NASA’s Backyard Worlds: Planet 9 Needs Your Help to Spot Rogue Worlds Between Neptune and Proxima Centauri

By spotting moving objects in brief movies made from images captured by NASA’s Wide-field Infrared Survey Explorer (WISE)

NASA's looking for a few citizen scientists to help search for unidentified planets beyond Neptune and out to Alpha Centauri way. Credits : NASA/JPL/Goddard Studios
NASA’s looking for a few citizen scientists to help search for unidentified planets beyond Neptune and out to Alpha Centauri way. Credits: NASA/JPL/Goddard Studios

Space news (Astrophysics: The search for nearby planets; Backyard Worlds: Planet 9) – the outer reaches of our solar system beyond Neptune and neighboring interstellar space –

NASA’s Backyard Worlds: Planet 9 invites you to join the human journey to the beginning of space and time by helping astronomers search for undiscovered worlds on the outer fringes of our solar system and wandering in nearby interstellar space. Just by viewing brief movies created by using images taken by NASA’s Wide-field Infrared Survey Explorer (WISE) and then picking out moving objects in the frames. You can help find interesting things for scientists to study further and you might even get your name on any scientific papers written on the subject. Watch this NASA video on the new website

“There are just over four light-years between Neptune and Proxima Centauri, the nearest star, and much of this vast territory is unexplored,” said lead researcher Marc Kuchner, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Because there’s so little sunlight, even large objects in that region barely shine in visible light. But by looking in the infrared, WISE may have imaged objects we otherwise would have missed.”

Marc Kuchner, for Astronomy Magazine
Credits: NASA/Goddard Studios/Marc Kuchner, for Astronomy Magazine

WISE is just one of many repurposed, retasked spacecraft working beyond the years’ designers and engineers first proposed for their space mission. After being told to stand down in 2011, our intrepid space explorer was reassigned a new mission by NASA in 2013, to identify hazardous near-Earth asteroids and comets. They also gave the old space horse a new name, the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE).

A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving orange dot (upper left) in this loop of WISE images spanning five years. By viewing movies like this, anyone can help discover more of these objects. Credits: NASA/WISE
A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving orange dot (upper left) in this loop of WISE images spanning five years. By viewing movies like this, anyone can help discover more of these objects.
Credits: NASA/WISE

People deciding to join the human journey to the beginning of space and time through this invitation search for unknown objects beyond Neptune using data provided by NEOWISE. You’ll be looking for asteroids and comets possibly on a collision course with Earth. You could also discover the fabled Planet X or a brown dwarf star too faint to be seen in nearby interstellar space, like the brown dwarf star called WISE 0855-0714.

“Brown dwarfs form like stars but evolve like planets, and the coldest ones are much like Jupiter,” said team member Jackie Faherty, an astronomer at the American Museum of Natural History in New York. “By using Backyard Worlds: Planet 9, the public can help us discover more of these strange rogue worlds.”

Jackie Faherty, Senior Scientist/Senior Education Manager at American Museum of Natural History Credits: Linked
Jackie Faherty, Senior Scientist/Senior Education Manager at American Museum of Natural History Credits: Linked

You might be wondering what your tired eyes can do to help NASA scientists? Objects closer to the solar system move across the sky at different rates, unlike ones further away. The most efficient way to search for them is by systematically looking for moving objects in NEOWISE data. Computers are normally used for this job, but human eyes are often better at picking out important moving objects among all the other things on the screen. 

Watch short animations

On Backyard Worlds: Planet 9, millions of people from around the world watch millions of short animations showing how a small patch of the sky has changed over many years. Any important moving objects noticed can be flagged by astronomers for further study. The discoverer could even be given credit in scientific papers written on the subject. This is your chance to join the human journey to the beginning of space and time and get noticed.

“Backyard Worlds: Planet 9 has the potential to unlock once-in-a-century discoveries, and it’s exciting to think they could be spotted first by a citizen scientist,” said team member Aaron Meisner, a postdoctoral researcher at the University of California, Berkeley, who specializes in analyzing WISE images.

Learn about NASA’s engineers testing a prototype asteroid capture system ARM astronauts could use to capture a boulder from the surface of a near-Earth asteroid in the near future.

Read about NASA’s successor to the Curiosity rover, the Mars 2020 rover, and its updated plans.

Become a NASA Disk Detective and help classify young planetary systems.

Join Backyard Worlds: Planet 9.

Learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Discover NEOWISE.

Learn more about the discoveries and work of WISE.

WISE Infrared All-Sky Survey Reveals Millions of Supermassive Black Hole Candidates

Plus nearly a thousand extremely bright, dusty objects nicknamed hot DOGS 

With its all-sky infrared survey, NASA's Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes "feed" off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles. Image credit: NASA/JPL-Caltech/UCLA
With its all-sky infrared survey, NASA’s Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes “feed” off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles.
Image credit: NASA/JPL-Caltech/UCLA

Space news (All-sky surveys: infrared; candidate supermassive black holes and dust-obscured galaxies) – The visible universe – 

Astronomers working with data provided by an infrared survey of the visible sky conducted by NASA’s Wide-field Infrared Survey Explorer (WISE) have identified millions of new candidates for the quasar section in the Galaxy Zoo. All-sky images taken by WISE revealed around 2.5 million candidate supermassive black holes actively feeding on material, some over 10 billion light-years away. They also pinpointed nearly a 1,000 very bright, extremely dusty objects nicknamed hot DOGS believed to be among the brightest galaxies discovered during the human journey to the beginning of space and time.

The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist's concept of the WISE satellite superimposed. Image credit: NASA/JPL-Caltech/UCLA
The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist’s concept of the WISE satellite superimposed.
Image credit: NASA/JPL-Caltech/UCLA

“These dusty, cataclysmically forming galaxies are so rare WISE had to scan the entire sky to find them,” said Peter Eisenhardt, lead author of the paper on the first of these bright, dusty galaxies, and project scientist for WISE at JPL. “We are also seeing evidence that these record setters may have formed their black holes before the bulk of their stars. The ‘eggs’ may have come before the ‘chickens.” 

Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST
Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST

“WISE has exposed a menagerie of hidden objects,” said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. “We’ve found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust.” 

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view. Image credit: NASA/ESA
This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.
Image credit: NASA/ESA

Astronomers detected Trojan asteroid TK7 in October 2010 in images of the sky taken by NASA’s WISE, before verifying its existence on optical images taken by the Canada-France-Hawaii Telescope. Additional study and computer modeling indicate Earth’s small dance partner should stay in a safe orbit for the next 10,000 years at least.  

This zoomed-in view of a portion of the all-sky survey from NASA's Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE's infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars. The circular inset images, obtained with NASA's Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen. Image credit: NASA/JPL-Caltech/UCLA/STScI
This zoomed-in view of a portion of the all-sky survey from NASA’s Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE’s infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars.
The circular inset images, obtained with NASA’s Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen.
Image credit: NASA/JPL-Caltech/UCLA/STScI

In March 2014 astronomers studying infrared images taken by WISE announced the discovery of around 3,500 new stars lying within 500 light-years of Earth. At the same time, they searched the data looking for evidence of Planet X, or Nemesis, the mythical planet some believe to exist somewhere beyond the orbit of Pluto. Scientists analyzed millions of infrared images taken by WISE out to a distance well beyond the orbit of our former ninth planet. They didn’t detect any objects the size of a planet out to a distance of around 25,000 times the distance between the Earth and Sol. Many times beyond the orbit of Pluto. No Planet X was found. 

NASA's Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or "hot DOGs," are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy. Image credit: NASA/JPL-Caltech/UCLA
NASA’s Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or “hot DOGs,” are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy.
Image credit: NASA/JPL-Caltech/UCLA

The vast majority of the latest candidates for the Galaxy Zoo are objects previously undetected by astronomers due to dust blocking visible light. Fortunately, the infrared eyes of WISE detected glowing dust around the candidates, which allowed scientists to detect them. These latest findings are clues astronomers use to better understand the processes creating galaxies and the monster black holes residing in their centers

This image zooms in on the region around the first "hot DOG" (red object in magenta circle), discovered by NASA's Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun. WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles). Image credit: NASA/JPL-Caltech/UCLA
This image zooms in on the region around the first “hot DOG” (red object in magenta circle), discovered by NASA’s Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun.
WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles).
Image credit: NASA/JPL-Caltech/UCLA

“We’ve got the black holes cornered,” said Daniel Stern of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., lead author of the WISE black hole study and project scientist for another NASA black-hole mission, the Nuclear Spectroscopic Telescope Array (NuSTAR). “WISE is finding them across the full sky, while NuSTAR is giving us an entirely new look at their high-energy X-ray light and learning what makes them tick.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Organizing the Monster Zoo

The Monster of the Milky Way, the estimated 4 million solar mass black hole astronomers believe resides at the center, periodically feeds upon material falling too deep into its gravity well, and heats up surrounding disks of dust and gas. Astronomers have even witnessed 1 billion solar mass monster black holes change their surrounding environments enough to shut down star formation processes in their host galaxy. Now, astronomers need to go through the millions of candidates and put them in the correct section of the zoo. We might even need to open a few new sections to accommodate unusual candidates found during a closer examination.  

You can learn more about supermassive black holes here

Watch this YouTube video about the Monster of the Milky Way

Tour NASA’s Jet Propulsion Laboratory here

Journey across the x-ray universe aboard NASA’s WISE

Learn everything NASA has learned during its journey. 

Learn more about the mission of NASA’s Nuclear Spectroscopic Telescopic Array (NuStar). 

Read more about Quasars

Learn more about dust-obscured galaxies (hot DOGS) here

Learn more about Trojan asteroid TK7

Learn more about the Canada-France-Hawaii Telescope

Learn more about How Astronomers Study the Formation of Stars.

Read more about a Wolf-Rayet star astronomers have nicknamed Nasty 1.

Read about the next-generation telescope the Giant Magellan Telescope.

To be a Planet, or Not to be a Planet?

Astronomers are constantly rethinking old theories and designing new ones to fit new ideas

Astronomy News – astrophysics: planets; the number and type of planets

Count the planets in the solar system and make an assessment of their various sizes and distances from Sol and the Earth as you leave on your “Journey to the Beginning of Space and Time”. You’ll find that the line between planet and smaller planetoids, like asteroids and meteorites, has yet to be firmly set in place in the astronomy books, and in the universe.

We were all taught during our school indoctrination of nine planets circling Sol at varying distances. Mercury and Venus lie closest to Sol, with the Earth, Mars, Jupiter, and Saturn residing at greater distances from Sol, while Uranus, Neptune, and disputed Pluto orbit at the greatest distance on average as compared to the other planets. Millions of school and reference books, thousands of articles, and countless periodicals also include references to Pluto being officially recognized as the ninth planet in the solar system. The publishers of these publications will be calling for a rewrite of all of this material and the history books will have to be changed if some astronomers and space scientists have their way.

Planet X came spinning into the view of Caltech astronomer Michael Brown on July 29, 2005 and changed the way astronomers and star gazers think about Pluto and the definition of a planet. An icy, Kuiper Belt resident Michael named after Xena the warrior goddess of the famed television series, at least until the International Astronomical Union speaks on this matter, Planet x orbits Sol at a distance nearly twice as great as Pluto’s. Planet X’s 560-year orbit is also inclined to the ecliptic by nearly twice as much as Pluto’s, which results in Planet X being closer to Sol than Pluto during its orbit, at times.

Planet X is still a bit of an enigma to astronomers

Astronomy takes you to the Kuiper Belt
The largest Kuiper Belt objects compared

How much bigger is Planet X than Pluto? Astronomers have measured the brightness and distance of Planet X from Sol, as compared to objects of known brightness in the solar system. Based on their data and calculations, astronomers believe Planet X to be bigger than Pluto, but just how much bigger has yet to be firmly etched in stone by the various astronomical societies and agencies tasked with determining if Planet X is indeed bigger than Pluto and by how much. This fuzzy-news has pushed Pluto into tenth place in the nine planet race in the solar system and into second place in the size ranking of the objects in the Kuiper Belt and astronomers, and star gazers have only searched a small percentage of the Kuiper Belt for objects bigger than Pluto.

Will bigger objects than Planet X be discovered in the Kuiper Belt or somewhere on the outer fringes of the solar system? The first Kuiper Belt objects were viewed by star gazers and astronomers in the early 1990s, but since this time, larger and larger objects have been located in the Kuiper Belt. In 2002, an object half the size of Pluto was discovered floating in the Kuiper Belt, which astronomers named Quaoar. Just two years later, 2004DW and Sedna were discovered, each respectively two-thirds and three-quarters the size of Pluto. It wouldn’t be surprising, therefore, if star gazers and astronomers were to find an even larger object floating in the Kuiper Belt than Planet X at some point in the human “Journey to the Beginning of Space and Time”.

The definition of a planet has changed over the years

Hubble has given us our best views of Pluto, so far. This photo shows Charon as well.
Compare the various sizes of the planets as you pass by
A distance object at best, Pluto looks quiet and serene here

The Earth being round was old news to ancient astronomers

Read about China rejoining the human journey to the beginning of space and time

Are you looking for a great apochromatic refractor to keep you company on long nights during the winter?