Initial Atmospheric Study of Two Earth-Sized Exoplanets

Data shows at least one of two exoplanets studied orbits within the habitable zone of host red dwarf star in system TRAPPIST-1

This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)
This illustration shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. Credit: NASA/ESA/J. de Wit (MIT)/G. Bacon (STScI)

Space news (the search for Earth 2.0: the first atmospheric study of Earth-sized exoplanets; TRAPPIST-1 system) – searching for possible atmospheres surrounding exoplanets TRAPPIST-1b and TRAPPIST-1c 40 light-years from Earth toward the constellation Aquarius – 

This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and are the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

Astronomers using the Hubble Space Telescope to search for suitable exoplanets to act as a cradle for a new human genesis recently sampled the atmospheres of two exoplanets orbiting a red dwarf star 40 light-years from Earth. They used Hubble’s Wide Field Camera 3 to observe TRAPPIST-1b and TRAPPIST-1c in near-infrared wavelengths to look for signs of an atmosphere. They discovered these two exoplanets probably don’t have the fluffy, hydrogen-dominated atmospheres found around larger, gaseous exoplanets.  

This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.
This chart shows the naked eye stars visible on a clear dark night in the sprawling constellation of Aquarius (The Water Carrier). The position of the faint and very red ultracool dwarf star TRAPPIST-1 is marked. Although it is relatively close to the Sun it is very faint and not visible in small telescopes.

The image seen at the top of the page is an artist’s portrayal of TRAPPIST-1b and 1c, two Earth-sized exoplanets shown passing in front of their host red dwarf star. Astronomers used the Hubble Space Telescope to look for hints of atmospheres surrounding these distant worlds and detected signs increasing the chances of habitability.  

This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in colour.
This picture shows the Sun and the ultracool dwarf star TRAPPIST-1 to scale. The faint star has only 11% of the diameter of the sun and is much redder in color. Credit: ESO

“The lack of a smothering hydrogen-helium envelope increases the chances for habitability on these planets,” said team member Nikole Lewis of the Space Telescope Science Institute (STScI) in Baltimore. “If they had a significant hydrogen-helium envelope, there is no chance that either one of them could potentially support life because the dense atmosphere would act like a greenhouse.” 

Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis' work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope
Dr. Lewis is an expert in the area of exoplanet atmospheric characterization. Her work focuses on the interplay of dynamical, radiative, and chemical processes (including cloud formation) in exoplanet atmospheres. She has successfully bridged the gap between theory and observation through her pioneering work with Spitzer Space Telescope exoplanet observations and the development of general circulation models for a number of giant exoplanets. Dr. Lewis’ work at the Space Telescope Science Institute focuses on enabling transiting exoplanet observations with the James Webb Space Telescope

Julien de Wit of the Massachusetts Institute of Technology in Cambridge and a team of astronomers used spectroscopy to decipher the light, revealing clues to the chemical composition of an atmosphere surrounding these candidates. By taking advantage of a rare double-transit of both exoplanets across the face of their host star, they collected starlight passing through any gas envelope surrounding these exoplanets. This event only occurs every two years, but it allowed for a simultaneous measurement of atmospheric characteristics. The exact composition’s still a mystery at this point, further observations are required to determine more clues. This is an exciting and promising start. 

This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.
This artist’s impression shows an imagined view of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. These worlds have sizes and temperatures similar to those of Venus and Earth and may be the best targets found so far for the search for life outside the Solar System. They are the first planets ever discovered around such a tiny and dim star. In this view one of the inner planets is seen in transit across the disc of its tiny and dim parent star.

“These initial Hubble observations are a promising first step in learning more about these nearby worlds, whether they could be rocky like Earth, and whether they could sustain life,” says Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington. “This is an exciting time for NASA and exoplanet research.” 

Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.
Mr. Geoffrey L. Yoder is currently the acting Associate Administrator for the Science Mission Directorate.

Estimates put the age of the host red dwarf star at around 500 million years, which is young for a star with a potential lifespan of trillions of years. Red dwarf stars burn a lot cooler, but completely consume their supply of hydrogen, unlike more massive types of stars. The most common star in the cosmos, astronomers think 20 out of 30 near-Earth suns could be red dwarfs. The numbers indicate searching nearby red dwarfs for an exoplanet with the right ingredients for habitability is a good place to begin our search. 

Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, "For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”
Dr. Susan Lederer stands next to the UKIRT Telescope located on Mauna Kea on the island of Hawai’i, which was used to confirm the existence of the newly discovered exoplanets and constrain their orbital periods. Says Lederer, “For such a small, cool, star giving off so much of its light in the infrared, the UKIRT telescope, designed solely for infrared observations, was ideally suited for confirming the existence of these Earth-sized planets.”

The team and other astronomers plan on making follow-up measurements of these two exoplanets using the Hubble Space Telescope, the Kepler Space Telescope, the TRAPPIST telescope at ESO’s La Silla Observatory, and other assets to look for thinner gas layers containing heavier atoms than hydrogen as in Earth’s atmosphere.  

“With more data, we could perhaps detect methane or see water features in the atmospheres, which would give us estimates of the depth of the atmospheres,” said Hannah Wakeford, the paper’s second author, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

AAEAAQAAAAAAAAb9AAAAJGFjNDRlNjYzLWFjYWYtNDU5NC05MTdkLWViYmEzNzJmZmE3ZA
Hannah Wakeford. Credits: Linked

Toward the future

In the years ahead, using assets like NASA’s James Webb Space Telescope, astronomers should be able to determine the exact composition of any atmospheres surrounding these exoplanets and others. Finding the signatures of water vapor and methane, or even carbon dioxide and ozone is a significant step toward possible habitability for lifeforms. The power of Webb should also allow planetary scientists to measure the surface and atmospheric temperature and pressure of each exoplanet. Both key factors to determining if these exoplanets orbiting red dwarf TRAPPIST-1 are possible cradles for the genesis of life. 

“Thanks to several giant telescopes currently under construction, including ESO’s E-ELT and the NASA/ESA/CSA James Webb Space Telescope due to launch for 2018, we will soon be able to study the atmospheric composition of these planets and to explore them first for water, then for traces of biological activity. That’s a giant step in the search for life in the Universe,” says Julien de Wit. 

Julien De Witt: Credits: Linked
Julien De Witt: Credits: Linked

“These Earth-sized planets are the first worlds that astronomers can study in detail with current and planned telescopes to determine whether they are suitable for life,” said de Wit. “Hubble has the facility to play the central atmospheric pre-screening role to tell astronomers which of these Earth-sized planets are prime candidates for more detailed study with the Webb telescope.” 

Read about a recent discovery about supermassive black holes changing current theories.

Read and learn about the new space technology being developed.

Read about the first observation of a supernova shockwave.

Read the official study here.

Check out NASA’s interactive exploration of the Exoplanet Zoo.

Learn more about NASA’s plans for the James Webb Space Telescope

Take the space journey of NASA here

Discover the Hubble Space Telescope. 

Read more about NASA’s plans for K2

Voyage across the cosmos on board the telescopes of the ESA here

Learn more about astronomy at the Massachusetts Institute of Technology

Read and learn more about TRAPPIST-1 and its planets here

Learn more about plans for the ESA’s E-ELT

Discover more about the work of NASA’s Space Telescope Science Institute here

Learn about the outstanding work being done by NASA’s Science Mission Directorate

Take a tour of NASA’s Goddard Space Flight Center here

 

Astronomers Use to Think Red Dwarf Stars Only Exhibited Major Stellar Flares for a Period of a Day Maximum

Until NASA’s Swift Gamma-ray Burst Space Observatory detected a sequence of seven stellar flares over 10,000 times more powerful than the biggest ever recorded erupting from a red dwarf star in the binary system DG CVn 

DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger
DG CVn, a binary consisting of two red dwarf stars shown here in an artist’s rendering, unleashed a series of powerful flares seen by NASA’s Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions.
Image Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

Space news ( Oct. 30, 2014) – astrophysics: gamma-ray bursts; seven of the most intense, powerful gamma-ray bursts ever detected –

NASA space scientists operating NASA’s Swift Gamma-ray Burst Space Observatory detected a sequence of seven of the most intense, powerful, and long-lasting stellar flares ever seen at 5:07 p.m EDT on April 23, 2014. You can watch a video of the event here. They believe the gamma-rays detected are from stellar flares erupting from the surface of one of a pair of red dwarf stars 60 light-years away in the binary star system DG Canum Venaticorum (DG CVn). They are currently scratching their heads and rethinking theories on the intensity, power, and length of time of major stellar flaring episodes exhibited by red dwarf stars.

“For about three minutes after the BAT trigger, the superflare’s X-ray brightness was greater than the combined luminosity of both stars at all wavelengths under normal conditions,” noted Goddard’s Adam Kowalski, who is leading a detailed study on the event. “Flares this large from red dwarfs are exceedingly rare.”

“We used to think major flaring episodes from red dwarfs lasted no more than a day, but Swift detected at least seven powerful eruptions over a period of about two weeks,” said Stephen Drake, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who gave a presentation on the “superflare” at the August meeting of the American Astronomical Society’s High Energy Astrophysics Division. “This was a very complex event.”

At peak power and intensity, space scientist Rachael Osten of the Space Telescope Institute and Stephen Drake of NASA’s Goddard Space Flight Center indicate this sequence of stellar flares reached 360 million degrees Fahrenheit (200 million Celsius), which is over 12 times hotter than the center of our own sun. Currently, they’re trying to figure out which of the pair of red dwarf stars is the source of the sequence of seven stellar flares they observed.

Space scientists indicate the problem is the pair of red dwarf suns in this binary star system are only about three times the distance apart as the average distance of Earth from the sun. This is too close for instruments to determine which red dwarf star is the culprit in this case.

“This system is poorly studied because it wasn’t on our watch list of stars capable of producing large flares,” said Rachel Osten, an astronomer at the Space Telescope Science Institute in Baltimore and a deputy project scientist for NASA’s James Webb Space Telescope, now under construction. “We had no idea DG CVn had this in it.”

What’s next?

NASA space scientists will now turn their attention to stars within 100 light-years of DG DVn. The majority of these suns are middle-aged, like our own sun, but there are over a thousand young red dwarf stars drifting through this region of space. Studying red dwarf suns of the same age as DG CVn (around 30 million years) will allow the best opportunity to observe similar stellar flares as the seven seen recently. They also plan to keep an eye on DG CVn using the Swift Gamma-ray Burst Explorer in case it unleashes similar stellar flares in the future.

For more information on the Swift Gamma-ray Burst Explorer visit.

You can find more information on NASA and red dwarf stars here.

Read about things NASA’s Messenger spacecraft has told us about Mercury

Learn about the birth of a black hole

Learn about ancient Irish astronomers

 

Earth-size Planet Discovered Orbiting Within Habitable Zone of Star

Earth-sized planets could be more common than we first assumed

This artists conception of Kepler-186f is elegant, but still imagination at work
This artist’s conception of Kepler-186f is elegant, but still imagination at work

Space news (astrophysics: exoplanets; Kepler-186f )

NASA astronomers working with the Kepler Space Telescope have discovered the first Earth-sized planet orbiting within the ‘habitable zone’ of its host star. Kepler-186f, as its name implies, is in the Kepler-186 star system, around 500 light-years from Sol in the constellation Cygnus. A discovery that implies planets the size of Earth, residing within their host star’s habitable zone, could be more common than we first thought.

Space scientists believe there’s a good chance Kepler-186f is a rocky planet, similar in many ways to the Earth. The fact it resides within the habitable zone implies liquid water could exist on the surface of this planet and possibly life based on the same principles as on Earth. The M dwarf, or red dwarf, sun it orbits is a common star making up about 70 percent of the suns in our home galaxy and is only half the volume and mass of Sol. This star is also orbited by four other planets, according to the latest information, but this number could change as more data is obtained.

“The discovery of Kepler-186f is a significant step toward finding worlds like our planet Earth,” said Paul Hertz, NASA’s Astrophysics Division director at the agency’s headquarters in Washington. “Future NASA missions, like the Transiting Exoplanet Survey Satellite and the James Webb Space Telescope, will discover the nearest rocky exoplanets and determine their composition and atmospheric conditions, continuing humankind’s quest to find truly Earth-like worlds.”

NASA astronomers have no idea, yet, what Kepler-186f is made of, or even its mass. They’ll now focus more instruments and time to look into some of these facts, and hopefully, soon we’ll know a lot more about this possible twin-Earth.

“We know of just one planet where life exists — Earth. When we search for life outside our solar system we focus on finding planets with characteristics that mimic that of Earth,” said Elisa Quintana, a research scientist at the SETI Institute at NASA’s Ames Research Center in Moffett Field, Calif., and lead author of the paper published today in the journal Science. “Finding a habitable zone planet comparable to Earth in size is a major step forward.”

Earth-size planets are more familiar to scientists than the larger planets discovered lying within the habitable zone of their host stars. It will be easier to understand the data they obtain concerning Kepler-186f, and hopefully, this translates into a better picture of the planet.

M dwarfs are the most numerous stars,” said Quintana. “The first signs of other life in the galaxy may well come from planets orbiting an M dwarf.”

What would a day on Kepler-186f be like? This planet is near the outer boundary of its host star’s habitable zone, which results in it receiving about 30 percent of the energy Earth gets from Sol. Viewed from the surface of the planet at high noon, the host star would only be as bright as Sol an hour before sunset. A day on Kepler-186f isn’t going to be a walk in the park on a sunny day.

“Being in the habitable zone does not mean we know this planet is habitable. The temperature on the planet is strongly dependent on what kind of atmosphere the planet has,” said Thomas Barclay, a research scientist at the Bay Area Environmental Research Institute at Ames, and co-author of the paper. “Kepler-186f can be thought of as an Earth-cousin rather than an Earth-twin. It has many properties that resemble Earth.”

What’s next for the team?

The next step for NASA astronomers is to find Earth-size planets that are a true twin for Earth, which will be a day to remember. Determining the chemical composition of any planets found will be an exciting time for both astronomers and humankind. A planet with a similar chemical composition to Earth would open up eyes and change the prospect of the possibility of alien life in the galaxy and universe.

It would truly be something to experience.

What is the possibility of alien life existing in the universe? Read “The Possibility of Intelligent Lifeforms Existing in the Universe”.

What has Kepler discovered lately? Read “Kepler Mission Introduces 715 New Planets

Read about “The Search for Life Beyond Earth Takes a Turn at Jupiter

Watch this YouTube video on Kepler-186f