Planetary Scientists Suggest Three Landing Sites for Mars 2020

One of the oldest regions of the Red Planet discovered, an ancient Martian lake, or the site of an ancient hot spring first explored by NASA’s Spirit rover

mars2020_landingsites_gusevjezerosyrtis
NASA’s Mars 2020 rover’s expected to land at one of the three sites noted on this image of the Red Planet. Credits: NASA

Space news (The Journey to Mars: Mars 2020; possible landing sites) – Northeast Syrtis: Jerero crater; or Columbia Hills, on the Red Planet –

Planetary scientists and other scientists attending the third landing site workshop hosted by NASA in order to determine the best place for its Mars 2020 rover to land recommend three places. NASA’s been using the Mars Reconnaissance Orbiter to search for suitable sites since about 2006 and to help in the identification, study, and verification of possible future landing sites for coming manned missions during most recent history. Data and observations provided by the MRO also helped participants narrow down the choices to three during the workshop.

golombek
Dr. Matt Golombek, just one of the rocket geniuses working at NASA’s Jet Propulsion Laboratory. Credits: NASA/JPL

“From the point of view of evaluating potential landing sites, the Mars Reconnaissance Orbiter is the perfect spacecraft for getting all the information needed,” said the workshop’s co-chair, Matt Golombek of NASA’s Jet Propulsion Laboratory, Pasadena, California. “You just can’t overstate the importance of MRO for landing-site selection.”

people-8
Leslie Tamppari, another genius working at NASA’s Jet Propulsion Laboratory. Credits: NASA/JPL

“Missions on the surface of Mars give you the close-up view, but what you see depends on where you land. MRO searches the globe for the best sites,” said MRO Deputy Project Scientist Leslie Tamppari of JPL.

people-96
NASA’s Jet Propulsion is famous for employing the experience, skills, and knowledge of geniuses, but this is getting to be ridiculous. Credits: NASA/JPL

“Whether it is looking at the surface, the subsurface or the atmosphere of the planet, MRO has viewed Mars from orbit with unprecedented spatial resolution, and that produces huge volumes of data,” said MRO Project Scientist Rich Zurek of JPL.“These data are a treasure trove for the whole Mars scientific community to study as we seek to answer a broad range of questions about the evolving habitability, geology, and climate of Mars.”

The Journey to the Red Planet

The human journey to the beginning of space and time will be making a stop on Mars sometime in the 2030s if everything goes as planned with NASA’s Journey to Mars. Mars 2020 is expected to launch aboard the Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida around July 2020. After a journey of millions of miles across the solar system to the Red Planet, the Mars 2020 rover will land at one of three possible sites.

Northeast Syrtis

mro_hirise_syrtis_major_esp_015942_1980-br2
NASA’s Mars 2020 rover could be landing here to look for evidence one-celled life flourished in water accumulated on the surface of the Red Planet. Credits: NASA/MRO/HIRISE

Images of the first possible landing site in the Northeast part of Syrtis Major show Early Noachian bedrock planetary scientists would like to have a closer look at for signs of possible life. An excellent place for study and exploration of the past of the Red Planet, scientists are currently studying whether it’s safe for Mars 2020 to land. There could be too many boulders or even steep slopes unidentified in the initial analysis of images of this region making landing problematic at best. There’s also always the possibility of something we haven’t thought of. If the site is safe, it will be considered for the final choice, and possibly even for the rovers planned by Europe and NASA sometime around 2018.

This part of the Red Planet was once warmed by volcanoes, so planetary scientists want to look for ancient hot springs and even surface ice melt where liquid water could have flowed. Liquid water’s one of the catalysts-of-life planetary scientists look for in the search for extraterrestrial life. The layered terrain of Northeast Syrtis could hold a record of ancient simple life forms that existed on Mars during its early history. At the very least it should tell us more about interactions between water and minerals over successive parts of the Red Planet when it was young. This site we should definitely take a look at.

Jezero Crater

080716_jezerocrater_hr-br2
NASA scientists plan on using instruments on the Mars 2020 rover to look into the possibility simple, one-celled life could have evolved and flourished in the water of a lake they think existed on the surface of the Red Planet in this region. Credits: NASA/MRO/HIRISE

Rewind time 3.5 billion years in Jezero crater, to when river channels spilled over the crater wall and formed a lake. Planetary scientists see evidence water from this lake carried clay minerals from the lake bed after this body of water dried up. Scientists want to explore the crater for signs microbial life once lived here during events such as this when Jezero crater was a little wetter. For the remains of ancient life in the lakebed sediments.

Columbia Hills, Mars

mars_spirit_rover_gusev_crater_longhorn_rock_pia06770-br2
Scientists think simple, one-celled life could have developed and flourished in the waters of a shallow lake they believe formed here billions of years ago. Credits: NASA/MRO/HIRISE

After additional study planetary scientists and geochemists agree mineral springs once bubbled up from the rocks of Columbia Hills in Gusev crater on the Red Planet. Originally, the Spirit rover found no clear signs water flowed over or existed in the rocks of this region of Mars, but the discovery hot springs once existed here has scientists thinking a shallow lake may have once formed for a time. Warm, inviting waters microbial life could have evolved in, exobiologists are keen to examine soils and lakebed sediments of Gusev crater for their remains.

The Final Landing Site of the Mars 2020 rover

 

mars2020_3_landing_sites_slideshow_shareable
NASA’s shortlisted the possible landing sites to the three regions seen in the slideshow above. Credits: NASA/MRO/HIRISE

 

Possible landing sites of NASA’s Mars 2020 rover may change as the mission goes forward, the science mission and even engineering considerations of achieving their goals could change as they learn more. Ultimately, NASA will decide on a landing site with geology indicating a wetter past that also meets all criteria. Stay tuned to the human journey to the beginning of space and time during the months and years ahead to learn more. 

Learn about NASA’s desire to find private firms and individuals to form space technology partnerships with.

Read and learn about the plasma jets of active supermassive black holes.

Help NASA classify young star systems by becoming a Disk Detective.

Learn more about NASA’s Journey to Mars.

Learn more about NASA’s contributions to the human journey to the beginning of space and time here.

Discover the Mars 2020 rover.

Learn more about the discoveries of the Mars Reconnaissance Orbiter.

Discover the Spirit rover.

ESA’s ExoMars 2016 Trace Gas Orbiter Prepares to Descend to the Red Planet

Schiaparelli module separates from Trace Gas Orbiter in preparation for orbit-raising maneuver 

This artist's concept from the European Space Agency (ESA) depicts the Trace Gas Orbiter and its entry, descent and landing demonstrator module, Schiaparelli, approaching Mars. The separation occurred on Oct. 16, 2016. The orbiter and the lander are components of the ExoMars 2016 mission of ESA and Roscosmos. Image Credit: ESA/ATG medialab
This artist’s concept from the European Space Agency (ESA) depicts the Trace Gas Orbiter and its entry, descent and landing demonstrator module, Schiaparelli, approaching Mars. The separation occurred on Oct. 16, 2016. The orbiter and the lander are components of the ExoMars 2016 mission of ESA and Roscosmos.
Image Credit: ESA/ATG medialab

Space news (space exploration: ExoMars 2016; orbit insertion and Schiaparelli module descent to surface) – Over 34 million miles (56 million kilometers) from Earth, preparing to descend to the surface of the Red Planet – 

This image show a fan-shaped deposit where a channel enters a crater. This suggests that water once flowed through the channel into a crater lake, depositing material in a similar manner to river deltas on Earth. Credits: NASA/ESA/medialab
This image shows a fan-shaped deposit where a channel enters a crater, which suggests to planetary scientists and geologists that water once flowed through the channel into a crater lake, depositing material in a similar manner to river deltas on Earth. Credits: NASA/ESA/medialab

NASA’s Curiosity rover and other Mars explorers are about to get a little help from their European and Russian brothers and sisters in the form of the ExoMars Trace Gas Orbiter (TGO). One of two joint space missions between Europe and Russia designed to explore Mars for signs that life once existed, the ExoMars TGO will investigate the environment, and blaze a path for a future 2020s mission to return a sample of Martian terrain for planetary scientists to examine in detail for signs of life. 

This stereo scene recorded by the Pancam on NASA's Mars Exploration Rover Opportunity on Aug. 15, 2014, looks back toward part of the west rim of Endeavour Crater marked with the rover's wheel tracks. It appears three-dimensional when seen through blue-red glasses with the red lens on the left. Credits: NASA/ESA
This stereo scene recorded by the Pancam on NASA’s Mars Exploration Rover Opportunity on Aug. 15, 2014, looks back toward part of the west rim of Endeavour Crater marked with the rover’s wheel tracks. It appears three-dimensional when seen through blue-red glasses with the red lens on the left. Credits: NASA/ESA

The ExoMars TGO completed its final trajectory maneuver at 08.:45 GMT on October 14 and at 14:42 GMT/16:42 CEST today the Schiaparelli module separated from the orbiter. Tomorrow around 02:42 GMT/04:42 CEST the robotic spacecraft will conduct an orbit-raising maneuver in preparation for orbit insertion and the descent of Schiaparelli to the surface of Mars at around 14:48 GMT/16:48 CEST. The module is scheduled to land in a region of Mars near the equator called Meridiani Planum, where it will search for signs of life once having existed on the Red Planet. 

On Nov. 1, 2016, the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter observed the impact site of Europe's Schiaparelli test lander, gaining the first color view of the site since the lander's Oct. 19, 2016, arrival. These cutouts from the observation cover three locations where parts of the spacecraft reached the ground: the lander module itself in the upper portion, the parachute and back shell at lower left, and the heat shield at lower right. The heat shield location was outside of the area covered in color. The scale bar of 10 meters (32.8 feet) applies to all three cutouts. Where the lander module struck the ground, dark radial patterns that extend from a dark spot are interpreted as "ejecta," or material thrown outward from the impact, which may have excavated a shallow crater. From the earlier image, it was not clear whether the relatively bright pixels and clusters of pixels scattered around the lander module's impact site are fragments of the module or image noise. Now it is clear that at least the four brightest spots near the impact are not noise. These bright spots are in the same location in the two images and have a white color, unusual for this region of Mars. The module may have broken up at impact, and some fragments might have been thrown outward like impact ejecta. At lower right are several bright features surrounded by dark radial impact patterns, located where the heat shield was expected to impact. The bright spots appear identical in the Nov. 1 and Oct. 25 images, which were taken from different angles, so these spots are now interpreted as bright material, such as insulation layers, not glinting reflections. Credits: NASA/ESA/JPL/Caltech
On Nov. 1, 2016, the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter observed the impact site of Europe’s Schiaparelli test lander, gaining the first color view of the site since the lander’s Oct. 19, 2016, arrival.
These cutouts from the observation cover three locations where parts of the spacecraft reached the ground: the lander module itself in the upper portion, the parachute and back shell at lower left, and the heat shield at lower right. The heat shield location was outside of the area covered in color. The scale bar of 10 meters (32.8 feet) applies to all three cutouts. Where the lander module struck the ground, dark radial patterns that extend from a dark spot are interpreted as “ejecta,” or material is thrown outward from the impact, which may have excavated a shallow crater. From the earlier image, it was not clear whether the relatively bright pixels and clusters of pixels scattered around the lander module’s impact site are fragments of the module or image noise. Now it is clear that at least the four brightest spots near the impact are not noise. These bright spots are in the same location in the two images and have a white color, unusual for this region of Mars. The module may have broken up at impact, and some fragments might have been thrown outward like impact ejecta. At lower right are several bright features surrounded by dark radial impact patterns, located where the heat shield was expected to impact. The bright spots appear identical in the Nov. 1 and Oct. 25 images, which were taken from different angles, so these spots are now interpreted as bright material, such as insulation layers, not glinting reflections. Credits: NASA/ESA/JPL/Caltech

Unfortunately, after the separation from the ExoMars TGO, the Schiaparelli module didn’t return telemetry (onboard status information) and only sent its carrier signal, which indicates it’s operational and waiting for commands. Mission control’s currently looking into this anomaly and a resolution to the problem’s expected within a few hours. You can check for updates to this on the ESA website here

This Oct. 25, 2016, image shows the area where the European Space Agency's Schiaparelli test lander reached the surface of Mars, with magnified insets of three sites where components of the spacecraft hit the ground. It is the first view of the site from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter taken after the Oct. 19, 2016, landing event. This Oct. 25 observation shows three locations where hardware reached the ground, all within about 0.9 mile (1.5 kilometer) of each other, as expected. The annotated version includes insets with six-fold enlargement of each of those three areas. Brightness is adjusted separately for each inset to best show the details of that part of the scene. North is about 7 degrees counterclockwise from straight up. The scale bars are in meters. At lower left is the parachute, adjacent to the back shell, which was its attachment point on the spacecraft. The parachute is much brighter than the Martian surface in this region. The smaller circular feature just south of the bright parachute is about the same size and shape as the back shell, (diameter of 7.9 feet or 2.4 meters). At upper right are several bright features surrounded by dark radial impact patterns, located about where the heat shield was expected to impact. The bright spots may be part of the heat shield, such as insulation material, or gleaming reflections of the afternoon sunlight. Image Credit: NASA/JPL-Caltech/Univ. of Arizona
This Oct. 25, 2016, image shows the area where the European Space Agency’s Schiaparelli test lander reached the surface of Mars, with magnified insets of three sites where components of the spacecraft hit the ground. It is the first view of the site from the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter taken after the Oct. 19, 2016, landing event. This Oct. 25 observation shows three locations where hardware reached the ground, all within about 0.9 miles (1.5 kilometers) of each other, as expected. The annotated version includes insets with six-fold enlargement of each of those three areas. Brightness is adjusted separately for each inset to best show the details of that part of the scene. North is about 7 degrees counterclockwise from straight up. The scale bars are in meters.
At lower left is the parachute, adjacent to the back shell, which was its attachment point on the spacecraft. The parachute is much brighter than the Martian surface in this region. The smaller circular feature just south of the bright parachute is about the same size and shape as the back shell, (diameter of 7.9 feet or 2.4 meters).
At upper right are several bright features surrounded by dark radial impact patterns, located about where the heat shield was expected to impact. The bright spots may be part of the heat shield, such as insulation material, or gleaming reflections of the afternoon sunlight. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

What’s next for ExoMars?

If everything goes as planned, mission control should get an update from the ExoMars TGO on October 20, along with images of the surface of the planet as Schiaparelli descended to Mars. Continuous updates from the orbiter and module are expected through the duration of the ExoMars TGO mission. The events of the mission will also be live streamed on the ESA website here, along with reports on Twitter using the hashtag #ExoMars

Watch this YouTube video on ten magnificent years of exploration for the Mars Reconnaissance Orbiter.

Read about NASA’s recent selection of five US-based aerospace firms to work on Mars Orbiter concepts.

Read and learn more about NASA’s selection of eight US university teams to work on the newest, latest space habitats.

Are you a concerned human thinking it might be a good idea to find another planet in the near future?

Follow the journey of NASA across the cosmos here

Learn more about the space mission of the ESA

Learn more about the ExoMars 2016 TGO and the Schiaparelli module here

Learn more about the things planetary scientists have discovered about Mars