NASA’s Next Generation Wide Field Infra-Red Survey Telescope

Will study dark energy, conduct a census of discovered exoplanets, and image and analysis their spectroscopy using coronagraphy.  

wfirstdarksidenominal
Credits: NASA/WFIRST

Space news (Astrophysics: next generation infrared telescope; WFIRST) – Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL) and Space Telescope Science Institute (STScI) –  

wfirstmcrbaseline
Credits: NASA.

Scheduled for launch sometime in 2020, the exact date hasn’t been set in stone, NASA’s Wide Field Infra-Red Survey Telescope (WFIRST)’s currently in the formation stage in various science institutions around the United States. NASA’s next generation wide-field infrared survey telescope, WFIRST’s expected to open a wider window on the infrared cosmos and unravel secrets of the universe. 

spin0828
Credits: NASA/Goddard Space Flight Center

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has,” said John Grunsfeld, astronaut and associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington. “This mission uniquely combines the ability to discover and characterize planets beyond our own solar system with the sensitivity and optics to look wide and deep into the universe in a quest to unravel the mysteries of dark energy and dark matter.”  

617284main_grunsfeld_226
Former astronaut and current NASA assistant director John Grunsfeld. Credits: NASA.

Utilizing a view 100 times bigger than the Hubble Space Telescope, it will compliment astrophysicists exploring dark energy, dark matter, and the origins and evolution of the cosmos. Carrying a chronograph capable of blocking the individual glare of a star, WFIRST will detect the faint light of planets, making it possible for the first time to make detailed measurements of the chemical makeup of alien atmospheres light-years away. By making a survey of the atmospheres of many alien worlds astronomers will add to our knowledge of their origins and physics and search for planetary atmospheres capable of sustaining life. 

Credits: NASA
Credits: NASA

“WFIRST is designed to address science areas identified as top priorities by the astronomical community,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington. “The Wide-Field Instrument will give the telescope the ability to capture a single image with the depth and quality of Hubble, but covering 100 times the area. The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.”  

Paul Hertz, Director of the Astrophysics Division in the Science Mission Directorate at NASA. Credits: NASA
Paul Hertz, Director of the Astrophysics Division in the Science Mission Directorate at NASA. Credits: NASA

Designed and engineered to compliment the discoveries of the Hubble Space Telescope, the Kepler Space Telescope, and future Transiting Exoplanet Survey Telescope (TESS), WFIRST will follow the launch of the James Webb Space Telescope around 2018. One of NASA’s next generation astrophysics observatories, WFIRST will offer a treasure trove of astronomical data and survey the cosmos to discover the mysteries of the universe. 

Credits: NASA
Credits: NASA

“In addition to its exciting capabilities for dark energy and exoplanets, WFIRST will provide a treasure trove of exquisite data for all astronomers,” said Neil Gehrels, WFIRST project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This mission will survey the universe to find the most interesting objects out there.” 

WFIRST’s sensitivity and wide view of the cosmos will allow astronomers to conduct a large-scale survey of exoplanets by monitoring the brightness of millions of stars. Utilizing numerous methods, astrophysicists will use this space observatory to investigate the ways dark energy and dark matter have altered, affected the evolution of the cosmos. 

Credits: NASA
Credits: NASA

Go for launch!

NASA’s chiseled a tentative date on paper of sometime in the 2020s for the launch of WFIRST, but delays and even improvements of this timetable are possible. After reaching space, NASA’s next generation wide-field infrared survey telescope will travel to an L2 point millions of miles from Earth, before starting astrophysical operations and improving and enhancing our view of the infrared cosmos. 

Watch this video on WFIRST.

Read about ASCA, Advanced Satellite for Cosmology & Astrophysics.

Read and learn about the discoveries of the Giant Magellan Telescope, located high up on an Andes Mountain peak in Las Campanas, Chile.

Learn more about the new Japanese X-ray satellite Hitomi, “Pupil of the Eye”.

Learn more about the mysteries of the universe discovered by NASA

Read more about WFIRST here

Discover the Hubble Space Telescope

Learn more about the James Webb Space Telescope here

Discover NASA’s Goddard Space Flight Center

Learn more about TESS here

Learn what scientists have discovered about dark energy

Discover dark matter here

Discover the Kepler Space Telescope

Advertisements

Giant Star Blows Hubble a Bubble of Hot Gas

To celebrate 26th solar orbit of Hubble Space Telescope

Space news (Interaction of young, massive stars with the environment) – 7,100 light-years from Earth in the constellation Cassiopeia –

p1613a1r

To celebrate the 26th year of the Hubble Space Telescope’s journey to the beginning of space and time NASA released this image of the Bubble Nebula (NGC 7635). The outer edge of the bubble is a stellar wind of hot gas moving at over 4 million miles per hour. A stellar wind that slams into and heats dense regions of cold gas on the outer edge of the bubble to varying temperatures. Heated gases that emit different colours, with oxygen near the star emitting blue light while light emitted by hydrogen and nitrogen combines to produce yellow, cooler pillars in the upper left of the image. Cooler pillars illuminated by strong ultraviolet radiation from the hot, massive star producing the bubble, which is similar to the iconic “Pillars of Creation” in the Eagle Nebula.

couleurV8michaud
10 light-years across, the Bubble Nebula (NGC 7635) is a study in violent processes at work and chaotic nature of the cosmos. Image Credit: Bernard Michaud

As Hubble makes its 26th revolution around our home star, the sun, we celebrate the event with a spectacular image of a dynamic and exciting interaction of a young star with its environment. The view of the Bubble Nebula, crafted from WFC-3 images, reminds us that Hubble gives us a front row seat to the awe-inspiring universe we live in,” said John Grunsfeld, Hubble astronaut and associate administrator for NASA’s Science Mission Directorate at NASA Headquarters, in Washington, D.C. 

BubbleNebula-500
The Bubble Nebula is one of three gas shells surrounding the supermassive star (BD+602522) at the center of this image. Credit: T.A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF

The outer edge of the Bubble Nebula’s around seven light years across, which is about the same distance as travelling to our nearest stellar neighbour Alpha Centauri one and a half times. The super-hot, massive star producing the hot stellar winds at the outer edge is about 45 times the mass of Sol. It appears in the ten o’clock position in this image, off-centre from the outer edge due to varying stellar winds.

The-Bubble-Nebula

The Bubble Nebula. Image: NASA, Donald Walter (South Carolina State University), Paul Scowen and Brian Moore (Arizona State University)

Imagine the reaction of the discoverer of the Bubble Nebula, William Herschel, who in 1787 first observed this colourful celestial object, to this Hubble Space Telescope image. How would he react to discovering it’s created by an extremely bright, super-massive star turning hydrogen into helium at a furious rate? A star about four million years old that within the next 20 million years will detonate as a supernova. The possibilities would expand his mind much like the O-type star that created the Bubble Nebula. 

Imagine the expression on his face as he views the thousands of startling images taken by the Hubble Space Telescope of stellar objects across billions of light-years of space. The opening of his mind could probably be witnessed in his eyes and the expanding of his consciousness. He would fly about the universe on the edge of a bubble of hot gas and become one with the cosmos.

No better way to celebrate the 26th year of the space journey of one of the greatest and grandest telescopes ever conceived and constructed by humankind. 

Watch this YouTube video about the 26th anniversary of the space journey of the Hubble Space Telescope.

https://www.youtube.com/watch?v=mm472GqUQic

Zoom into the Bubble Nebula watching this NASA video.

You can take the space journey of NASA here.

Learn more about the Hubble Space Telescope.

Discover the things William Herschel taught us about the cosmos here.

Learn more about one of the biggest eyes on the universe ever constructed, the Giant Magellan Telescope.

Read about Hitomi, the newest x-ray satellite on the space block.

Discover TESS, the Transiting Exoplanet Survey Satellite.

NASA’s Explorers Program Selects Five Proposals to Explore the Cosmos

New programs selected will study neutron star-black hole binary systems, the expansion of space and galaxies in the early cosmos, the star formation cycle of the Milky Way and more

The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in 2012, is an Explorer mission that allows astronomers to study the universe in high energy X-rays. Credits: NASA/JPL-Caltech
The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in 2012, is an Explorer mission that allows astronomers to study the universe in high energy X-rays.
Credits: NASA/JPL-Caltech

Space news (October 29, 2015) – NASA Headquarters, Washington, D.C. –

NASA’s Explorers Program was designed in the spirit of the first explorers who traveled across the deep, dark and mysterious oceans and lands in search of the unknown. Thousands of years ago, archaeologists believe ancient humans used the stars, ocean currents and waves to navigate across the seas to new lands. Today, astronauts and scientists taking part in NASA’s Explorers Program travel across space-time to stellar objects in the sky using scientific instruments and spacecraft ancient humans would perceive as God-like. 

NASA’s Explorers Program began with the launch of the first spacecraft designed by engineers and scientists working for the Army Ballistic Missile Agency on January 31, 1958, making it the oldest continuously running low-cost NASA program in history. Fittingly called “Explorer”, since this first spacecraft over 90 space missions to the stars have been designed and launched as part of the Explorers Program. Space missions to the stars that have made startling discoveries about Earth’s magnetosphere and gravity field, the composition of the solar wind and solar plasma erupting from the surface of the Sun. They have traveled to other planets in the solar system and studied radio and gamma-ray astronomy, and in the future will enable the human journey to the beginning of space and time.

NASA recently announced five less-expensive Explorers Program missions designed to the fill the scientific and technical gaps their more involved and expensive space missions. The selected space missions will examine polarized X-ray emissions emitted by binary star systems composed of a neutron star and black hole and the expansion of spacetime during the early moments of the universe. They’ll also take a closer look at the formation of galaxies during the first moments of the cosmos and the birth and life cycle of stars in the Milky Way.

Located in the Goddard Space Flight Center in Greenbelt, MD, the Explorers Program provides an opportunity for human robotic-envoys to make frequent trips into space for scientific explorations of the solar system and cosmos. Relatively low-cost, small to medium size space missions requiring fewer resources and time compared to larger missions to get off the drawing board and into space.

The Explorers Program brings out some of the most creative ideas for missions to help unravel the mysteries of the Universe,” said John Grunsfeld, NASA’s Associate Administrator for Science at NASA Headquarters, in Washington. “The program has resulted in great missions that have returned transformational science, and these selections promise to continue that tradition.”

Now, each of the three selected Small Explorers mission proposals will receive $1 million to conduct an 11-month mission concept study, while the two Missions of Opportunity proposals receive $250,000 to conduct an 11-month mission implementation concept study. 

During the months ahead, NASA scientists will conduct concept studies and detailed evaluations of each proposal selected. After this, they’ll select one mission of each type to proceed to construction and launch, by 2020 at the earliest. In the end, the total cost for this part of the Explorers Program is capped at just around $190 million for the two missions selected: $125 million for each Small Explorers mission and $65 million for each Mission of Opportunity.

The three Small Explorers Program missions selected are:

SPHEREx

SPHEREx explores the origin and evolution of the cosmos and galaxies in the sky and the possibility planets around other stars could harbor life.

James Bock of the California Institute of Technology in Pasadena, California is the main scientist on this mission.

Imaging X-ray Polarimetry Explorer (IXPE)

IXPE studies the processes leading to X-ray emission in neutron stars, pulsar wind nebulae, and stellar and supermassive black holes using X-ray polarimetry, the measurement, and interpretation of the polarization of electromagnetic waves. 

Martin Weisskopf of NASA’s Marshall Space Flight Center in Huntsville, Alabama is the main scientist on this project.

Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS)

PRAXyS uses X-ray polarimetry to study the geometry and behavior of X-ray sources emitted from supermassive black holes, pulsars, magnetars and supernovae.

The two Missions of Opportunity proposals selected are:

Gal/Xgal U/LDB Spectroscopic/Stratospheric THz Observatory (GUSTO)

GUSTO is an observatory held aloft by a balloon designed to detect high-frequency radio emission from sources in our Milky Way and the Large Magellanic Cloud in order to study the life cycle of interstellar material.

Christopher Walker of the University of Arizona in Tucson is the main scientists on this mission.

LiteBIRD Cosmic Microwave Background Polarization Survey

LiteBIRD is a Japanese space mission with US contributions designed to map polarized fluctuations in the Cosmic Microwave Background in order to search for signs of gravitation waves created during inflation in an effort to better understand the events that occurred during the first moments of the cosmos. 

Adrian Lee of the University of California at Berkeley is a main scientist on this mission.

For more information on NASA’s Explorers Program, go here.

To learn more about NASA’s mandate to travel to the stars and beyond visit here.

Learn more about the Goddard Space Flight Center here.

Discover and explore the Marshall Space Flight Center here

Learn more about the supermassive black hole astronomers believe resides at the center of the Milky Way – the Monster of the Milky Way.

NASA’s New Horizons spacecraft recently arrived at Pluto and its moons. Learn more about what they found?

Read about and learn the things astronomers have discovered during their search for the missing link in black hole evolution.

Pluto Shows Planetary Scientists Geophysical and Atmospheric Surprises

Exotic ice floes and distinct layers of haze above dwarf planet’s surface

New Horizons discovers flowing ices in Pluto’s heart-shaped feature. In the northern region of Pluto’s Sputnik Planum (Sputnik Plain), swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth. Credits: NASA/JHUAPL/SwRI
New Horizons discovers flowing ices in Pluto’s heart-shaped feature. In the northern region of Pluto’s Sputnik Planum (Sputnik Plain), swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth.
Credits: NASA/JHUAPL/SwRI

Space news (July 29, 2015) – 1.25 million miles (2 million kilometers) from Earth and headed into the Kuiper Belt

NASA space scientists looking at LORRI images and data sent back to Earth by the New Horizons spacecraft ten days after closest approach to the dwarf planet Pluto received a nice surprise. Exotic ices flowing across the surface of the dwarf planet Pluto as glaciers do on Earth and possibly Mars. Indicating geological activity planetary scientists had dreamed of but didn’t truly expect to find, and the possibility even bodies at extreme distances from the Sun could be crucibles for the ingredients of life.

“We knew that a mission to Pluto would bring some surprises, and now — 10 days after closest approach — we can say that our expectation has been more than surpassed,” said John Grunsfeld, NASA’s associate administrator for the Science Mission Directorate. “With flowing ices, exotic surface chemistry, mountain ranges, and vast haze, Pluto is showing a diversity of planetary geology that is truly thrilling.”

Photo caption: The sheet of ice visible here on the plain informally called Sputnik Planum appears to have flowed, and could still be moving, as glaciers do on Earth. This plain rests within the western half of Pluto's noted heart-shaped feature called Tombaugh Regio and could be rich in nitrogen, carbon monoxide, methane ices, and other compounds.
Photo caption: The sheet of ice visible here on the plain informally called Sputnik Planum appears to have flowed, and could still be moving, as glaciers do on Earth. This plain rests within the western half of Pluto’s noted heart-shaped feature called Tombaugh Regio and could be rich in nitrogen, carbon monoxide, methane ices, and other compounds.

“We’ve only seen surfaces like this on active worlds like Earth and Mars,” said mission co-investigator John Spencer of SwRI. “I’m really smiling.”

“At Pluto’s temperatures of minus-390 degrees Fahrenheit, these ices can flow like a glacier,” said Bill McKinnon, deputy leader of the New Horizons Geology, Geophysics, and the Imaging team at Washington University in St. Louis. “In the southernmost region of the heart, adjacent to the dark equatorial region, it appears that ancient, heavily cratered terrain has been invaded by much newer ice deposits.”

Space scientists combined four New Horizon images taken by LORRI with color data from the Ralph Instrument to produce this stunning global view of Pluto taken at a distance of 280,000 miles (450,000 kilometers) from the spacecraft.
Space scientists combined four New Horizon images taken by LORRI with color data from the Ralph Instrument to produce this stunning global view of Pluto taken at a distance of 280,000 miles (450,000 kilometers) from the spacecraft.

Detailed analysis of LORRI images taken of Pluto’s surface reveals a global pattern of ice floe zones varying according to latitude. The darkest surface terrains are found near the equator region, with mid-toned terrains being mainly located in mid-latitudes, and lighter colored terrains covering the North Polar Region.

Mountain Ranges Viewed on Pluto’s Sputnik Planum

Planetary scientists have named the two peaks of the mountain range Hillary Montes (Hillary Mountains) for Sir Edmund Hillary, who along with legendary mountain guide Tenzing Norgay summited Mount Everest in 1953. Rising over 1 mile (1.6 kilometers) above the surface of the planet, image climbing to the top of these peaks, a feat humankind could one day attempt and achieve. This would truly be an inspiring moment during the human journey to the beginning of space and time.

This LORRI image shows the surface terrain of Pluto are much more complicated than planetary scientists first thought. Notice the polygonal shape of many of the plains viewed, two magnificent mountain ranges, and cratered terrain that looks like ice has recently been deposited.
This LORRI image shows the surface terrain of Pluto is much more complicated than planetary scientists first thought. Notice the polygonal shape of many of the plains viewed, two magnificent mountain ranges and cratered terrain that looks like ice has recently been deposited.

“For many years, we referred to Pluto as the Everest of planetary exploration,” said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado. “It’s fitting that the two climbers who first summited Earth’s highest mountain, Edmund Hillary, and Tenzing Norgay, now have their names on this new Everest.”

View a video here of a simulated flyover of Sputnik Planum and Pluto’s recently viewed mountain range called Hillary Montes.

Seven hours after reaching its point of closest approach to Pluto, New Horizons looked back at the dwarf planet through its Long Range Reconnaissance Imager (LORRI) just in time to view sunlight beaming through its atmosphere highlight gasses rising as high as 80 miles (130 kilometers) from its surface. Subsequent analysis of images revealed two distinct gas layers, one at around 30 miles (50 kilometers), and the other at 50 miles (80 kilometers).

“My jaw was on the ground when I saw this first image of an alien atmosphere in the Kuiper Belt,” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “It reminds us that exploration brings us more than just incredible discoveries — it brings incredible beauty.”

Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. Credits: NASA/JHUAPL/SwRI
Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image was taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame.
Credits: NASA/JHUAPL/SwRI

“The hazes detected in this image are a key element in creating the complex hydrocarbon compounds that give Pluto’s surface its reddish hue,” said Michael Summers, New Horizons co-investigator at George Mason University in Fairfax, Virginia.

Planetary scientists believe the hazes detected in the LORRI images form through a process in which sunlight breaks up methane gas particles, which have been detected in the atmosphere of Pluto. This process leads to the formation of more complex hydrocarbon gasses, like ethylene and acetylene, which have been detected by New Horizons.  These heavier compounds fall to the lower regions of Pluto’s atmosphere, where they condense into ice particles that form the hazes viewed. The ice particles are then struck by ultraviolet sunlight, which converts them into the dark hydrocarbons covering the surface of the dwarf planet.

This theory is different than first thoughts on the possibility of this process occurring, in fact, space scientists had previously calculated temperatures would be too warm for such hazes to form above the altitude of 20 miles (30 kilometers). It appears they’ll have to devise a new theory for how the hazes detected could form so far from the surface of Pluto.

Presently around 7.6 million miles (12.2 million kilometers) from Pluto and flying deeper into the Kuiper Belt, New Horizons will continue to send data back to Earth through this year and 2016. All involved in the mission expect to discover more and more about dwarf planets, the Kuiper Belt, and the Solar System as the human journey to the beginning of space and time heads into unseen territory searching for the unknown.

Learn more about NASA’s space mission here.

Learn more about NASA’s New Horizons mission and discover dwarf planet Pluto and its moons here.

Read about NASA’s New Horizons of the Human Journey to the Beginning of Space and Time

Learn about the search for the missing link in black hole evolution

Read about clear skies and hot water vapor detected on Neptune-size exoplanets

Kepler Mission Discovers First Nearly-Earth-Sized Cradle for a New Human Genesis

NASA space scientists have discovered the first nearly Earth-sized exoplanet lying within the habitable zone of its Sun-like parent star 

This artist's concept compares Earth (left) to the new planet, called Kepler-452b, which is about 60 percent larger in diameter. Credits: NASA/JPL-Caltech/T. Pyle
This artist’s concept compares Earth (left) to the new planet, called Kepler-452b, which is about 60 percent larger in diameter.
Credits: NASA/JPL-Caltech/T. Pyle

Space news (July 23, 2015) – 1,400 light-years away in the constellation Cygnus –

Twenty years after proving other planets do exist the human journey to the beginning of space and time draws nearer to finding an Earth-like cradle for a new human Genesis

This artist's concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of star that is similar to our sun. Credits: NASA/JPL-Caltech/T. Pyle
This artist’s concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of a star that is similar to our sun.
Credits: NASA/JPL-Caltech/T. Pyle

NASA’s Kepler spacecraft has discovered the first nearly Earth-sized exoplanet orbiting within the habitable zone of a star much like our own Sun. Called Kepler-452b and roughly 60 percent bigger than our home planet, this exoplanet is the smallest planet found orbiting at a distance from its parent star where liquid water could exist.

On the 20th anniversary year of the discovery that proved other suns host planets, the Kepler exoplanet explorer has discovered a planet and star which most closely resemble the Earth and our Sun,” said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “This exciting result brings us one step closer to finding an Earth 2.0.

A Star Like Our Sun

This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury. Credits: NASA/JPL-CalTech/R. Hurt
This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury.
Credits: NASA/JPL-CalTech/R. Hurt

Kepler-452b’s parent star is an older cousin to the Sun, a G2 type star approximately 20 percent brighter, 1.5 billion years older, and 10 percent bigger than Earth’s home star.

We can think of Kepler-452b as an older, bigger cousin to Earth, providing an opportunity to understand and reflect upon Earth’s evolving environment,” said Jon Jenkins, Kepler data analysis lead at NASA’s Ames Research Center in Moffett Field, California, who led the team that discovered Kepler-452b. “It’s awe-inspiring to consider that this planet has spent 6 billion years in the habitable zone of its star; longer than Earth. That’s substantial opportunity for life to arise, should all the necessary ingredients and conditions for life to exist on this planet.

A Rocky Exoplanet like Earth?

Since Kepler launched in 2009, twelve planets less than twice the size of Earth have been discovered in the habitable zones of their stars. Credits: NASA/N. Batalha and W. Stenzel
Since Kepler launched in 2009, twelve planets less than twice the size of Earth have been discovered in the habitable zones of their stars.
Credits: NASA/N. Batalha and W. Stenzel

Kepler-452b is the twelfth exoplanet the human journey to the beginning of space and time has viewed lying within the habitable zone of its parent star. Data collected by both space and Earth-based telescopes indicates planets of this size are often rocky in nature. Indicating the possibility this exoplanet could have an atmosphere and environment that could act as a cradle for a new human Genesis to begin. 

A New Human Genesis!

Humans traveling across spacetime to Kepler-452b would evolve during a voyage lasting thousands or even hundreds of years. Extended hibernation of some type would certainly make the journey easier, but this kind of technology hasn’t been developed. An alternative solution to extended periods living in space during a voyage unlike any humans have undertaken is probably a necessity.

Once we land on Kepler-452b, learning to survive and live on this foreign planet will evolve us once again. Humans are designed to evolve in order to survive living in different environments. We would likely survive as a species, but doing so would change us in ways we can’t begin to imagine.

521 New Candidates for the Exoplanet Zoo

There are 4,696 planet candidates now known with the release of the seventh Kepler planet candidate catalog - an increase of 521 since the release of the previous catalog in January 2015. Credits: NASA/W. Stenzel
There are 4,696 planet candidates now known with the release of the seventh Kepler planet candidate catalog – an increase of 521 since the release of the previous catalog in January 2015.
Credits: NASA/W. Stenzel

At the same time, NASA released this news it announced the Kepler mission’s discovery of 521 new exoplanet candidates for the exoplanet zoo. 12 of these candidates orbit their parent star within the habitable zone and nine have home stars similar to the Sun in both size and temperature. Great news for the human desire to locate a second Earth to live on. 

We’ve been able to fully automate our process of identifying planet candidates, which means we can finally assess every transit signal in the entire Kepler dataset quickly and uniformly,” said Jeff Coughlin, Kepler scientist at the SETI Institute in Mountain View, California, who led the analysis of a new candidate catalog. “This gives astronomers a statistically sound population of planet candidates to accurately determine the number of small, possibly rocky planets like Earth in our Milky Way galaxy.

NASA space scientists will now take a closer look at each of the exoplanet candidates and specifically the ones lying within the habitable zone of their parent star. There could be a second Earth, a cradle for a new human Genesis, waiting to be discovered. An event that would change the course of human history on planet Earth and the way we view ourselves as cosmic beings.

To learn more about the Kepler mission go here.

To learn more about NASA’s space mission visit here.

Read about NASA’s Europa Orbiter and plans to take a closer look at one of the best places in the solar system to look for life other than Earth.

Learn more about ice geysers erupting from the frozen surface of Saturn’s moon Enceladus helping to create the E ring of the second biggest planet in the solar system.

Learn about the mystery surrounding the existence of ultra-luminous x-ray sources in the cosmos and ways space scientists are beginning to lift the veil of secrecy surrounding these mysterious objects.

The Human Journey to the Beginning of Space and Time is All-Systems-Go for Jupiter’s Moon Europa

Planetary scientists and exobiologists are planning a trip to determine if an ocean of water exists beneath its icy surface

Four hundred years ago, the astronomer Galileo's discovery of Jupiter's four large moons forever changed humanity's view of the universe, helping to bring about the understanding that Earth was not the center of all motion. Today one of these Galilean moons could again revolutionize science and our sense of place, for hidden beneath Europa's icy surface is perhaps the most promising place to look for present-day environments that are suitable for life.
Four hundred years ago, the astronomer Galileo’s discovery of Jupiter’s four large moons forever changed humanity’s view of the universe, helping to bring about the understanding that Earth was not the center of all motion. Today one of these Galilean moons could again revolutionize science and our sense of place, for hidden beneath Europa’s icy surface is perhaps the most promising place to look for present-day environments that are suitable for life. (Image courtesy of NASA)

Space news (July 15, 2015) – the search for life beyond Earth – With abundant water, a rocky substrate, and available heat energy due to tidal forces, Europa would be one of the best places in the solar system to search for signs of life.  

617284main_grunsfeld_226

John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. Credit: NASA

Today we’re taking an exciting step from concept to a mission, in our quest to find signs of life beyond Earth,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions.”  

Artist concept of NASA's Europa mission spacecraft approaching its target for one of many flybys. Image credit: NASA/JPL-Caltech
Artist concept of NASA’s Europa mission spacecraft approaching its target for one of many flybys. Image credit: NASA/JPL-Caltech

NASA’s Europa Multiple Flyby Mission will conduct a detailed survey of the moon and its suitability for sustaining life. Estimates by planetary scientists indicate there could be as much as twice the volume of water as on Earth underneath the icy crust of this distant moon.  

465917main_9902730
NASA astrobiologist Dr. Richard Hoover discovered this ancient moss still capable of growing and reproducing after 40,000 years beneath the Russian permafrost. Credit: (NASA/MSFC)

Could extremophiles – extreme forms of life found on Earth – exist on Europa? Some exobiologists think it could be possible forms of life found surviving and evolving in extreme environments on our planet could be tough enough. The existence of single-celled life forms in such environments would truly be a monumental point in human history.  

465919main_main_pic

NASA astrobiologist Dr. Richard Hoover retrieved this extremophile bacterium from ice dating to over 32,000 years ago. Credit: (NASA/MSFC)

Energy for living things to survive, prosper and evolve could be extracted from the environment if heat energy produced by tidal flexing of the crust of Europa is sufficient to drive chemical reactions. Chemical reactions that could recycle elements, making them available for use by living things in the battle to survive and evolve.  

465923main_water_bear

One of the oldest lifeforms still existing on the Earth, a tardigrade or “water bear” is seen through an electron microscope. Less than 1 mm in length, these hardy creatures can withstand the rigors of space travel for extended periods. They’re currently being studied to see just how tough they’re. Credit: ESA/Dr. Ralph O. Schill

Could there be life existing in the oceans of Europa? The known requirements for the existence of life, extraterrestrial or Earth-based, are still pretty basic at this point and they’ll change as we discover and learn more about what life really needs to survive, prosper and evolve.  

Cutaway diagram of Europa's interior. Artwork credit: Michael Carroll
Cutaway diagram of Europa’s interior. Artwork credit: Michael Carroll

We have waited patiently since NASA’s Galileo spacecraft first showed us oceans of water could exist beneath the icy surface of Europa. Sometime in the 2020s mankind will launch the Europa Multiple Flyby Mission to this distant moon of Jupiter in a desire to take a look.  

converted PNM file

The Galileo spacecraft being deployed from the cargo bay of STS-34 Atlantis at 7:15 p.m. EDT on 18th October 1989. Credit: NASA/JPL

All systems go for Europa

The trip to Europa is expected to launch from Cape Canaveral and take about 6.5 years, with gravity-assist from flybys of Venus and Earth, before arriving in the Jupiter system sometime in 2026 or 2027.  

europa_full
The Europa Orbiter above the surface of Europa, with Jupiter in the background. Credit: NASA/JPL

The mission calls for a spacecraft to flyby Europa 45 times, conducting a detailed survey and analysis of the icy surface of the moon in high-resolution images. In order to give planetary scientists more information on its composition and the environment and structure of the moon’s interior regions.  

“It’s a great day for science,” said Joan Salute, Europa program executive at NASA Headquarters in Washington. “We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa.”  

You can follow the development of NASA’s Europa Multiple Flyby Mission here.  

You can learn more about NASA’s space mission here.  

You can discover more about Jupiter’s moon Europa here.  

Learn more about the formation of young stars in galaxy clusters.

Read about NASA’s recent appeal for private business partnerships to help enable the human journey to the stars.

Learn about the kinds of planets space scientists are finding in four star systems.

NASA Telescopes Detecting Clear Skies and Steamy Water Vapor on Neptune-size Exoplanet

A Neptune-size planet with a clear atmosphere is shown crossing in front of its star in this artist's depiction. Such crossings, or transits, are observed by telescopes like NASA's Hubble and Spitzer to glean information about planets' atmospheres.
A Neptune-size planet with a clear atmosphere is shown crossing in front of its star in this artist’s depiction. Such crossings, or transits, are observed by telescopes like NASA’s Hubble and Spitzer to glean information about planets’ atmospheres Image Credit NASA

Is a sign smaller exoplanets could have similar or more hospitable environments

Space news (November 07, 2014) 120 light-years away in the constellation Cygnus –

NASA space scientists using the Hubble, Spitzer and Kepler space telescopes detected clear skies and steamy water vapor on exoplanet HAT-P-11b. This is the first detection of molecules on an exoplanet the size of Neptune or smaller. It’s also a sign smaller exoplanets have similar or more hospitable environments.  

Scientists were excited to discover clear skies on a relatively small planet, about the size of Neptune, using the combined power of NASA's Hubble, Spitzer and Kepler space telescopes. Image Credit: NASA/JPL-Caltech
Space scientists were excited to discover clear skies on a relatively small planet, about the size of Neptune, using the combined power of NASA’s Hubble, Spitzer, and Kepler space telescopes.
Image Credit: NASA/JPL-Caltech

How did space scientists detect clear skies and steamy vapor on a planet 120 light-years away in the Constellation Cygnus? Astronomers used the Hubble, Spitzer and Kepler space telescopes to observe HAT-P-11b as it passed in front of its parent star in relation to Earth. By analyzing the starlight passing through the atmosphere of the exoplanet, space scientists determined the specific molecules making it up. 

This scientific technique is called Transmission Spectroscopy and it was particularly effective in the case of HAT-P-11b because of this Neptune-size exoplanet (exo-Neptune), unlike previous ones detected, has no clouds in the atmosphere to block the starlight from coming through, which allowed for the detection of water vapor molecules.  

A plot of the transmission spectrum for exoplanet HAT-P-11b, with data from NASA's Kepler, Hubble and Spitzer observatories combined. The results show a robust detection of water absorption in the Hubble data. Transmission spectra of selected atmospheric models are plotted for comparison. Image Credit: NASA/ESA/STScI
A plot of the transmission spectrum for exoplanet HAT-P-11b, with data from NASA’s Kepler, Hubble and Spitzer space observatories combined. The results show a robust detection of water absorption in the Hubble data. Transmission spectra of selected atmospheric models are plotted for comparison.
Image Credit: NASA/ESA/STScI

“This discovery is a significant milepost on the road to eventually analyzing the atmospheric composition of smaller, rocky planets more like Earth,” said John Grunsfeld, assistant administrator for NASA’s Science Mission Directorate in Washington. “Such achievements are only possible today with the combined capabilities of these unique and powerful observatories.” 

“When astronomers go observing at night with telescopes, they say ‘clear skies’ to mean good luck,” said Jonathan Fraine of the University of Maryland, College Park, lead author of a new study appearing in Nature. “In this case, we found clear skies on a distant planet. That’s lucky for us because it means clouds didn’t block our view of water molecules.” 

“We think that exo-Neptunes may have diverse compositions, which reflect their formation histories,” said study co-author Heather Knutson of the California Institute of Technology in Pasadena. “Now with data like these, we can begin to piece together a narrative for the origin of these distant worlds.” 

“We are working our way down the line, from hot Jupiters to exo-Neptunes,” said Drake Deming, a co-author of the study also from the University of Maryland. “We want to expand our knowledge to a diverse range of exoplanets.” 

NASA space scientists will now use the Hubble, Spitzer and Kepler space telescopes to begin looking at more exoplanets the size of HAT-P-11b for clear skies and water vapor. They’ll also hope to use Transmission Spectroscopy to detect smaller exoplanets, more like our home planet, called super-Earths orbiting distant stars. Once the James Webb Space Telescope comes online in 2018, they’ll begin looking at any super-Earths detected for signs of water vapor and other molecules. 

Find more on the Hubble Space Telescope here

More information on the Spitzer Space Telescope can be found here

Look here for more on the Kepler Space Telescope. 

Go here for more information on NASA and the exoplanets discovered.

Read about the possibility of intelligent lifeforms existing in the universe

Read about the Chelyabinsk Meteorite

Read about ancient astronomers looking at Algol for signs of the gods