WISE Infrared All-Sky Survey Reveals Millions of Supermassive Black Hole Candidates

Plus nearly a thousand extremely bright, dusty objects nicknamed hot DOGS 

With its all-sky infrared survey, NASA's Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes "feed" off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles. Image credit: NASA/JPL-Caltech/UCLA
With its all-sky infrared survey, NASA’s Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes “feed” off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles.
Image credit: NASA/JPL-Caltech/UCLA

Space news (All-sky surveys: infrared; candidate supermassive black holes and dust-obscured galaxies) – The visible universe – 

Astronomers working with data provided by an infrared survey of the visible sky conducted by NASA’s Wide-field Infrared Survey Explorer (WISE) have identified millions of new candidates for the quasar section in the Galaxy Zoo. All-sky images taken by WISE revealed around 2.5 million candidate supermassive black holes actively feeding on material, some over 10 billion light-years away. They also pinpointed nearly a 1,000 very bright, extremely dusty objects nicknamed hot DOGS believed to be among the brightest galaxies discovered during the human journey to the beginning of space and time.

The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist's concept of the WISE satellite superimposed. Image credit: NASA/JPL-Caltech/UCLA
The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist’s concept of the WISE satellite superimposed.
Image credit: NASA/JPL-Caltech/UCLA

“These dusty, cataclysmically forming galaxies are so rare WISE had to scan the entire sky to find them,” said Peter Eisenhardt, lead author of the paper on the first of these bright, dusty galaxies, and project scientist for WISE at JPL. “We are also seeing evidence that these record setters may have formed their black holes before the bulk of their stars. The ‘eggs’ may have come before the ‘chickens.” 

Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST
Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST

“WISE has exposed a menagerie of hidden objects,” said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. “We’ve found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust.” 

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view. Image credit: NASA/ESA
This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.
Image credit: NASA/ESA

Astronomers detected Trojan asteroid TK7 in October 2010 in images of the sky taken by NASA’s WISE, before verifying its existence on optical images taken by the Canada-France-Hawaii Telescope. Additional study and computer modeling indicate Earth’s small dance partner should stay in a safe orbit for the next 10,000 years at least.  

This zoomed-in view of a portion of the all-sky survey from NASA's Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE's infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars. The circular inset images, obtained with NASA's Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen. Image credit: NASA/JPL-Caltech/UCLA/STScI
This zoomed-in view of a portion of the all-sky survey from NASA’s Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE’s infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars.
The circular inset images, obtained with NASA’s Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen.
Image credit: NASA/JPL-Caltech/UCLA/STScI

In March 2014 astronomers studying infrared images taken by WISE announced the discovery of around 3,500 new stars lying within 500 light-years of Earth. At the same time, they searched the data looking for evidence of Planet X, or Nemesis, the mythical planet some believe to exist somewhere beyond the orbit of Pluto. Scientists analyzed millions of infrared images taken by WISE out to a distance well beyond the orbit of our former ninth planet. They didn’t detect any objects the size of a planet out to a distance of around 25,000 times the distance between the Earth and Sol. Many times beyond the orbit of Pluto. No Planet X was found. 

NASA's Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or "hot DOGs," are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy. Image credit: NASA/JPL-Caltech/UCLA
NASA’s Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or “hot DOGs,” are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy.
Image credit: NASA/JPL-Caltech/UCLA

The vast majority of the latest candidates for the Galaxy Zoo are objects previously undetected by astronomers due to dust blocking visible light. Fortunately, the infrared eyes of WISE detected glowing dust around the candidates, which allowed scientists to detect them. These latest findings are clues astronomers use to better understand the processes creating galaxies and the monster black holes residing in their centers

This image zooms in on the region around the first "hot DOG" (red object in magenta circle), discovered by NASA's Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun. WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles). Image credit: NASA/JPL-Caltech/UCLA
This image zooms in on the region around the first “hot DOG” (red object in magenta circle), discovered by NASA’s Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun.
WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles).
Image credit: NASA/JPL-Caltech/UCLA

“We’ve got the black holes cornered,” said Daniel Stern of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., lead author of the WISE black hole study and project scientist for another NASA black-hole mission, the Nuclear Spectroscopic Telescope Array (NuSTAR). “WISE is finding them across the full sky, while NuSTAR is giving us an entirely new look at their high-energy X-ray light and learning what makes them tick.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Organizing the Monster Zoo

The Monster of the Milky Way, the estimated 4 million solar mass black hole astronomers believe resides at the center, periodically feeds upon material falling too deep into its gravity well, and heats up surrounding disks of dust and gas. Astronomers have even witnessed 1 billion solar mass monster black holes change their surrounding environments enough to shut down star formation processes in their host galaxy. Now, astronomers need to go through the millions of candidates and put them in the correct section of the zoo. We might even need to open a few new sections to accommodate unusual candidates found during a closer examination.  

You can learn more about supermassive black holes here

Watch this YouTube video about the Monster of the Milky Way

Tour NASA’s Jet Propulsion Laboratory here

Journey across the x-ray universe aboard NASA’s WISE

Learn everything NASA has learned during its journey. 

Learn more about the mission of NASA’s Nuclear Spectroscopic Telescopic Array (NuStar). 

Read more about Quasars

Learn more about dust-obscured galaxies (hot DOGS) here

Learn more about Trojan asteroid TK7

Learn more about the Canada-France-Hawaii Telescope

Learn more about How Astronomers Study the Formation of Stars.

Read more about a Wolf-Rayet star astronomers have nicknamed Nasty 1.

Read about the next-generation telescope the Giant Magellan Telescope.

Advertisements

WISE Spies Asteroid Passing in Front of Telescope in Images of Tadpole Nebula

Along with two satellites orbiting Earth above WISE 

453494main_pia13110-full-a

Space news (November 09, 2015) – 12,000 light-years from Earth in the Auriga constellation –

A part of the universe full of young, hot stars only a million years old, the Tadpole nebula is one of the best and closest places to study the formation of new stars. At a distance of 12,000 light-years from Sol in the constellation of Auriga, the two tadpole-shaped pillars that give this region of space its name contain numerous new stars with as much as ten times the mass of our sun. Called Sim 129 and 130, the chaotic areas near the heads of these pillars are believed to harbor new stars and protostars in the process of forming.

The mosaic of images above taken by NASA’s WISE spacecraft showcases the Tadpole nebula, plus two slow moving satellites orbiting above WISE, and two slower moving asteroids traveling through the solar system.

Asteroid 1719 left a line of yellow-green tracks running across the image and pictured in the boxes near the center. Discovered in 1950, this ancient wanderer orbits in the Main Asteroid Belt between Mars and Jupiter, and takes 4.3 years to orbit Sol. 

Asteroid 1992 UZ5 is also viewed traveling across the image and is highlighted in the boxes displayed at the upper left. Little data has been gathered on this ancient rock from the dawn of the solar system. Astronomers expect to know more about this visitor from the past in the years ahead.  

Highlighted in the off-center ovals near the center top and bottom right of the image are two satellites caught moving in front of WISE that appear as faint green trails.

You can learn more about asteroids from the dawn of the solar system here.

You can take the voyage of WISE here.

Discover the mission of NASA to take mankind to the stars here.

Learn about mysterious ripples astronomers viewed moving across the planet-forming region of AU Microscopii.

Read about a magnetar astronomers detected orbiting extremely close to the Monster of the Milky Way.

Learn about plans for the human journey to the beginning of space and time to head to Jupiter’s moon Europa to look for signs of life.

NASA WISE and Spitzer Telescopes Discover Titanic Galaxy Cluster

Astronomers say this monster was one of the biggest galaxy clusters of its time

The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. Credits: NASA/JPL-Caltech/Gemini/CARMA
The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster.
Credits: NASA/JPL-Caltech/Gemini/CARMA

Space news (November 07, 2015) – 8.5 billion light-years away in a remote part of the cosmos –

NASA astronomers conducting a survey of galaxy clusters using the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) recently viewed one of the biggest galaxy clusters ever recorded. Called Massive Overdense Object (MOO) J1142+1527, this monster galaxy cluster is in a very distant part of the universe and existed around 4 billion years before the birth of Earth.

8.5 billion years have passed since the light seen in the image above reached us here on Earth. MOO J1142+1527 has grown bigger during this time as more galaxies were drawn into the cluster and become even more extreme as far as galaxy clusters go. Containing thousands of galaxies, each with hundreds of billions of individual suns, galaxy clusters like this are some of the biggest structures in the cosmos. 

It’s the combination of Spitzer and WISE that lets us go from a quarter billion objects down to the most massive galaxy clusters in the sky,” said Anthony Gonzalez of the University of Florida in Gainesville, lead author of a new study published in the Oct. 20 issue of the Astrophysical Journal Letters.

Based on our understanding of how galaxy clusters grow from the very beginning of our universe, this cluster should be one of the five most massive in existence at that time,” said co-author Peter Eisenhardt, the project scientist for WISE at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Astronomers conducting this survey will now spend the next year sifting through more than 1,700 more galaxy clusters detected by the combined power of NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer looking for the largest galaxy clusters in the cosmos. Once they find the biggest galaxy clusters in the universe, they’ll use the data obtained to investigate their evolution and the extreme environments they’re found.

Once we find the most massive clusters, we can start to investigate how galaxies evolved in these extreme environments,” said Gonzalez.

You can learn more about the mission of the Spitzer Space Telescope here.

Discover the voyage and discoveries of WISE here.

Learn more about galaxy clusters here.

Read about the space missions of NASA here.

Learn more about the final days of stars.

Read about the Little Gem Nebula.

Read about plans for man to travel to Mars in the decades ahead.

NEOWISE’s One Year Space Mission Discovers 40 Near-earth Objects

NEOWISE discovered 40 potentially dangerous asteroids orbiting near earth
NEOWISE discovered 40 potentially dangerous asteroids orbiting near earth

Making life on Earth safer for all 

Space news (January 21, 2015) near Earth –

NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) discovered eight potentially dangerous asteroids during a recent one-year mission. Dangerous asteroids, in this case, are classified as objects that due to their volume and near-Earth orbit could pose a future collision threat. This was out of a total of 40 new objects NASA discovered orbiting close to the planet during its year-long mission. You can view a movie of the spacecraft’s progress during the past year using the link at the end of the article.

NEOWISE looked at a total of 245 known near-Earth objects from December 2013 to December 2014. This spacecraft views the sky during the dawn and dust perpendicular to a line between Earth and the sun. This allows it to spot near-Earth objects that come close to the planet. In this case discovering eight potentially dangerous asteroids, we can make plans to deal with, if needed, in the future. They also got a better look at the size and orbit of over 200 near-Earth objects they knew about.

NEOWISE found a total of 35 comets during its year-long mission, including three space scientists knew nothing about. This includes the brightest comet in Earth’s sky, comet C/2014 Q2 (Lovejoy), which arrived early in 2015.

Comet C/2014 Q2 (Lovejoy) is one of more than 32 comets imaged by NASA's NEOWISE mission from December 2013 to December 2014. This image of comet Lovejoy combines a series of observations made in November 2013, when comet Lovejoy was 1.7 astronomical units from the sun. (An astronomical unit is the distance between Earth and the sun.)  The image spans half of one degree. It shows the comet moving in a mostly west and slightly south direction. (North is 26 degrees to the right of up in the image, and west is 26 degrees downward from directly right.) The red color is caused by the strong signal in the NEOWISE 4.6-micron wavelength detector, owing to a combination of gas and dust in the comet's coma.
Comet C/2014 Q2 (Lovejoy) is one of more than 32 comets imaged by NASA’s NEOWISE mission from December 2013 to December 2014. This image of comet Lovejoy combines a series of observations made in November 2013 when comet Lovejoy was 1.7 astronomical units from the sun. (An astronomical unit is a distance between Earth and the sun.)
The image spans half of one degree. It shows the comet moving in a mostly west and slightly south direction. (North is 26 degrees to the right of up in the image, and west is 26 degrees downward from directly right.) The red color is caused by the strong signal in the NEOWISE 4.6-micron wavelength detector, owing to a combination of gas and dust in the comet’s coma.

No word from NASA on the future of NEOWISE, but we do need a spacecraft monitoring the skies near Earth for potentially hazardous objects on a full-time basis. Hopefully, they can rework this spacecraft’s mission, once again, and put NEOWISE on guard protecting the planet for decades to come.

You can find more information on NASA’s NEOWISE here.

You can find a chart of comet Lovejoy’s progress during the month here.

You can find more information on NASA’s mission to catalog all near-Earth objects here.

Read about calculating orbits of asteroids within the Main Asteroid Belt

Read about Celestron’s Ultima Duo Eyepieces

Read about an earth-sized exoplanet discovered orbiting within the habitable zone of its home sun

Calculating Orbits of Asteroids in the Main Asteroid Belt

The International Astronomical Search Campaign

The International Astronomical Search Campaign is looking for astronomy leaders of tomorrow
The International Astronomical Search Campaign is looking for astronomy leaders of tomorrow

Space news (astronomy leaders of tomorrow: The International Astronomical Search Campaign)

An asteroid is a piece of solid rock with an irregular body ranging in size between 500 meters and hundreds of kilometers. The majority of these bodies can be found in the main asteroid belt, a region of space between Mars and Jupiter. Pieces of rocky material left over from the formation of the solar system over 4.6 billion years ago, NASA scientists estimate there are as many as 40,000 asteroids contained within this main asteroid belt, with a combined mass less than the Moon. Confirming the identity and calculating the orbit of the asteroids contained within this belt is part of the space mission of NASA’s Wide-Field Infrared Survey Explorer (WISE).

The IASC plans and campaigns are expected to drive the human journey to the beginning of space and time forward
The IASC plans and campaigns are expected to drive the human journey to the beginning of space and time forward

The International Astronomical Search Campaign (IASC) is an educational outreach program created to allow high school and college students around the country to participate in identifying and calculating the orbit of every rocky body within the main asteroid belt. Originally created and developed by Patrick Miller of Hardin-Simmons University in the state of Texas, this program has helped tens of thousands of students in 250 schools and 25 countries on five continents learn more about astronomy.

Students can help determine the identify and orbit of asteroids in the main asteroid belt
Students can help determine the identity and orbit of asteroids in the main asteroid belt

Students participating in the program download images taken of an asteroid within the main asteroid belt in the last few hours by telescopes (24 and 32 inches) located in the Astronomical Institute in Illinois. Students must determine the identity and calculate the three-dimensional orbit of an asteroid using Astrometrica, a software package users need to download directly from the IASC website, within a three-day window.

The telescopes take three images of an asteroid at six-minute intervals,  which means it would have moved around five pixels in relation to distant background stars in each image. Astrometrica highlights objects in each image fitting these criteria by putting a red circle around them.

In order to determine an object is an asteroid, students must sort through objects that have moved in the images, and ones that are static. They do this by taking a look at the fit of the point spread function, the signal-to-noise ratio, and any change in the size of an object in the images. If an object has moved in a relatively straight line, stayed about the same size, has a signal-to-noise ratio greater than five, and is approximately round in shape, then it’s probably an asteroid.

Join the human journey to the beginning of space and time today!

A typical International Astronomical Search Campaign lasts about 45 days, during which new asteroids are often discovered, identified, and their orbits determined. This is your chance to become an astronomy leader of tomorrow, by participating in the International Astronomical Search Campaign, and WISE’s mission to identify and calculate the orbit of every rocky body in the main asteroid belt.

You can find more information and news on the space mission of NASA’s WISE spacecraft here.

You can find more on the current campaigns of the International Astronomical Search Campaign here.

Schools desiring to take part in the International Astronomical Search Campaign contact the IASC Director, Dr. J. Patrick Miller by email at:
iascsearch@hsutx.edu.

Read about Rosetta preparing to make history

Read about the first earth size world discovered orbiting within the life zone of a star

Read about 715 new planets discovered by the Kepler Mission

WISE Shows us Infrared Views of Time and Space

The Sculptor Galaxy heats up

 

 

WISE uses four infrared detectors to view the Sculptor Galaxy

Wise takes us to the Sculptor Galaxy NGC 253 

Astronomy News – In the next leg of the human “Journey to the Beginning of Space and Time” we travel 11.4 million light years, give or take a few hundred thousand, to the Sculptor Galaxy NGC 253 (the Silver Coin Galaxy) to view an infrared mosaic of images taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Part of the Sculptor group of galaxies (South Polar Group), the 7.6 magnitude Silver Coin Galaxy has infant stars in duty cocoons heating up the galaxies core and broadcasting infrared light into the universe and is the brightest member of the Sculptor group of galaxies. Young emerging stars in the infrared images shown here are concentrated in the galaxies core and along the spiral arms. The green areas are tiny dust or soot particles left after the formation of these emerging stars that have absorbed the ultraviolet light from these young stars, which makes these particles glow with infrared light the four infrared detectors on WISE can detect. The blue image on the top was taken in the short wavelengths, about 3.4 and 4.6 microns, this photo has stars of all ages scattered all over the Sculptor Galaxy. 
 
NGC 253 is considered a starburst galaxy, and an intermediary type of spiral galaxy, with stars forming and exploding at unusually high rates in an intense star-forming period. First recorded by Caroline Herschel, the sister of astronomer William Herschel, on September 23, 1783, the Sculptor Galaxy can best be seen in the Sculptor constellation in the southern night sky in late September by stargazers using a time-machine-to-the-stars. Stargazers with good eyes and a dark sky can even view NGC 253 during this time, just be prepared to spend a little time in the search for the Silver Coin Galaxy.
 

Wise continues to go forth into the unknown

Check out my newest astronomy blog at http://astronomytonight.yolasite.com/.
This is why they call NGC 253 the Silver Coin Galaxy

Learn why astronomy binoculars are a popular choice with amateur astronomers

Read about the Anasazi Indians

Read about astronomers viewing a supernova they think might have given birth to a black hole