Survey of Debris Fields Around Infant Suns Reveals Structures with Unexpected Diversity and Complexity

Structures created during cataclysmic collisions between objects left over from planet formation or something unknown?

This is a set of images from a NASA Hubble Space Telescope survey of the architecture of debris systems around young stars. Ten previously discovered circumstellar debris systems, plus MP Mus (a mature protoplanetary disk of age comparable to the youngest of the debris disks), were studied.
This is a set of images from a NASA Hubble Space Telescope survey of the architecture of debris systems around young stars. Ten previously discovered circumstellar debris systems, plus MP Mus (a mature protoplanetary disk of age comparable to the youngest of the debris disks), were studied.

Space news (July 13, 2015) – collisions indicating possible gravitational effects of unseen orbiting exoplanets or consequences of the star traveling through interstellar space –

Space scientists using the Hubble Space Telescope recently completed a visible-light imaging survey of the debris field systems around 10 young stars between the ages of 10 million to 1 billion years old. Debris fields they studied in order to better understand the early solar system and formation of the planets.

Explore 25 Years of the Hubble Space Telescope NASA will host a one-day-long event for 50 social media and media attendees at the Newseum and NASA's Goddard Space Flight Center to mark the 25th anniversary of the Hubble Space Telescope. In 1990, the Hubble Space Telescope was launched into a low Earth orbit and began returning groundbreaking images and data that continue to revolutionize astronomy.
Explore 25 Years of the Hubble Space Telescope
NASA will host a one-day-long event for 50 social media and media attendees at the Newseum and NASA’s Goddard Space Flight Center to mark the 25th anniversary of the Hubble Space Telescope. In 1990, the Hubble Space Telescope was launched into a low-Earth orbit and began returning groundbreaking images and data that continue to revolutionize astronomy.

It’s like looking back in time to see the kinds of destructive events that once routinely happened in our solar system after the planets formed,” said survey leader Glenn Schneider of the University of Arizona’s Steward Observatory.

eclipseguy with Glenn Schneider from The Steward Observatory at the University of Arizona. Glenn is the Project Lead – he makes the calculations for our Totality Run: the aircraft’s interception of the Moon’s umbra. He’s seen 32 Total Solar Eclipses
eclipseguy with Glenn Schneider from The Steward Observatory at the University of Arizona. Glenn is the Project Lead – he makes the calculations for our Totality Run: the aircraft’s interception of the Moon’s umbra. He’s seen 32 Total Solar Eclipses

What did the survey find?

Space scientists studying the evolution of stars and the formation of planets used to think debris fields surrounding young stars should be composed of simple pancake-like structures.

The complexity and diversity in debris fields studied in this recent survey strongly suggest this scenario is a little more involved than theories suggest. Facts indicate the possibility of gravitational effects of unseen exoplanets hidden within the dusty debris, the results of the young star traveling through interstellar space, or something unthought of as the reason for the deviation from theory.

We find that the systems are not simply flat with uniform surfaces,” Schneider said. “These are actually pretty complicated three-dimensional debris systems, often with embedded smaller structures. Some of the substructures could be signposts of unseen planets.” The astronomers used Hubble’s Space Telescope

Imaging Spectrograph to study 10 previously discovered circumstellar debris systems.

Star HD 181327 Shows Huge Debris Spray

Captured by the Hubble Space Telescope, this image shows the huge dusty debris discs around a star called HD 181327, showing a huge spray of debris possibly caused by the recent collision of two bodies into the outer part of the system. Read more: http://www.dailymail.co.uk/sciencetech/article-2826048/Hubble-spots-massive-eye-sky-reveal-massive-dust-clouds-left-planets-form-say-moon-formed.html#ixzz3gjPl6sI1 Follow us: @MailOnline on Twitter | DailyMail on Facebook
Captured by the Hubble Space Telescope, this image shows the huge dusty debris discs around a star called HD 181327, showing a huge spray of debris possibly caused by the recent collision of two bodies into the outer part of the system. Image credit NASA

The ring-like debris system surrounding star HD 181327 has irregularities space scientists think could be due to a recent collision between two bodies on the outer part of the system.

This spray of material is fairly distant from its host star — roughly twice the distance that Pluto is from the sun,” said co-investigator Christopher Stark. “Catastrophically destroying an object that massive at such a large distance is difficult to explain, and it should be very rare. If we are in fact seeing the recent aftermath of a massive collision, the unseen planetary system may be quite chaotic.

Another interpretation for the irregularity is that the disk has been mysteriously warped by the star’s passage through interstellar space, directly interacting with the unseen interstellar material. “Either way, the answer is exciting,” Schneider said. “Our team is currently analyzing follow-up observations that will help reveal the true cause of the irregularity.

As of 07/09/2015 space scientists have verified the existence of 1858 exoplanets, including 468 exosolar systems with multiple planets, and 92 Earth-size terrestrial-type planets. The structure and overall architecture of the systems discovered so far are more diverse than astrophysicists first proposed.

Habitable Worlds Image Credit & Licence: Planetary Habitability Laboratory (UPR Arecibo) Explanation: Is Earth the only known world that can support life? In an effort to find life-habitable worlds outside our Solar System, stars similar to our Sun are being monitored for slight light decreases that indicate eclipsing planets. Many previously-unknown planets are being found, including over 700 worlds recently uncovered by NASA's Kepler satellite. Depicted above in artist's illustrations are twelve extrasolar planets that orbit in the habitable zones of their parent stars. These exoplanets have the right temperature for water to be a liquid on their surfaces, and so water-based life on Earth might be able to survive on them. Although technology cannot yet detect resident life, finding habitable exoplanets is a step that helps humanity to better understand its place in the cosmos.
Habitable Worlds
Image Credit & Licence: Planetary Habitability Laboratory (UPR Arecibo)
Explanation: Is Earth the only known world that can support life? In an effort to find life-habitable worlds outside our Solar System, stars similar to our Sun are being monitored for slight light decreases that indicate eclipsing planets. Many previously unknown planets are being found, including over 700 worlds recently uncovered by NASA’s Kepler satellite. Depicted above in artist’s illustrations are twelve extrasolar planets that orbit in the habitable zones of their parent stars. These exoplanets have the right temperature for water to be a liquid on their surfaces, and so water-based life on Earth might be able to survive on them. Although technology cannot yet detect resident life, finding habitable exoplanets is a step that helps humanity to better understand its place in the cosmos.

During this time, space scientists have only viewed about two dozen light-scattering, circumstellar debris systems due to their comparative faintness and proximity to their parent stars. Despite the small sample size in exoplanetary debris systems astronomers view a surprising variety of architectures.

We are now seeing a similar diversity in the architecture of the accompanying debris systems,” Schneider said. “How are the planets affecting the disks, and how are the disks affecting the planets? There is some sort of interdependence between a planet and the accompanying debris that might affect the evolution of these exoplanetary debris systems.

What’s next?

Space scientists will now use the results obtained through this survey and the overall study of the debris system disks viewed to devise new theories and experiments to determine more about the evolution and growth of young stars in the cosmos.

They’ll also use the data and information gained to begin looking at how our solar system formed and evolved during the past 4.6 billion years. They want to study collisions between objects like HD 181327 and Earth-like planets to give more insight into the birth and evolution of our planet and the Moon during the first moments of the solar system.

You can learn more about and follow NASA’s space mission here.

Learn more about the Hubble Space Telescope here.

Learn about the NExSS Coalition’s Search for Habitable Planets and Life Beyond Earth.

Read about NASA telescopes detection of water vapor and clear skies on a Neptune-sized exoplanet.

Learn how to calculate the orbit of asteroids within the Main Asteroid Belt.

Advertisements

The Search for Life Beyond Earth Takes a Turn at Jupiter

Astronomers view water geysers on Europa

This artists conception of vapour plumes possibly containing water and organic material
This artist’s conception of vapour plumes possibly containing water and organic material

Astronomy news (2013-12-22) – Galileo might have dreamed of unseen life forms existing in a watery soup under the icy surface of Europa when he first discovered Jupiter had moons on January 07, 1610. NASA astronomers working with the Hubble Space Telescope probably had similar thoughts when they recently saw images of what appears to be water geysers erupting from the south pole of Europa. The image above shows an artist’s conception of what astronomers and scientists believe is plumes of water vapour reaching over 100 miles into space from the south pole of Europa.

Are there life forms or maybe just organic material of some type existing on this watery moon? NASA astronomers, space scientists and interested people around the world are hoping this news will spur NASA officials and congress to provide them with the resources they need to fund the Europa Clipper (a NASA mission designed to travel to Europa to see if the conditions required for life exist).

“If there’s a geyser 200 kilometers tall, and you could fly a spacecraft through it and sample the water coming out from Europa, that would be phenomenal. What if there are organics in it? That’s getting to the question of ‘Are we alone in the universe?’ ” said John Grunsfeld, NASA’s top official for space science. “A subsurface ocean at Europa potentially provides all conditions for microbial life — at least life we know,” says study lead author Lorenz Roth, a planetary scientist at the Southwest Research Institute in San Antonio, Texas.

Astronomers believe Europa's "Great Lake" is thought to be one of many in the shallow regions of the moon's icy exterior
Astronomers believe Europa’s “Great Lake” is just one of many in the shallow regions of the moon’s icy exterior

Astronomers are currently taking a look at earlier data concerning Europa provided by the Voyager probes during the 1980s and Galileo spacecraft during the 1990s to see if they missed something. Astronomers and planetary scientists suspected back in the 1980s, when they first obtained the data from the Voyager probes, that Europa could have an ocean of water beneath its icy crust deeper and more massive than all of the oceans of Earth. The Galileo spacecraft also detected the magnetic signature of a subsurface ocean beneath the surface ice of Europa and brown regions on the ice planetary scientists think could be due to ice crystals containing possible organic material, formed from water vapor plumes like the ones recently viewed, being deposited on the surface of the moon.

Astronomers search for water near the south pole of Europa by looking for the presence of both hydrogen and oxygen
Astronomers search for water near the south pole of Europa by looking for the presence of both hydrogen and oxygen

Astronomers are also comparing this data to more recent information concerning Europa, they obtained last year through the repaired Hubble Space Telescope, to see if they can find the telltale signature of hydrogen and oxygen they’re looking for in the data. Water is composed of hydrogen and oxygen and this signature will help astronomers and planetary scientists determine if plumes of water vapour are in fact coming from Europa’s southern hemisphere.

“As it hit the vacuum of space, the water would flash freeze and some of it would turn into water vapour. Those water molecules would be split into atomic hydrogen and oxygen in the harsh radiation environment of the Jupiter system. But it wouldn’t just be water in the plume: Whatever else was in that ocean would be squirted into space, too, said James Green, head of NASA’s planetary science division. For a planetary scientist, it’s huge,” Green said of the news.

The image above shows spikes in hydrogen and oxygen levels in two southern hemisphere regions on Europa’s surface that last for brief periods of about seven hours and coincide with the moon reaching its farthest point from Jupiter in its orbit. Astronomers and planetary scientists think current computer models suggest the images obtained through the Hubble Space Telescope could show plumes of water vapour over a hundred miles high streaming into space from the surface of Europa. It remains puzzling to astronomers and scientists why the water vapour plumes seem to coincide with Europa reaching its apocenter, since this is the moment when tidal forces on the moon are at a low point (Astronomers estimate these tidal forces can be over 1,000 times stronger than the tidal forces our own moon experiences due to Earth). Current ideas include the thought that maybe the surface cracks on Europa’s southern pole open once Jupiter’s gravity starts to lessen, allowing water vapour to squeeze out in jets reaching over a hundred miles into space.

The colored area here is called Thera Macula, a region below the icy exterior of Europa that appears to be in chaos
The coloured area here is called Thera Macula, a region below the icy exterior of Europa that appears to be in chaos

Astronomers and planetary scientists at NASA suggest Europa’s plumes are probably like geysers they found on Saturn’s moon Enceladus, which also seem to appear when the moon reaches its apocenter. They’re excited about this discovery because Europa is only about half as far from Earth than Enceladus, which will allow the Hubble Space Telescope to have a closer look, this time. They hope to be able to use this fact to confirm the discovery of water on Europa and Enceladus and possibly get some quantitative data on the size, density, composition and timing of the plumes. Analysis of the composition of the plumes should also give them the data they need to model the interior of the moon, without having to land on the surface and drill holes.

Visible are plains of bright ice, cracks that run to the horizon, and dark patches that likely contain both ice and dirt
Visible on the surface of Europa are plains of bright ice, cracks that run to the horizon, and dark patches that likely contain both ice and dirt

The implications of the discovery of water on both Enceladus and Europa is stunning to contemplate for human beings, astronomers, and planetary scientists. We believe the human journey to the beginning of space and time should voyage to both of these moons in the future to determine if the ingredients for life exist on these distant bodies. We need to do this for science, mankind and future generations of humanity.

This image shows a crack in the icy exterior of Europa, through which vapour could escape into space
This image shows a crack in the icy exterior of Europa, through which vapour could escape into space

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc. in Washington operates STScI for NASA.

To view the images of the evidence for plumes visit:

http://www.nasa.gov/content/goddard/hubble-europa-water-vapor

For more information about the Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

Watch this YouTube video on astronomers thoughts on the possibility of an ocean beneath the crust of Europa https://www.youtube.com/watch?v=RrjY2BKm-TA.

Read about NASA’s Messenger spacecraft and its mission to Mercury

Have you heard about the recent meteorite that exploded near the Ural Mountains

Read about the supernova astronomers are studying looking for a black hole they think was created during the explosion