Journey into the Heart of the Beehive

Bright stars of red and blue highlight the Beehive or Omega Centauri cluster
The bottom photo reminds many of bees moving around in a hive

 The Hubble Space Telescope takes the human “Journey to the Beginning of Space and Time” into the beehive

Astronomy News – We join the human “Journey to the Beginning of Space and Time” as it boards the Hubble Space Telescope to travel 15,800 light years (~ 4850 parsecs) into Centaurus the Centaur to globular cluster Omega Centauri to peer into the beehive and look at individual stars. The beehive as it’s called was first noted by early star-gazer Ptolemy 2,000 years ago, both the largest and brightest globular cluster orbiting the Milky Way, the beehive is about 12 billion years old. Ptolemy didn’t have the Hubble Space Telescope to view Omega Centauri, so in his writings, he refers to the beehive as a single star. In reality, the beehive, or Omega Centauri, is a tightly packed group of about 10 million stars held together by gravity and orbiting a central gravitation mass, of some kind. In fact, the stars in the beehive are on average only about 0.1 light years apart, so close together that astronomers had to use the powerful vision of the Hubble Space Telescope to resolve individual stars.
The view from the Hubble Space Telescope

Hubble gives us the best view of the universe we have ever had

The Hubble Space Telescope’s vision is sharp enough astronomers used the images they have collected over a four-year period of viewing globular cluster Omega Centauri to precisely measure the relative motions of over 100,000 individual stars in the beehive. In an effort to gain insight into the evolution and life cycle of tight groups of stars formed in the early universe, and try to determine if there’s, in fact, an intermediate mass black hole hidden in the beehive. This study was conducted over a four-year period by Jay Anderson and Roeland van der Marel of the Space Telescope Science Institute using Hubble’s Advanced Camera for Surveys and high-speed, sophisticated computer programs to measure the relative motions of individual stars in the beehive.

On a clear night in the southern equatorial region of the night sky, it’s even possible to view the 3.5 magnitude beehive with the naked eye. Globular cluster Omega Centauri will appear as a fuzzy star that early astronomers believed was a single star. Use astronomical binoculars as your time-machine-to-the-stars, or a telescope, and the view becomes a wonder to behold as wide across in your viewfinder as the Full Moon. Using an 8-inch time-machine-to-the-stars you’ll view about 1,000 stars, each a faint pinprick of light, and you should notice that the beehive isn’t completely circular. Globular cluster Omega Centauri, in fact, rotates at a pretty fast speed around its central gravitational mass and astronomers believe this is one reason it’s less than circular.

Check out my latest astronomy website at