WISE Data Pokes Holes in Unified Theory of Active, Supermassive Black Holes

Survey of 170,000 supermassive black holes says “we need to re-examine present theory” 

WISE's large field of view and multi-wavelength infrared sight allowed it to form this complete view of the cluster, containing dozens of bright galaxies and hundreds of smaller ones. Old stars show up at the shorter infrared wavelengths, color coded blue. Dust heated by new generations of stars lights up at longer infrared wavelengths, colored red here. The center of the cluster is dominated by the galaxy known as NGC 1399, a large spheroidal galaxy whose light is almost exclusively from old stars and thus appears blue. The most spectacular member of Fornax is the galaxy known as NGC 1365, a giant barred spiral galaxy, located in the lower right of the mosaic. Against a backdrop of blue light from old stars, the dusty spiral arms in NGC 1365 stand out. The arms contain younger stars that are heating up their dust-enshrouded birth clouds, causing them to glow at longer infrared wavelengths. This galaxy is one of only a few in the Fornax cluster where prolific star formation can be seen. WISE will search the sky out to distances of 10 billion light-years looking for the most luminous cousins of NGC 1365. In this image, 3.4- and 4.6-micron light is colored blue; 12-micron light is green; and 22-micron light is red.
WISE’s large field of view and multi-wavelength infrared sight allowed it to form this complete view of the cluster, containing dozens of bright galaxies and hundreds of smaller ones. Old stars show up at the shorter infrared wavelengths, color coded blue. Dust heated by new generations of stars lights up at longer infrared wavelengths, colored red here.
The center of the cluster is dominated by the galaxy known as NGC 1399, a large spheroidal galaxy whose light is almost exclusively from old stars and thus appears blue. In this image, 3.4- and 4.6-micron light is colored blue; 12-micron light is green; and 22-micron light is red. Credits: WISE. Image credit: NASA/JPL-Caltech/NOAO/AURA/NSF/ESO
pia18013-full
This infographic explains a popular theory of active supermassive black holes, referred to as the unified model — and how new data from NASA’s Wide-field Infrared Survey Explorer, or WISE, is at conflict with the model. Astronomers say the model could still be correct but needs adjusting to account for the unexpected observations by WISE. Image credit: NASA/JPL-Caltech/NOAO/AURA/NSF/ESO

Space news (astrophysics: Unified Theory of Active, Supermassive Black Holes; rethinking the present theory) – supermassive black holes scattered around the cosmos –

One common theme in astronomy and science is “the more we test a current theory, the more we need to re-examine our ideas and thoughts”. Theory one day is tomorrows’ old idea. Astronomers looking at archived WISE data found this out the other day. After examining data collected by NASA’s Wide-field Infrared Survey Explorer, they determined varying appearances of similar supermassive black holes could be a more complicated than present theory indicates. That it could be time to rethink the Unified Theory of Active, Supermassive Black holes, now that we have a little data to base our ideas and theories on. 

The Unified Theory of Active, Supermassive Black Holes was first proposed in the late 1970s to explain the different appearance of active supermassive black holes with similar natures. Why some active monsters appear to be shrouded by dust and gas, while others are more exposed and easier to view. 

“The main purpose of unification was to put a zoo of different kinds of active nuclei under a single umbrella,” said Emilio Donoso of the Instituto de Ciencias Astronómicas, de la Tierra y del Espacio in Argentina. “Now, that has become increasingly complex to do as we dig deeper into the WISE data.” 

This theory answered this query by suggesting all supermassive black holes are encased in a dusty, doughnut-shaped structure called a torus. That the appearance of the supermassive black hole and torus is dependent on the orientation of the system in space in relation to Earth. For instance, if the torus is viewed edge-on in relation to Earth, the supermassive black hole is hidden from view. However, if the torus is viewed from above or below, the monster within is visible. 

“The unified theory was proposed to explain the complexity of what astronomers were seeing,” said Daniel Stern of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “It seems that simple model may have been too simple. As Einstein said, models should be made ‘as simple as possible, but not simpler.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Time to rethink the theory

WISE data collected before it was put on standby in 2011 indicates The Unified Theory of Active, Supermassive Black Holes isn’t the whole story and needs to be re-examined. That something other than the shape of the structures surrounding supermassive black holes determines whether a monster is viewable from Earth. Astronomers working on theories concerning supermassive black holes are looking at the data and thinking of new ways for supermassive black holes surrounded by structures of dust and gas to become visible from Earth. They hope their work and findings inspire further study and investment in uncovering more clues to the mysteries surrounding supermassive black holes and understanding of these enigmatic, yet fascinating objects.  

“Our finding revealed a new feature about active black holes we never knew before, yet the details remain a mystery,” said Lin Yan of NASA’s Infrared Processing and Analysis Center (IPAC), based at the California Institute of Technology in Pasadena. “We hope our work will inspire future studies to better understand these fascinating objects.” 

Proving scientific theory prescribes usage of the old adage, “the more things change, the more they stay the same” when developing theories. 

You can learn more about the United Theory of Active, Supermassive Black holes here

Take the space journey of NASA’s Wide-Field Infrared Survey Explorer

Read and learn more about supermassive black holes here

Learn more about the work being done by scientists and engineers at NASA’s Jet Propulsion Laboratory

Discover and learn about the current mission of WISE, after being reactivated and renamed NEOWISE in 2013, and given the job of identifying potentially dangerous objects near Earth here

Learn how astronomers study the formation of stars.

Learn about the formation of the first black holes to exist in the cosmos.

Read about NASA’s Chandra X-Ray Observatory’s observations of blasts from galaxy Pictor A.

 

WISE Infrared All-Sky Survey Reveals Millions of Supermassive Black Hole Candidates

Plus nearly a thousand extremely bright, dusty objects nicknamed hot DOGS 

With its all-sky infrared survey, NASA's Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes "feed" off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles. Image credit: NASA/JPL-Caltech/UCLA
With its all-sky infrared survey, NASA’s Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun. The black holes “feed” off surrounding gas and dust, pulling the material onto them. As the material falls in on the black hole, it becomes extremely hot and extremely bright. This image zooms in on one small region of the WISE sky, covering an area about three times larger than the moon. The WISE quasar candidates are highlighted with yellow circles.
Image credit: NASA/JPL-Caltech/UCLA

Space news (All-sky surveys: infrared; candidate supermassive black holes and dust-obscured galaxies) – The visible universe – 

Astronomers working with data provided by an infrared survey of the visible sky conducted by NASA’s Wide-field Infrared Survey Explorer (WISE) have identified millions of new candidates for the quasar section in the Galaxy Zoo. All-sky images taken by WISE revealed around 2.5 million candidate supermassive black holes actively feeding on material, some over 10 billion light-years away. They also pinpointed nearly a 1,000 very bright, extremely dusty objects nicknamed hot DOGS believed to be among the brightest galaxies discovered during the human journey to the beginning of space and time.

The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist's concept of the WISE satellite superimposed. Image credit: NASA/JPL-Caltech/UCLA
The entire sky as mapped by WISE at infrared wavelengths is shown here, with an artist’s concept of the WISE satellite superimposed.
Image credit: NASA/JPL-Caltech/UCLA

“These dusty, cataclysmically forming galaxies are so rare WISE had to scan the entire sky to find them,” said Peter Eisenhardt, lead author of the paper on the first of these bright, dusty galaxies, and project scientist for WISE at JPL. “We are also seeing evidence that these record setters may have formed their black holes before the bulk of their stars. The ‘eggs’ may have come before the ‘chickens.” 

Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST
Dr. Hashima Hasan is the James Webb Space Telescope Program Scientist and the Education and Public Outreach Lead for Astrophysics. Credits: NASA/JWST

“WISE has exposed a menagerie of hidden objects,” said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. “We’ve found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust.” 

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view. Image credit: NASA/ESA
This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.
Image credit: NASA/ESA

Astronomers detected Trojan asteroid TK7 in October 2010 in images of the sky taken by NASA’s WISE, before verifying its existence on optical images taken by the Canada-France-Hawaii Telescope. Additional study and computer modeling indicate Earth’s small dance partner should stay in a safe orbit for the next 10,000 years at least.  

This zoomed-in view of a portion of the all-sky survey from NASA's Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE's infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars. The circular inset images, obtained with NASA's Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen. Image credit: NASA/JPL-Caltech/UCLA/STScI
This zoomed-in view of a portion of the all-sky survey from NASA’s Wide-field Infrared Survey Explorer shows a collection of quasar candidates. Quasars are supermassive black holes feeding off gas and dust. The larger yellow circles show WISE quasar candidates; the smaller blue-green circles show quasars found in the previous visible-light Sloan Digital Sky Survey. WISE finds three times as many quasar candidates with a comparable brightness. Thanks to WISE’s infrared vision, it picks up previously known bright quasars as well as large numbers of hidden, dusty quasars.
The circular inset images, obtained with NASA’s Hubble Space Telescope, show how the new WISE quasars differ from the quasars identified in visible light. Quasars selected in visible light look like stars, as shown in the lower right inset; the cross is a diffraction pattern caused by the bright point source of light. Quasars found by WISE often have more complex appearances, as seen in the Hubble inset near the center. This is because the quasars found by WISE are often obscured or hidden by dust, which blocks their visible light and allows the fainter host galaxy surrounding the black hole to be seen.
Image credit: NASA/JPL-Caltech/UCLA/STScI

In March 2014 astronomers studying infrared images taken by WISE announced the discovery of around 3,500 new stars lying within 500 light-years of Earth. At the same time, they searched the data looking for evidence of Planet X, or Nemesis, the mythical planet some believe to exist somewhere beyond the orbit of Pluto. Scientists analyzed millions of infrared images taken by WISE out to a distance well beyond the orbit of our former ninth planet. They didn’t detect any objects the size of a planet out to a distance of around 25,000 times the distance between the Earth and Sol. Many times beyond the orbit of Pluto. No Planet X was found. 

NASA's Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or "hot DOGs," are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy. Image credit: NASA/JPL-Caltech/UCLA
NASA’s Wide-field Infrared Survey Explorer (WISE) has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or “hot DOGs,” are turning out to be among the most luminous, or intrinsically bright objects known, in some cases putting out over 1,000 times more energy than our Milky Way galaxy.
Image credit: NASA/JPL-Caltech/UCLA

The vast majority of the latest candidates for the Galaxy Zoo are objects previously undetected by astronomers due to dust blocking visible light. Fortunately, the infrared eyes of WISE detected glowing dust around the candidates, which allowed scientists to detect them. These latest findings are clues astronomers use to better understand the processes creating galaxies and the monster black holes residing in their centers

This image zooms in on the region around the first "hot DOG" (red object in magenta circle), discovered by NASA's Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun. WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles). Image credit: NASA/JPL-Caltech/UCLA
This image zooms in on the region around the first “hot DOG” (red object in magenta circle), discovered by NASA’s Wide-field Infrared Survey Explorer, or WISE. Hot DOGs are hot dust-obscured galaxies. Follow-up observations with the W.M. Keck Observatory on Mauna Kea, Hawaii, show this source is over 10 billion light-years away. It puts out at least 37 trillion times as much energy as the sun.
WISE has identified 1,000 similar candidate objects over the entire sky (magenta dots). These extremely dusty, brilliant objects are much more rare than the millions of active supermassive black holes also found by WISE (yellow circles).
Image credit: NASA/JPL-Caltech/UCLA

“We’ve got the black holes cornered,” said Daniel Stern of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., lead author of the WISE black hole study and project scientist for another NASA black-hole mission, the Nuclear Spectroscopic Telescope Array (NuSTAR). “WISE is finding them across the full sky, while NuSTAR is giving us an entirely new look at their high-energy X-ray light and learning what makes them tick.” 

Daniel Stern NuSTAR Project Scientist. Credits: NASA
Daniel Stern
NuSTAR Project Scientist. Credits: NASA

Organizing the Monster Zoo

The Monster of the Milky Way, the estimated 4 million solar mass black hole astronomers believe resides at the center, periodically feeds upon material falling too deep into its gravity well, and heats up surrounding disks of dust and gas. Astronomers have even witnessed 1 billion solar mass monster black holes change their surrounding environments enough to shut down star formation processes in their host galaxy. Now, astronomers need to go through the millions of candidates and put them in the correct section of the zoo. We might even need to open a few new sections to accommodate unusual candidates found during a closer examination.  

You can learn more about supermassive black holes here

Watch this YouTube video about the Monster of the Milky Way

Tour NASA’s Jet Propulsion Laboratory here

Journey across the x-ray universe aboard NASA’s WISE

Learn everything NASA has learned during its journey. 

Learn more about the mission of NASA’s Nuclear Spectroscopic Telescopic Array (NuStar). 

Read more about Quasars

Learn more about dust-obscured galaxies (hot DOGS) here

Learn more about Trojan asteroid TK7

Learn more about the Canada-France-Hawaii Telescope

Learn more about How Astronomers Study the Formation of Stars.

Read more about a Wolf-Rayet star astronomers have nicknamed Nasty 1.

Read about the next-generation telescope the Giant Magellan Telescope.