NASA’s Chandra X-ray Observatory Views Blast from Material Falling into Supermassive Black Hole at Center of Galaxy Pictor A

Powerful beams of radiation continually shooting across 300,000 light-years of spacetime

This new composite image of the beam of particles was obtained by combining X-ray data (blue) from NASA’s Chandra X-ray Observatory at various times over a fifteen year period and radio data from the Australian Telescope Compact Array (Red). Astronomers gain understanding and knowledge of the true nature of these amazing jets by studying and analyzing details of the structure of X-ray and radio data obtained.
Image credit: NASA/JPL/Chandra

Image caption: This new composite image of the beam of particles was obtained by combining X-ray data (blue) from NASA's Chandra X-ray Observatory at various times over a fifteen year period and radio data from the Australian Telescope Compact Array (Red). Astronomers gain understanding and knowledge of the true nature of these amazing jets by studying and analyzing details of the structure of X-ray and radio data obtained. Image credit: NASA/JPL/Chandra

Space news (February 25, 2016) – 500 million light-years away in the constellation Pictor –

The stunning Chandra X-ray image of radio galaxy Pictor A seen here shows an amazing jet that reminds one of the death rays from Star Wars emanating from a black hole in the center of the galaxy. The “Death Star” as portrayed in the Star Wars movie Star Wars: Episode IV A New Hope was capable of totally destroying a planet using powerful beams of radiation. In just the same any planet finding itself in the direct path of the 300,000 light-years long, continuous jet emanating from the supermassive black hole in the center of a galaxy is toast.

Astronomers think the stunning jet observed is produced by huge amounts of gravitational energy released as material swirls toward the pointofnoreturn in the gravity well of the supermassive black hole at its center the event horizon. These jets are an enormous beam of particles traveling at nearly the speed of light into the vastness of intergalactic space scientists call relativistic jets. 

Astronomers also report additional data confirming the existence of another jet pointing in the opposite direction to the jet seen in this image that they call a counter jet. Data had previously pointed to the existence of a counter jet and the latest Chandra data obtained confirmed this. Unfortunately, due to the motion of this opposite jet away from the line-of-sight to Earth, it’s very faint and hard for even Chandra to observe. 

Image caption: The labeled image seen here shows the location of the supermassive black hole and both jet and counter jet. The radio lobe label is where the jet pushes into surrounding gas and hotspot produced by shock waves near the tip of the jet. Image credit: NASA/JPL?ESA
The labeled image seen here shows the location of the supermassive black hole and both jet and counter-jet. The radio lobe label is where the jet pushes into surrounding gas and hotspot produced by shock waves near the tip of the jet.
Image credit: NASA/JPL?ESA

Current theories and computer simulations indicate the continuous X-ray emissions observed by Chandra could be produced by electrons spiraling around magnetic field lines in a process astronomers call synchrotron emission. They’re still trying to figure out how electrons could be continuously accelerated as they travel the length of the jet. But plan additional observations in the future to obtain more data to help develop new theories and computer simulations to explain this. 

Watch this YouTube video on Pictor A.

We’ll update you on any new developments and theories on jets emanating from supermassive black holes at the center of nearby galaxies as they’re developed.

You can learn more about jets emanating from supermassive black holes here.

Follow the journey of the Chandra X-ray Observatory here.

Learn more about relativistic jets here.

Read about astronomers recent discovery that superstar binaries like Eta Carinae are more common than first thought.

Read about the Nebra Sky Disk, a 3,600-year-old bronze disk, archaeoastronomers believe is the oldest known astronomical clock ever discovered.

Read and observe the hydrocarbon dunes of Saturn’s moon Titan.

Advertisements

Spiral Galaxy NGC 4845

A flat and dust-filled disk orbiting a bright galactic bulge

Image credit: NASA/ESA/Hubble
Deep within the dusty center of spiral galaxy NGC 4845, hides a monster with hundreds of thousands of times the mass of our sun. Image credit: NASA/ESA/Hubble

Space news (February 20, 2016) – over 65 million light-years away in the constellation Virgo (The Virgin) –

This startling Hubble Space Telescope image of spiral galaxy NGC 4845 highlights its spiral structure but hides a monster. Deep within the center astronomers have detected a supermassive black hole, estimated to be in the hundreds of thousands of times the mass of Sol. 

By following the movements of the innermost stars of NGC 4845, astronomers were able to determine they orbit around the center of the galaxy at a velocity indicating the presence of a supermassive black hole. 

Scientists previously used the same method to discover the presence of the supermassive black hole at the center of the Milky Way – Sagittarius A*. The Monster of the Milky Way has a mass around 4 million times that of our sun, which is slightly bigger than the supermassive black hole at the center of NGC 4845.

Astronomers also discovered the supermassive black hole deep within the center of NGC 4845 is a hungry monster that devours anything that falls too far into its gravity well. In 2013 astronomers studying a different island universe, noticed a violent flare erupting from the center of NGC 4845. 

Astronomers discovered an object many times the mass of Jupiter had fallen into the gravity well of this monster and was devoured. The violent flare erupting from the center of NGC 4845 was the death throes of a brown dwarf or large planet as it was being torn apart and drawn deeper into the gravity well of the supermassive black hole.

Learn more about supermassive black holes here.

Learn more about NGC 4845 here.

Learn more about the ESA.

Take the journey of NASA.

Learn more about the Monster of the Milky Way – Sagittarius A.

Learn more about the formation of new stars.

Read about astronomers recent observation of something Einstein predicted, but until now we have never observed, gravitational waves.

Learn about private firm Planetary Resources plans to mine an asteroid within the next decade.

Astronomers Discover Disks Surrounding Supermassive Black Holes Emit X-ray Flares when Corona is Ejected

But why is the Corona ejected?

Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.
Astronomers believe high energy particles, the corona, of supermassive black holes can create the massive X-ray flares viewed. Image credit. Jet Propulsion Laboratory.

Space news (November 02, 2015) – 

Bizarre and mysterious stellar objects, studying black holes keeps astronomers up all night. One of the more puzzling mysteries of these unique objects are gigantic flares of X-rays (relativistic jets) detected erupting from disks of hot, glowing dust surrounding them. X-ray flares astronomers are presently studying in order to better understand these enigmatic, yet strangely attractive stellar objects.

Astronomers observing supermassive black holes using NASA’s Swift spacecraft and Nuclear Spectroscopic Telescope Array (NuSTAR) recently caught one in the middle of a gigantic X-ray flare. After analysis, they discovered this particular flare appeared to be a result of the Corona surrounding the supermassive black hole – region of highly energetic particlesbeing launched into space. A result making scientists and astronomers rethink their theories on how relativistic jets are created and sustained.

This result suggests to scientists that supermassive black holes emit X-ray flares when highly energized particles (Coronas) are launched away from the black hole. In this particular case, X-ray flares traveling at 20 percent of the speed of light, and directly pointing toward Earth. The ejection of the Corona caused the X-ray light emitted to brighten a little in an effect called relativistic Doppler boosting. This slightly brighter X-ray light has a different spectrum due to the motion of the Corona, which helped astronomers detect this unusual phenomenon leaving the disk of dust and gas surrounding this supermassive black hole.

This is the first time we have been able to link the launching of the Corona to a flare,” said Dan Wilkins of Saint Mary’s University in Halifax, Canada, lead author of a new paper on the results appearing in the Monthly Notices of the Royal Astronomical Society. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.

Astronomers currently propose two different scenarios for the source of coronas surrounding supermassive black holes. The “lamppost” scenario indicates coronas are analogous to light bulbs sitting above and below the supermassive black hole along its axis of rotation. This idea proposes coronas surrounding supermassive black holes are spread randomly as a large cloud or a “sandwich” that envelopes the disk of dust and material surrounding the black hole. Some astronomers think coronas surrounding supermassive black holes could alternate between both the lamppost and sandwich configurations.

The latest data seems to lean toward the “lamppost” scenario and gives us clues to how the coronas surrounding black holes move. More observations are needed to ascertain additional facts concerning this unusual phenomenon and how massive X-ray flares and gamma rays emitted by supermassive black holes are created.

Something very strange happened in 2007, when Mrk 335 faded by a factor of 30. What we have found is that it continues to erupt in flares but has not reached the brightness levels and stability seen before,” said Luigi Gallo, the principal investigator for the project at Saint Mary’s University. Another co-author, Dirk Grupe of Morehead State University in Kentucky, has been using Swift to regularly monitor the black hole since 2007.

The Corona gathered inward at first and then launched upwards like a jet,” said Wilkins. “We still don’t know how jets in black holes form, but it’s an exciting possibility that this black hole’s Corona was beginning to form the base of a jet before it collapsed.”

The nature of the energetic source of X-rays we call the Corona is mysterious, but now with the ability to see dramatic changes like this we are getting clues about its size and structure,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena, who was not affiliated with the study.

Study continues

Astronomers will now continue their study of supermassive black holes in the cosmos in order to remove the veil of mystery surrounding the X-ray flares they emit and other bizarre mysteries surrounding these enigmatic stellar objects. In particular, they would love to discover the reasons for the ejection of Coronas surrounding black holes.

You can learn more about black holes here.

Discover the Swift spacecraft here.

Take the voyage of NASA’s NuSTAR spacecraft here.

Take part in NASA’s mission to the stars here.

Read about ripples in the spacetime astronomers detected moving across the planet-making region of AU Microscopii.

Learn more about climatic collisions between galaxy clusters.

Read about NASA and its partners plans to travel to Mars for an extended stay in the next few decades.

The Monster of the Milky Way Comes to Life

Erupting X-ray flares every day, a ten-fold increase in bright flares from previous observations of Sagittarius A

h-817-sgra_3paneld
Astronomers believe the ten-fold increase in X-ray flares during the past year could be connected to the passage of a mysterious object designated G2 near the supermassive black hole (Image credit NASA and ESO

Space news (October 01, 2015) – 26,000 light-years from Earth, near the center of the Milky Way

NASA's Chandra X-ray Observatory is part of a new breed of star hunting telescopes.
NASA’s Chandra X-ray Observatory is part of a new breed of star hunting telescopes.

Astrophysicists combining the telescopic talents of NASA’s Chandra X-ray Observatory and Swift spacecraft, with the European Space Agency’s X-ray Space Observatory XMM-Newton, recently detected an increase in X-ray flares erupting from the supermassive black hole (Sagittarius A) at the center of the Milky Way.

NASA's Swift Gamma Ray Burst Explorer scans the universe looking for gamma ray bursts.
NASA’s Swift Gamma Ray Burst Explorer scans the universe looking for gamma ray bursts.

By analyzing data collected during extensive periods of monitoring by all three spacecraft, space scientists determined the Monster of the Milky Way – the supermassive black hole at the center with more than 4 million times the mass of Sol– has been more active during the past 15 years than first thought. 

An artists impression of the ESO's Newton XMM-Newton telescope.
An artists impression of the ESO’s Newton XMM-Newton telescope.

Erupting a bright X-ray flare every ten days, the Monster of the Milky Way has been eating hot gas falling into its gravity pool. Even more interesting, Sagittarius A during the past year has been erupting ten times as much, producing a bright X-ray flare every day. A discovery that has astrophysicists going over the data looking for a reason for the sudden increase. 

“For several years, we’ve been tracking the X-ray emission from Sgr A*. This includes also the close passage of this dusty object” said Gabriele Ponti of the Max Planck Institute for Extraterrestrial Physics in Germany. “A year or so ago, we thought it had absolutely no effect on Sgr A*, but our new data raise the possibility that that might not be the case.”

The mystery started late in 2013, as G2 passed close to the supermassive black hole. At this time, there wasn’t any apparent change in G2 as it approached Sagittarius A, other than being slightly stretched by the gravity pool of the black hole.

Originally astronomers thought G2 was a stretched cloud of gas and dust, but this finding has led scientists to the possibility it could be a dense body embedded in a dusty cocoon. Currently, there’s no consensus among astronomers on the identity of this mysterious object. But the recent ten-fold increase in X-ray flares as G2 passed near the supermassive black hole suggests there could be a connection of some kind. 

“There isn’t universal agreement on what G2 is,” said Mark Morris of the University of California at Los Angeles. “However, the fact that Sgr A* became more active not long after G2 passed by suggests that the matter coming off of G2 might have caused an increase in the black hole’s feeding rate.”

At this point, astronomers don’t know if the increase in X-ray flares from the supermassive black hole is common or unusual in nature. These emissions could be part of the normal life cycle of supermassive black holes and totally unrelated to the passage of G2. The ten-fold increase in X-ray flares could also be due to changing solar winds from nearby massive stars feeding gas and dust into the black hole.

What’s next?

Scientists will keep observing Sagittarius A over the next little while to see what pops up next in this mystery. Hopefully, they can shed some light on the reason the Monster of the Milky Way, suddenly started emitting X-ray flares once a day.  

“It’s too soon to say for sure, but we will be keeping X-ray eyes on Sgr A* in the coming months,” said co-author Barbara De Marco, also of Max Planck. “Hopefully, new observations will tell us whether G2 is responsible for the changed behavior or if the new flaring is just part of how the black hole behaves.”

Read about plans of private firm Planetary Resources, Inc. to mine a near-Earth asteroid in the next decade or less.

Learn more about a magnetar astronomers believe is orbiting extremely close to the supermassive black hole at the center of the Milky Way, Sagittarius A.

Discover the Butterfly Nebula or Twin Jet Nebula.

You can learn more about NASA’s Chandra X-ray Observatory here.

Learn more about the discoveries made by NASA’s Swift spacecraft here.

Discover the European Space Agency’s X-ray Space Observatory XMM-Newton here.

Learn more about the Monster of the Milky Way: Sagittarius A here.

Discover NASA’s mission to the stars here.

Take part in the European Space Agency’s mission to the stars here.

Watch this Nova video on the Monster of the Milky Way.

Magnetar Extremely Close to Supermassive Black Hole at Center of Milky Way

Exhibiting a higher surface temperature and slower decrease in the rate of x-rays emitted than previous neutron stars detected during the human journey to the beginning of space and time

The x-ray image here taken by the Chandra X-ray Observatory shows a view of the region surrounding the supermassive black hole thought to exist at the center of the Milky Way. The red, green and blue seen in the main image are low, medium and high-energy x-rays respectively. The inset image to the left was taken between 2005 and 2008, when the magnetar wasn't detected. The image to the right was taken in 2013, when the neutron star appeared as the bright x-ray source viewed.
The x-ray image here taken by the Chandra X-ray Observatory shows a view of the region surrounding the supermassive black hole thought to exist at the center of the Milky Way. The red, green and blue seen in the main image are low, medium and high-energy x-rays respectively. The inset image to the left was taken between 2005 and 2008, when the magnetar wasn’t detected. The image to the right was taken in 2013, when the neutron star appeared as the bright x-ray source viewed.

Space news (August 15, 2015) –

Space scientists working with NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory in 2013 discovered a magnetar dangerously close to the supermassive black hole (Sagittarius A) thought to exist at the center of the Milky Way. At a distance of around 0.3 light-years or 2 trillion miles from the 4-million-solar mass black hole, the neutron star (called SGR 1745-2900) detected is likely orbiting slowly into the gravitational pool of the supermassive black hole. One day, far in the future, the two will merge during an event likely spectacular and unfathomable to both the scientist and layperson.

For the last two years, NASA and European space agency scientists have been monitoring SGR 1745-2900, and have discovered its acting unlike any magnetar discovered during the human journey to the beginning of space and time.

The rate of X-rays emitted by the magnetar is decreasing slower than other neutron stars viewed and its surface temperature is higher. Facts that are making astrophysicists rethink their theories on neutron stars and develop new ideas to explain how this happens.

Could the close proximity of the supermassive black hole Sagittarius A be the cause?

Considering the extreme distance between the supermassive black hole and magnetar, astrophysicists don’t think this could be the reason for the slower decrease in X-ray emissions and higher surface temperature of SGR 1745-2900. At the distance of 2 trillion miles, they believe the magnetar is too far away for the gravity and magnetic fields of the two to interact enough for this to occur.

The current model developed by astrophysicists to explain the unexpected slower rate of X-ray emissions and higher surface temperature of SGR 1745-2900 involves “starquakes”. Seismic waves astrophysicists think are more energetic than a 23rd magnitude earthquake on Earth, scientists found the starquake model doesn’t explain the slow decrease in X-ray brightness and the higher surface temperature detected.

To explain the new data obtained through study using the Chandra X-ray Observatory NASA astrophysicists have suggested a new model. The bombardment of the surface of SGR 1745-2900 by charged particles trapped within magnetic fields above its surface could add enough heat to account for the higher surface temperature and account for the slower decrease in X-ray emissions.

Study continues

NASA scientists will now continue their study of magnetar SGR 1745-2900 as it orbits Sagittarius A looking for clues to verify their new model. Study and understanding of this and other magnetars will provide clues to the events that occurred during the earliest moments of the universe. Events that can tell us more about the universe we reside in and the true nature of spacetime.

You can learn more about supermassive black holes here.

Read and learn more about magnetars here.

You can read about and follow NASA’s mission to the stars here.

Read about some of the discoveries made by NASA’s New Horizons spacecraft during its visit to Pluto.

Learn more about the human search for Earth 2.0.

Learn about and take part in the search for near-Earth objects space scientists indicate could be a problem in the future.

Hubble Survey Links Galaxy Mergers with Presence of Active Galactic Nuclei

That are thought to be the result of huge volumes of heated matter circling around and being consumed by a supermassive black hole

Astrophysicists have wondered since discovering relativistic jets what could power such an awesome display of power. Space scientists using the Hubble Space Telescope just completed the largest survey ever conducted on this question. What they found might surprize you?
Astrophysicists have wondered since discovering relativistic jets what could power such an awesome display of power. Space scientists using the Hubble Space Telescope just completed the largest survey ever conducted on this question. What they found might surprise you?

Space news (August 12, 2015) – Astrophysics; studying galaxies with extremely luminous centers looking for clues to high-speed, radio-signal-emitting jets extending thousands of light-years into space

NASA space scientists working with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope think they have found a possible link between galaxy mergers and the presence of active galactic nuclei (AGN).

With a
With a “panchromatic” grasp of light extending from the ultraviolet through the visible and into the infrared, is an extremely powerful imaging instrument, extending Hubble’s capabilities by seeing deeper into the universe. WFC3 is viewed as an important bridge to the infrared observations that will be carried out with the James Webb Space Telescope (JWST) following its launch in 2013.

“The galaxies that host these relativistic jets give out large amounts of radiation at radio wavelengths,” explains Marco.“By using Hubble’s WFC3 camera we found that almost all of the galaxies with large amounts of radio emission, implying the presence of jets, were associated with mergers. However, it was not only the galaxies containing jets that showed evidence of mergers!”

Active galactic nuclei refer to the luminous center of a small percentage of galaxies viewed during the human journey to the beginning of space and time. Luminous centers space scientists often detect emitting two high-speed jets of plasma in opposite directions at right angles to the disk of matter surrounding the supermassive black hole believed to exist near the center of these galaxies. Powerful, radio-signal-emitting jets astrophysicists call relativistic jets they think could be powered by huge volumes of heated matter circling around and eventually being consumed by the supermassive black hole. Heated matter astrophysicists think could have been provided by the chaos of a recent merger with another galaxy.

How did they conduct the study?

NASA astrophysicists studied a large selection of galaxies with extremely luminous centers looking for signs of a recent merger with another galaxy. Data from several different additional studies was used to enhance the data set. Space scientists in this study looked at five different types of galaxies; two types with relativistic jets, two with luminous cores but no jets, and a set of regular inactive galaxies. 

What did they find?

Galactic Wrecks Far from Earth: These images from NASA's Hubble Space Telescope's ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)
Galactic Wrecks Far from Earth: These images from NASA’s Hubble Space Telescope’s ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)

They found a large percentage of the galaxies viewed showed evidence of mergers with other galaxies, including all those with extremely luminous centers. They also found that a very small percentage of galaxies viewed formed AGNs with powerful radio emissions and even less relativistic jets extending thousands of light-years into space.

“We found that most merger events in themselves do not actually result in the creation of AGNs with powerful radio emission,” added co-author Roberto Gilli from Osservatorio Astronomico di Bologna, Italy. “About 40% of the other galaxies we looked at had also experienced a merger and yet had failed to produce the spectacular radio emissions and jets of their counterparts.”

What’s next?

Astrophysicists looking at the data provided through this survey of galaxies with AGNs believe it could be necessary for galaxies to merge to produce a host supermassive black hole with relativistic jets. They also think additional parameters need to exist for the merger to result in this spectacular and awe-inspiring sight. Possibly the result of two black holes of similar mass merging could power these high-speed jets viewed during the human journey to the beginning of space and time as excess energy is extracted from the black hole’s rotational energy is added to the mix.

“There are two ways in which mergers are likely to affect the central black hole. The first would be an increase in the amount of gas being driven towards the galaxy’s centre, adding mass to both the black hole and the disc of matter around it,” explains Colin Norman, co-author of the paper. “But this process should affect black holes in all merging galaxies, and yet not all merging galaxies with black holes end up with jets, so it is not enough to explain how these jets come about. The other possibility is that a merger between two massive galaxies causes two black holes of a similar mass to also merge. It could be that a particular breed of merger between two black holes produces a single spinning supermassive black hole, accounting for the production of jets.”

What’s next?

Astrophysicists and space scientists will now use both the Hubble Space Telescope and the Atacama Large Millimeter/Submillimeter Array (ALMA) to expand the search for additional galaxies with extremely luminous centers. This will enhance the survey and provide more data on additional parameters to help shed light on galaxies with AGNs. For now, we can only say it appears galaxies viewed exhibiting relativistic jets have merged with other galaxies.

Atacama Large Millimeter/Submillimeter Array (ALMA) to
Atacama Large Millimeter/Submillimeter Array (ALMA)

Learn more about NASA’s mission to the stars here.

Explore NASA’s Hubble Space Telescope here.

Learn more about the current search for life beyond Earth

Discover NASA’s New Horizons Mission to Pluto and moon Charon.

Read about NASA’s search for materials with the right stuff to help enable the human journey to the beginning of space and time.

Turbulence Could be a Reason Some Galaxy Clusters Don’t Form Huge Numbers of Stars

Turbulence created by supermassive black holes near the center of galaxies within galaxy clusters could be the culprit 

Chandra observations of the Perseus and Virgo galaxy clusters suggest turbulence may be preventing hot gas there from cooling, addressing a long-standing question of galaxy clusters do not form large numbers of stars. Image Credit: NASA/CXC/Stanford/I. Zhuravleva et al
Chandra observations of the Perseus and Virgo galaxy clusters suggest turbulence may be preventing hot gas there from cooling, addressing a long-standing question of galaxy clusters do not form large numbers of stars.
Image Credit: NASA/CXC/Stanford/I. Zhuravleva et al

Space news ( December 18, 2014) Deep within the Perseus and Virgo galaxy clusters – 

NASA astronomers studying the birth and death of stars in huge galaxy clusters recently viewed the Perseus and Virgo galaxy clusters, using the Chandra X-ray Observatory, looking for clues to the mystery surrounding the lack of stars in these galaxy clusters.

The Chandra X-ray Observatory (formerly the Advanced X-ray Astrophysics Facility, or AXAF) was built around a high-resolution grazing incidence X-ray telescope which will make astrophysical observations in the 0.09 to 10.0 keV energy range.
The Chandra X-ray Observatory (formerly the Advanced X-ray Astrophysics Facility, or AXAF) was built around a high-resolution grazing incidence X-ray telescope which will make astrophysical observations in the 0.09 to 10.0 keV energy range.

Space scientists believe clues suggest turbulence within Perseus and Virgo could be a cause of the lack of stars seen during our journey. Turbulence which could be preventing hot gas within these behemoths from cooling and ultimately forming more stars.

The hot gasses within Perseus and Virgo are believed to be one of the heaviest components of these galaxy clusters. Over a long period of time, the hot gasses near the centers of these galaxy clusters should cool to the point where stars form at an amazing rate, according to the latest theories.  But this picture isn’t the one NASA astronomers are seeing during our journey, though, and this has them wondering and searching for answers.

“We knew that somehow the gas in clusters is being heated to prevent it cooling and forming stars. The question was exactly how,” said Irina Zhuravleva of Stanford University in Palo Alto, California, who led the study that appears in the latest online issue of the journal Nature. “We think we may have found evidence that the heat is channeled from turbulent motions, which we identify from signatures recorded in X-ray images.”

What’s causing turbulence within Perseus and Virgo?

Space scientists have previously recorded data indicating supermassive black holes, believed to be located near the center of large galaxies in the middle of galaxy clusters, jet huge quantities of energetic particles into the surrounding hot gas.

Powerful jets that space scientists believe create giant cavities in the hot gas and transfer energy that generates turbulence, which then disperses keeping the gas hot for billions of years.

“Any gas motions from the turbulence will eventually decay, releasing their energy to the gas,” said co-author Eugene Churazov of the Max Planck Institute for Astrophysics in Munich, Germany. “But the gas won’t cool if turbulence is strong enough and generated often enough.”

What is next for space scientists?

Space scientists newest data indicates this scenario appears to have unfolded within the Perseus and Virgo galaxy clusters.

“Our work gives us an estimate of how much turbulence is generated in these clusters,” said Alexander Schekochihin of the University of Oxford in the United Kingdom. “From what we’ve determined so far, there’s enough turbulence to balance the cooling of the gas.

Some space scientists involved in the study think there could be other forces at work creating turbulence, interactions between galaxies within galaxy clusters could also be a major factor.

Evidence appears to support a “feedback” model involving black holes near the center of galaxies within the Perseus and Virgo galaxy clusters.

Space scientists need to collect more data on each galaxy cluster to estimate the turbulence in the hot gas better. This will give them a better picture of what’s really going on and why galaxy clusters don’t form large numbers of stars?

You can view an interactive image, podcast, and video with more information concerning this research here.

You can find more information on the Chandra X-Ray Space Telescope here.

For more information on NASA’s Chandra space mission visit here.

Learn more about Neptune-size exoplanets.

Learn about NEOWISE’s one year mission.

Learn more about life during the first days of the universe.