Starburst Galaxy NGC 1569

Is bursting at its galactic seams, creating new stars at a rate more than 100 times faster than the Milky Way, due to gravitational interactions within its host galaxy group IC 342 

This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars over 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually  the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times further away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars.
This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). 

Space news (astrophysics: starburst galaxies; NGC 1569) – 11 million light-years away toward the constellation Camelopardalis (The Giraffe) – 

The Hubble Space Telescope image above reveals the chaotic, yet visually stunning core of starburst galaxy NGC 1569. A relatively small galaxy more recent calculations by astronomers show is actually 11 million light-years from Earth, which is one and half times further than previous distance estimates. This starburst galaxy is one of the brightest in galaxy group IC 342, which is just one of many groups of galaxies within the Virgo Supercluster and is located in the constellation of Camelopardalis (The Giraffe) in our night sky. 

ngc1569_hst_full
Grand spiral galaxies often seem to get all the glory, flaunting their young, bright, blue star clusters in beautiful, symmetric spiral arms. But small, irregular galaxies form stars too. In fact, as pictured here, dwarf galaxy NGC 1569 is apparently undergoing a burst of star-forming activity, thought to have begun over 25 million years ago. The resulting turbulent environment is fed by supernova explosions as the cosmic detonations spew out material and trigger further star formation. Two massive star clusters – youthful counterparts to globular star clusters in our own spiral Milky Way galaxy – are seen left of center in the gorgeous Hubble Space Telescope image. The picture spans about 1,500 light-years across NGC 1569. A mere 7 million light-years distant, this relatively close starburst galaxy offers astronomers an excellent opportunity to study stellar populations in rapidly evolving galaxies. NGC 1569 lies in the long-necked constellation Camelopardalis.

Look at the interior of NGC 1569 from different angles and the hues viewed seem to shift across its 5,000 light-year width. For almost 100 million years this starburst galaxy has created new stars at a rate over 100 times faster than our Milky Way. The core was a vigorous, hotbed of star formation bursting at the seams with new and old stars. It’s home to many super star clusters, three of which are visible in this image as brilliant blue clusters, each residing within a large cavity of gas carved out by successive supernovae of red giant supermassive stars. 

This image taken by NASA/ESA Hubble Space Telescope showcases the brilliant core of one of the most active galaxies in our local neighbourhood. The entire core is 5000 light-years wide. Credits: NASA/ESA/Hubble
This image taken by NASA/ESA Hubble Space Telescope showcases the brilliant core of one of the most active galaxies in our local neighbourhood. The entire core is 5000 light-years wide. Credits: NASA/ESA/Hubble

NGC 1569’s new location puts it smack in the middle of ten galaxies within IC 342 interacting gravitationally, which compressed gas floating among its stars until it collapsed, heated up and formed new stars. A process Hubble’s Wide Field Planetary Camera 2 and Advanced Camera for Surveys were able to observe in September 1999, November 2006, and January 2007. Observations allowing for the creation of this stunning, amazing image of a starburst galaxy at work.  

Take the space voyage of NASA across the universe.

You can learn more about starburst galaxies here

Join the human journey to the beginning of space and time aboard the Hubble Space Telescope

Read more about the Virgo Supercluster here

Learn more about the constellation Camelopardalis (The Giraffe)

Learn more about star birth in our universe here

Read and learn about the infrared echoes dancing around supernova remnant Cassiopeia A.

Learn more about the methods, techniques, and ways astronomers study the formation of new stars in the Milky Way.

Read and learn about traveling across the Tarantula Nebula on a runaway star.

 

A Lonely, Wandering Hermit of a Galaxy

Tells astronomers a thing or two about star birth throughout the cosmos 

A mysterious hermit
Credit: NASA/ESA/STScI

Space news (astrophysics: irregular dwarf galaxies; the formation of new stars) – a lonely, undefined looking galaxy an estimated 4.2 million light-years from Earth, approximately 2.3 million light-years from Leo A –  

sagdig_hst_big
The Sagittarius Dwarf Irregular Galaxy (SagDIG) is a metal-poor galaxy from the dawn of the cosmos. Almost as old as the universe, SagDIG is showing us things about the evolution of everything we see during our journey to the beginning of space and time. Spanning about 1,500 light-years, this ancient star wanderer is about 3.5 million light-years distant toward the constellation Sagittarius.

Astronomers think the chaotic, unusual looking smaller island universe seen in the Hubble Space Telescope image here hasn’t merged with any other galaxies lately. Classified as an irregular dwarf galaxy, UGC 4879 has no obvious form and lacks the magnificent whirl of a spiral galaxy or the coherence of an elliptical. Approximately 1.36 million parsecs from Earth this lonely, wandering hermit of a galaxy is showing astronomers new, interesting things about star birth in the universe

leoA_subaru_big
Irregular dwarf galaxy Leo A seen here has a much more complicated formation history than astronomers first thought. The simple structure astrophysicists were expecting isn’t what we see here. Instead, Leo A shows hints of an evolution just as chaotic and unpredictable as larger island universes. 

Spectral data of UGC 4879 indicates radial velocities for different sections of the galaxy, which could indicate the presence of a stellar disk. This lonely, isolated wanderer is studied closely and intensely by astronomers because of its history of few interactions with other galaxies. This isolation makes it less complicated to piece together its history of star birth and an ideal laboratory for study. 

ngc1569_hst_big
Dwarf irregular galaxy NGC 1569 seen here underwent a brief starburst period about 25 million years ago. Hidden within the chaos are monstrous, gigantic supermassive stars and envelopes of gas expelled by huge stars that recently went supernova. Only 11 million light-years away in the long-necked constellation Camelopardalis and spanning 8,000 light-years, the blue, white hot young stars within are perfect for study. Credit: NASA/ESA/STScI/Hubble Heritage

Study of UGC 4879 indicates during the first 4 billion years after the beginning of the universe new stars were being born at a pretty fast rate. The next nine billion years of relative inactivity followed by a recent starburst about 1 billion years ago is a puzzle for astronomers. They continue to study this hermit of a galaxy hoping to find out more about both its history and the complex riddles of sun birth across the cosmos.  

gabany_cropped_ngc4449_w_subaru_insert
Irregular dwarf galaxy NGC 4449 seen here is undergoing an intense period of starburst, with young, blue-white stars being created at an amazing rate and pinkish star forming regions in this deep colour image. Only 12.5 million light-years away in Canes Venatici, the constellation of the Hunting Dogs, NGC 4449’s the first such galaxy to have an identified star stream in the lower right composed mainly of supermassive red giant stars. These types of galaxies are thought to have a significant dark matter halo, which is a chance for astronomers to study the dark side’s role in the evolution and formation of galaxies. Credit: NASA/ESA/STScI 

Read about one of the most massive black holes ever discovered residing in a backwater part of the cosmos.

For the first time in space history the first moments of a supernova caught in visible light.

Read about Chandra observing the supermassive black hole in galaxy Pictor A having a little meal.

You can find out more about the work of NASA here

Learn more about the past and future plans of the ESA

Take the space voyage of the Hubble Space Telescope here

Learn more about irregular dwarf galaxies

Read a paper on the star formation history of irregular dwarf galaxy UGC 4879 here.