X-ray Light Source CX330 Detected in Bulge of Milky Way

Most isolated young star discovered launching jets of material into surrounding gas and dust

An unusual celestial object called CX330 was first detected as a source of X-ray light in 2009. It has been launching “jets” of material into the gas and dust around it. Credits: NASA/JPL-Caltech
An unusual celestial object called CX330 was first detected as a source of X-ray light in 2009. It has been launching “jets” of material into the gas and dust around it.
Credits: NASA/JPL-Caltech

Space news (astrophysics: massive, young stars in star-forming regions; unusual, isolated young star baffles astronomers) – approximately 27,000 light-years from Earth in an isolated region of the bulge of the Milky Way – 

704250main_chandra-telescope_full
NASA’s Chandra X-ray Observatory first detected unusual stellar object CX330. Credits: NASA/Chandra

Astronomers surveying the universe looking for unusual celestial objects to study to add to human knowledge and understanding have found something they haven’t seen before. Unusual celestial object CX 330 was first noticed in data obtained during a survey of the bulge of the Milky Way in 2009 by NASA’s Chandra X-ray Observatory as a source of X-ray light. Additional observations of the source showed it also emitted light in optical wavelengths, but with so few clues to go on, astronomers had no idea what they were looking at. 

During more recent observations of CX 330 during August of 2015, astronomers discovered it had recently been active, launching jets of material into gas and dust surrounding it. During a period from 2007 to 2010, it had increased in brightness by hundreds of times, which made scientists curious to examine previous data obtained from the same region of the bulge. 

Using the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist's concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception. Credits: NASA/Spitzer
Using the unique orbit of NASA’s Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist’s concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception. Credits: NASA/Spitzer

Looking at data obtained by NASA’s Wide-field Infrared Survey Explorer (WISE) in 2010, they realized the surrounding gas and dust was heated to the point of ionization.  Comparing this data to observations taken with NASA’s Spitzer Space Telescope in 2007, astronomers determined they were looking at a young star in an outburst phase, forming in an isolated region of the cosmos.

cbritt
Chris Britta Credits: Texas Tech University

“We tried various interpretations for it, and the only one that makes sense is that this rapidly growing young star is forming in the middle of nowhere,” said Chris Britta postdoctoral researcher at Texas Tech University in Lubbock, and lead author of a study on CX330 recently published in the Monthly Notices of the Royal Astronomical Society.

By combining this data with observations taken by a variety of both ground and space-based telescopes they were able to get an even clearer picture of CX330. An object very similar to FU Orionis, but likely more massive, compact, and hotter, and lying in a less populated region of space. Launched faster jets of outflow that heated a surrounding disk of gas and dust to the point of ionization, and increased the flow of material falling onto the star.

tom_maccarone
Tom Maccarone Credits: Texas Tech University

“The disk has probably heated to the point where the gas in the disk has become ionized, leading to a rapid increase in how fast the material falls onto the star,” said Thomas Maccarone, study co-author and associate professor at Texas Tech.

The fact CX 330 lies in an isolated region of space, unlike the previous nine examples of this type of star observed during the human journey to the beginning of space and time, tweaks the interest of astronomers. The other nine examples all lie in star-forming regions of the Milky Way galaxy with ample material for new stars to form from, but the closest star-forming region to this young star is over 1,000 light-years away.

Joel Green Credits: NASA/Space Telescope Science Institute
Joel Green Credits: NASA/Space Telescope Science Institute

“CX330 is both more intense and more isolated than any of these young outbursting objects that we’ve ever seen,” said Joel Green, study co-author and researcher at the Space Telescope Science Institute in Baltimore. “This could be the tip of the iceberg — these objects may be everywhere.”

We really know nothing about CX 330. More observations are required to determine more. It’s possible all young stars go through a similar outburst period as observed in the case of CX 330. The periods are just too brief in cosmological time for astronomers to observe with current technology. The real clue’s the isolation of this example as compared to previous models. 

How did CX 330 become so isolated? One idea often floated is the possibility it formed in a star-forming region, before being ejected to a more isolated region of space. This seems unlikely considering astronomers believe this young star’s only about a million years old. Even if this age’s wrong, this star’s still consuming its surrounding disk of dust and gas and must have formed near its current location. It just couldn’t have traveled the required distance from a star-forming region to its current location, without completely stripping away its surrounding disk of gas and dust. 

Astronomers are learning more about the formation of stars studying CX 330, that’s for sure. Using two competing ideas, called “hierarchical” and “competitive” models, scientists search for answers to unanswered questions concerning CX 330. At this point, they favor the chaotic and turbulent environment of the “hierarchical” model, as a better fit for the theoretical formation of a lone star.

What’s next?

It’s still possible material exists nearby CX 330, such as intermediate to low-mass stars, that astronomers haven’t observed, yet.  When last viewed in August 2015, this young star was still in an outburst phase. During future observations planned with new telescopes in different wavelengths, we could get a better picture of events surrounding this unusual celestial object. Stay tuned to this channel for more information.

For people wondering if planets could form around this young star? Some astronomers are hoping planets will form from the disk of CX 330, they’ll be able to examine closer for the chemical signature of the scars left by the outbursts observed. Unfortunately, at the rate this star’s consuming its surrounding disk of gas and dust, having enough left over for the formation of planets seems unlikely. 

“You said you like it hot, right!” If CX 330’s a really massive star, which seems likely. It’s short, violent lifespan would be a truly hot time for any planet and inhabitants. 

Help NASA discover and classify young planetary systems by becoming a Disk Detective.

Read about China’s recent rejoining of the human journey to the beginning of space and time.

Read about Japan’s new X-ray satellite Hitomi.

For more information on the travel plans to CX 330, contact NASA.

Learn more about NASA’s Wide-field Infrared Survey Explorer (WISE) here.

Discover NASA’s Chandra X-ray Observatory.

For more information of NASA’s Spitzer Space Telescope visit.

Learn more about the work being done by NASA’s Jet Propulsion Laboratory.

Discover astronomy at Texas Tech University.

Discover the Space Telescope Science Institute.

 

Advertisements

Initial Atmospheric Study of Two Earth-Sized Exoplanets

Data shows at least one of two exoplanets studied orbits within the habitable zone of host red dwarf star in system TRAPPIST-1

This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)
This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)

Space news (the search for Earth 2.0: the first atmospheric study of Earth-sized exoplanets; TRAPPIST-1 system) – searching for possible atmospheres surrounding exoplanets TRAPPIST-1b and TRAPPIST-1c 40 light-years from Earth toward the constellation Aquarius – 

This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

Astronomers using the Hubble Space Telescope to search for suitable exoplanets to act as a cradle for a new human genesis recently sampled the atmospheres of two exoplanets orbiting a red dwarf star 40 light-years from Earth. They used Hubble’s Wide Field Camera 3 to observe TRAPPIST-1b and TRAPPIST-1c in near-infrared wavelengths to look for signs of an atmosphere. They discovered these two exoplanets probably don’t have the fluffy, hydrogen-dominated atmospheres found around larger, gaseous exoplanets.  

This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.
This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.

The image seen at the top of the page is an artist’s portrayal of TRAPPIST-1b and 1c, two Earth-sized exoplanets shown passing in front of their host red dwarf star. Astronomers used the Hubble Space Telescope to look for hints of atmospheres surrounding these distant worlds and detected signs increasing the chances of habitability.  

This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in colour.
This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in color. Credit: ESO

“The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.” 

Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis' work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope
Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis’ work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope

Julien de Wit of the Massachusetts Institute of Technology in Cambridge and a team of astronomers used spectroscopy to decipher the light, revealing clues to the chemical composition of an atmosphere surrounding these candidates. By taking advantage of a rare double-transit of both exoplanets across the face of their host star, they collected starlight passing through any gas envelope surrounding these exoplanets. This event only occurs every two years, but it allowed for a simultaneous measurement of atmospheric characteristics. The exact composition’s still a mystery at this point, further observations are required to determine more clues. This is an exciting and promising start. 

This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

“These initial Hubble observations are a promising first step in learning more about these nearby worlds, whether they could be rocky like Earth, and whether they could sustain life,” says Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington. “This is an exciting time for NASA and exoplanet research.” 

Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.
Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.

Estimates put the age of the host red dwarf star at around 500 million years, which is young for a star with a potential lifespan of trillions of years. Red dwarf stars burn a lot cooler, but completely consume their supply of hydrogen, unlike more massive types of stars. The most common star in the cosmos, astronomers think 20 out of 30 near-Earth suns could be red dwarfs. The numbers indicate searching nearby red dwarfs for an exoplanet with the right ingredients for habitability is a good place to begin our search. 

Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, "For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”
Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, “For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”

The team and other astronomers plan on making follow-up measurements of these two exoplanets using the Hubble Space Telescope, the Kepler Space Telescope, the TRAPPIST telescope at ESO’s La Silla Observatory, and other assets to look for thinner gas layers containing heavier atoms than hydrogen as in Earth’s atmosphere.  

“With more data, we could perhaps detect methane or see water features in the atmospheres, which would give us estimates of the depth of the atmospheres,” said Hannah Wakeford, the paper’s second author, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

AAEAAQAAAAAAAAb9AAAAJGFjNDRlNjYzLWFjYWYtNDU5NC05MTdkLWViYmEzNzJmZmE3ZA
Hannah Wakeford. Credits: Linked

Toward the future

In the years ahead, using assets like NASA’s James Webb Space Telescope, astronomers should be able to determine the exact composition of any atmospheres surrounding these exoplanets and others. Finding the signatures of water vapor and methane, or even carbon dioxide and ozone is a significant step toward possible habitability for lifeforms. The power of Webb should also allow planetary scientists to measure the surface and atmospheric temperature and pressure of each exoplanet. Both key factors to determining if these exoplanets orbiting red dwarf TRAPPIST-1 are possible cradles for the genesis of life. 

“Thanks to several giant telescopes currently under construction, including ESO’s E-ELT and the NASA/ESA/CSA James Webb Space Telescope due to launch for 2018, we will soon be able to study the atmospheric composition of these planets and to explore them first for water, then for traces of biological activity. That’s a giant step in the search for life in the Universe,” says Julien de Wit. 

Julien De Witt: Credits: Linked
Julien De Witt: Credits: Linked

“These Earth-sized planets are the first worlds that astronomers can study in detail with current and planned telescopes to determine whether they are suitable for life,” said de Wit. “Hubble has the facility to play the central atmospheric pre-screening role to tell astronomers which of these Earth-sized planets are prime candidates for more detailed study with the Webb telescope.” 

Read about a recent discovery about supermassive black holes changing current theories.

Read and learn about the new space technology being developed.

Read about the first observation of a supernova shockwave.

Read the official study here.

Check out NASA’s interactive exploration of the Exoplanet Zoo.

Learn more about NASA’s plans for the James Webb Space Telescope

Take the space journey of NASA here

Discover the Hubble Space Telescope. 

Read more about NASA’s plans for K2

Voyage across the cosmos on board the telescopes of the ESA here

Learn more about astronomy at the Massachusetts Institute of Technology

Read and learn more about TRAPPIST-1 and its planets here

Learn more about plans for the ESA’s E-ELT

Discover more about the work of NASA’s Space Telescope Science Institute here

Learn about the outstanding work being done by NASA’s Science Mission Directorate

Take a tour of NASA’s Goddard Space Flight Center here

 

The Search for Life Beyond Earth Takes a Turn at Jupiter

Astronomers view water geysers on Europa

This artists conception of vapour plumes possibly containing water and organic material
This artist’s conception of vapour plumes possibly containing water and organic material

Astronomy news (2013-12-22) – Galileo might have dreamed of unseen life forms existing in a watery soup under the icy surface of Europa when he first discovered Jupiter had moons on January 07, 1610. NASA astronomers working with the Hubble Space Telescope probably had similar thoughts when they recently saw images of what appears to be water geysers erupting from the south pole of Europa. The image above shows an artist’s conception of what astronomers and scientists believe is plumes of water vapour reaching over 100 miles into space from the south pole of Europa.

Are there life forms or maybe just organic material of some type existing on this watery moon? NASA astronomers, space scientists and interested people around the world are hoping this news will spur NASA officials and congress to provide them with the resources they need to fund the Europa Clipper (a NASA mission designed to travel to Europa to see if the conditions required for life exist).

“If there’s a geyser 200 kilometers tall, and you could fly a spacecraft through it and sample the water coming out from Europa, that would be phenomenal. What if there are organics in it? That’s getting to the question of ‘Are we alone in the universe?’ ” said John Grunsfeld, NASA’s top official for space science. “A subsurface ocean at Europa potentially provides all conditions for microbial life — at least life we know,” says study lead author Lorenz Roth, a planetary scientist at the Southwest Research Institute in San Antonio, Texas.

Astronomers believe Europa's "Great Lake" is thought to be one of many in the shallow regions of the moon's icy exterior
Astronomers believe Europa’s “Great Lake” is just one of many in the shallow regions of the moon’s icy exterior

Astronomers are currently taking a look at earlier data concerning Europa provided by the Voyager probes during the 1980s and Galileo spacecraft during the 1990s to see if they missed something. Astronomers and planetary scientists suspected back in the 1980s, when they first obtained the data from the Voyager probes, that Europa could have an ocean of water beneath its icy crust deeper and more massive than all of the oceans of Earth. The Galileo spacecraft also detected the magnetic signature of a subsurface ocean beneath the surface ice of Europa and brown regions on the ice planetary scientists think could be due to ice crystals containing possible organic material, formed from water vapor plumes like the ones recently viewed, being deposited on the surface of the moon.

Astronomers search for water near the south pole of Europa by looking for the presence of both hydrogen and oxygen
Astronomers search for water near the south pole of Europa by looking for the presence of both hydrogen and oxygen

Astronomers are also comparing this data to more recent information concerning Europa, they obtained last year through the repaired Hubble Space Telescope, to see if they can find the telltale signature of hydrogen and oxygen they’re looking for in the data. Water is composed of hydrogen and oxygen and this signature will help astronomers and planetary scientists determine if plumes of water vapour are in fact coming from Europa’s southern hemisphere.

“As it hit the vacuum of space, the water would flash freeze and some of it would turn into water vapour. Those water molecules would be split into atomic hydrogen and oxygen in the harsh radiation environment of the Jupiter system. But it wouldn’t just be water in the plume: Whatever else was in that ocean would be squirted into space, too, said James Green, head of NASA’s planetary science division. For a planetary scientist, it’s huge,” Green said of the news.

The image above shows spikes in hydrogen and oxygen levels in two southern hemisphere regions on Europa’s surface that last for brief periods of about seven hours and coincide with the moon reaching its farthest point from Jupiter in its orbit. Astronomers and planetary scientists think current computer models suggest the images obtained through the Hubble Space Telescope could show plumes of water vapour over a hundred miles high streaming into space from the surface of Europa. It remains puzzling to astronomers and scientists why the water vapour plumes seem to coincide with Europa reaching its apocenter, since this is the moment when tidal forces on the moon are at a low point (Astronomers estimate these tidal forces can be over 1,000 times stronger than the tidal forces our own moon experiences due to Earth). Current ideas include the thought that maybe the surface cracks on Europa’s southern pole open once Jupiter’s gravity starts to lessen, allowing water vapour to squeeze out in jets reaching over a hundred miles into space.

The colored area here is called Thera Macula, a region below the icy exterior of Europa that appears to be in chaos
The coloured area here is called Thera Macula, a region below the icy exterior of Europa that appears to be in chaos

Astronomers and planetary scientists at NASA suggest Europa’s plumes are probably like geysers they found on Saturn’s moon Enceladus, which also seem to appear when the moon reaches its apocenter. They’re excited about this discovery because Europa is only about half as far from Earth than Enceladus, which will allow the Hubble Space Telescope to have a closer look, this time. They hope to be able to use this fact to confirm the discovery of water on Europa and Enceladus and possibly get some quantitative data on the size, density, composition and timing of the plumes. Analysis of the composition of the plumes should also give them the data they need to model the interior of the moon, without having to land on the surface and drill holes.

Visible are plains of bright ice, cracks that run to the horizon, and dark patches that likely contain both ice and dirt
Visible on the surface of Europa are plains of bright ice, cracks that run to the horizon, and dark patches that likely contain both ice and dirt

The implications of the discovery of water on both Enceladus and Europa is stunning to contemplate for human beings, astronomers, and planetary scientists. We believe the human journey to the beginning of space and time should voyage to both of these moons in the future to determine if the ingredients for life exist on these distant bodies. We need to do this for science, mankind and future generations of humanity.

This image shows a crack in the icy exterior of Europa, through which vapour could escape into space
This image shows a crack in the icy exterior of Europa, through which vapour could escape into space

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc. in Washington operates STScI for NASA.

To view the images of the evidence for plumes visit:

http://www.nasa.gov/content/goddard/hubble-europa-water-vapor

For more information about the Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

Watch this YouTube video on astronomers thoughts on the possibility of an ocean beneath the crust of Europa https://www.youtube.com/watch?v=RrjY2BKm-TA.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion