray sky.
The ROSAT Observatory scans the x-ray sky looking for supernovas that could have given birth to a black hole. Image: NASA.

Supernova remnant SN 1979C shined X-rays steadily during constant observation from 1995 to 2007. This suggests to astronomers either a black hole eating material left over from the supernova or a hidden binary companion feeding hot material to the monster hidden within 

“If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed,” said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study.

Astronomers have detected new black holes that existed during the ancient past through gamma-ray bursts (GRBs) associated with them. SN 1979C is listed in a class of supernovae not expected to produce GRBs, which theory predicts could be the most common way to make a black hole.   

This may be the first time the common way of making a black hole has been observed,” said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. “However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case.

The idea SN 1979C is a young, recently-formed black hole made from the remnants of a star with 20 times the mass of Sol, that went supernova some thirty Earth-years ago, is consistent with present theory. In 2005, a theory was put forth claiming the bright source of X-rays detected steaming from the supernova remnant is powered by a jet emanating from the monster that’s unable to penetrate the thick hydrogen envelope surrounding it.

Astronomers think there could be one other possibility for the identity of SN 1979C. It could be a rapidly spinning neutron star, with an extremely powerful wind of high energy particles. Present theory predicts this would produce the bright X-ray emissions detected during 12 years of constant observation. 

If this is true, this would make this supernova remnant the youngest known example of a celestial object called a pulsar wind nebula. The Crab Nebula is the best-known example of a bright pulsar wind nebula, but we would have to go back over 900 years to view it as a 30-year old. SN 1979C is a lot younger, which is a great opportunity to study one of the most enigmatic, yet difficult to detect celestial objects viewed during the human journey to the beginning of space and time.

It’s very rewarding to see how the commitment of some of the most advanced telescopes in space, like Chandra, can help complete the story,” said Jon Morse, head of the Astrophysics Division at NASA’s Science Mission Directorate.

Jon Morse is a pioneer, leader and hero of the human journey to the beginning of space and time
Jon Morse is a pioneer, leader and hero of the human journey to the beginning of space and time. Image: Space.com.

Study continues

Astronomers will now continue to study SN 1979C, to see if they can determine its identity. No matter it’s true identity or nature, we can expect this celestial object to be one of the most studied examples of a young supernova remnant during recent times. 

You can learn more about black holes here.

Discover the journey of NASA’s Chandra X-ray Observatory here.

Learn more about NASA’s Marshall Space Flight Center here.

Learn about the mission of the Harvard-Smithsonian Center for Astrophysics here.

Take NASA’s journey through space history here.

Learn about NASA’s Swift Gamma-ray Burst Explorer here.

Take the journey of the European Space Agency’s XMM-Newton spacecraft here.

Discover German’s ROSAT Observatory here.

Learn about hydrocarbon dunes detected by NASA’s Cassini spacecraft on Saturn’s frozen moon Titan.

Read about the Monster of the Milky Way as it comes to life.

Learn how astronomers study a galactic nursery using the Hubble Space Telescope.

Advertisements

Star Light, Star Bright

Supernova SN 2005E Says Hello to the Universe

Astronomy allows you to witness some of the biggest explosions in the universe
Supernova SN 2005E shines brightly on the edge of spiral galaxy NGC 1032

 An explosion for all time

Astronomy News – A supernova is one of the most spectacular and massive events astronomers journeying backward to the beginning of space and time view, and can often be billions of times as bright as Sol, or shine brighter than an entire galaxy. Take a journey to a supernova, like SN 2005E, which astronomers became aware of when it lite up the spiral galaxy NGC 1032 in 2005, and your view of life and the universe would change forever.

Supernova SN 2005E is shown in the halo of NGC 1032 (red arrow)

Astronomers spend countless hours looking for new supernovae to study

Astronomers had previously only viewed supernovae occurring in two ways during their Journey to the Beginning of Space and Time. In the first example, the massive core of a star collapses inward near the end of its life cycle, creating a shock wave that expels the star’s outer layers into the cold darkness of space and time. In the second, a white dwarf star steals matter from a companion star, until it reaches 1.4 solar masses. At this point, the white dwarf star is unable to support more mass, according to natural law, and detonates in a titanic stellar explosion brighter than a galaxy.

A team of astronomers looking at the data obtained by space scientists studying supernova SN 2005E believe this supernova could represent a third as yet unseen, path nature uses to create a supernova. This analysis of this team of scientists has determined that this supernova occurred in a region of space and time devoid of massive stars. They also determined that this supernova only ejected a small volume of stellar material (0.3 solar masses) and abnormally high levels of calcium and radioactive titanium into the universe.

Team member Alex Filipenko of the University of California, Berkeley, and team leaders Hagai Perets of the Harvard-Smithsonian Center for Astrophysics in Cambridge and Avishay Gal-Yam of the Weizmann Institute of Science in Rehovot, Israel, conclude supernova SN 2005E took place between a low-mass white dwarf star that was stealing helium from a companion star. They also believe the volume of calcium released during supernova SN 2005E was large enough that only a few similar supernovae would be sufficient per century to provide all of the calcium presently viewed in the Milky Way Galaxy.

Supernova SN 2005E Says Hello to the Universe

The Earth being round was old news to ancient astronomers

Read about China rejoining the human journey to the beginning of space and time

Are you looking for a great apochromatic refractor to keep you company on long nights during the winter?