NASA WISE and Spitzer Telescopes Discover Titanic Galaxy Cluster

Astronomers say this monster was one of the biggest galaxy clusters of its time

The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. Credits: NASA/JPL-Caltech/Gemini/CARMA
The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster.
Credits: NASA/JPL-Caltech/Gemini/CARMA

Space news (November 07, 2015) – 8.5 billion light-years away in a remote part of the cosmos –

NASA astronomers conducting a survey of galaxy clusters using the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) recently viewed one of the biggest galaxy clusters ever recorded. Called Massive Overdense Object (MOO) J1142+1527, this monster galaxy cluster is in a very distant part of the universe and existed around 4 billion years before the birth of Earth.

8.5 billion years have passed since the light seen in the image above reached us here on Earth. MOO J1142+1527 has grown bigger during this time as more galaxies were drawn into the cluster and become even more extreme as far as galaxy clusters go. Containing thousands of galaxies, each with hundreds of billions of individual suns, galaxy clusters like this are some of the biggest structures in the cosmos. 

It’s the combination of Spitzer and WISE that lets us go from a quarter billion objects down to the most massive galaxy clusters in the sky,” said Anthony Gonzalez of the University of Florida in Gainesville, lead author of a new study published in the Oct. 20 issue of the Astrophysical Journal Letters.

Based on our understanding of how galaxy clusters grow from the very beginning of our universe, this cluster should be one of the five most massive in existence at that time,” said co-author Peter Eisenhardt, the project scientist for WISE at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Astronomers conducting this survey will now spend the next year sifting through more than 1,700 more galaxy clusters detected by the combined power of NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer looking for the largest galaxy clusters in the cosmos. Once they find the biggest galaxy clusters in the universe, they’ll use the data obtained to investigate their evolution and the extreme environments they’re found.

Once we find the most massive clusters, we can start to investigate how galaxies evolved in these extreme environments,” said Gonzalez.

You can learn more about the mission of the Spitzer Space Telescope here.

Discover the voyage and discoveries of WISE here.

Learn more about galaxy clusters here.

Read about the space missions of NASA here.

Learn more about the final days of stars.

Read about the Little Gem Nebula.

Read about plans for man to travel to Mars in the decades ahead.

Advertisements

NEOWISE’s One Year Space Mission Discovers 40 Near-earth Objects

NEOWISE discovered 40 potentially dangerous asteroids orbiting near earth
NEOWISE discovered 40 potentially dangerous asteroids orbiting near earth

Making life on Earth safer for all 

Space news (January 21, 2015) near Earth –

NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) discovered eight potentially dangerous asteroids during a recent one-year mission. Dangerous asteroids, in this case, are classified as objects that due to their volume and near-Earth orbit could pose a future collision threat. This was out of a total of 40 new objects NASA discovered orbiting close to the planet during its year-long mission. You can view a movie of the spacecraft’s progress during the past year using the link at the end of the article.

NEOWISE looked at a total of 245 known near-Earth objects from December 2013 to December 2014. This spacecraft views the sky during the dawn and dust perpendicular to a line between Earth and the sun. This allows it to spot near-Earth objects that come close to the planet. In this case discovering eight potentially dangerous asteroids, we can make plans to deal with, if needed, in the future. They also got a better look at the size and orbit of over 200 near-Earth objects they knew about.

NEOWISE found a total of 35 comets during its year-long mission, including three space scientists knew nothing about. This includes the brightest comet in Earth’s sky, comet C/2014 Q2 (Lovejoy), which arrived early in 2015.

Comet C/2014 Q2 (Lovejoy) is one of more than 32 comets imaged by NASA's NEOWISE mission from December 2013 to December 2014. This image of comet Lovejoy combines a series of observations made in November 2013, when comet Lovejoy was 1.7 astronomical units from the sun. (An astronomical unit is the distance between Earth and the sun.)  The image spans half of one degree. It shows the comet moving in a mostly west and slightly south direction. (North is 26 degrees to the right of up in the image, and west is 26 degrees downward from directly right.) The red color is caused by the strong signal in the NEOWISE 4.6-micron wavelength detector, owing to a combination of gas and dust in the comet's coma.
Comet C/2014 Q2 (Lovejoy) is one of more than 32 comets imaged by NASA’s NEOWISE mission from December 2013 to December 2014. This image of comet Lovejoy combines a series of observations made in November 2013 when comet Lovejoy was 1.7 astronomical units from the sun. (An astronomical unit is a distance between Earth and the sun.)
The image spans half of one degree. It shows the comet moving in a mostly west and slightly south direction. (North is 26 degrees to the right of up in the image, and west is 26 degrees downward from directly right.) The red color is caused by the strong signal in the NEOWISE 4.6-micron wavelength detector, owing to a combination of gas and dust in the comet’s coma.

No word from NASA on the future of NEOWISE, but we do need a spacecraft monitoring the skies near Earth for potentially hazardous objects on a full-time basis. Hopefully, they can rework this spacecraft’s mission, once again, and put NEOWISE on guard protecting the planet for decades to come.

You can find more information on NASA’s NEOWISE here.

You can find a chart of comet Lovejoy’s progress during the month here.

You can find more information on NASA’s mission to catalog all near-Earth objects here.

Read about calculating orbits of asteroids within the Main Asteroid Belt

Read about Celestron’s Ultima Duo Eyepieces

Read about an earth-sized exoplanet discovered orbiting within the habitable zone of its home sun

Calculating Orbits of Asteroids in the Main Asteroid Belt

The International Astronomical Search Campaign

The International Astronomical Search Campaign is looking for astronomy leaders of tomorrow
The International Astronomical Search Campaign is looking for astronomy leaders of tomorrow

Space news (astronomy leaders of tomorrow: The International Astronomical Search Campaign)

An asteroid is a piece of solid rock with an irregular body ranging in size between 500 meters and hundreds of kilometers. The majority of these bodies can be found in the main asteroid belt, a region of space between Mars and Jupiter. Pieces of rocky material left over from the formation of the solar system over 4.6 billion years ago, NASA scientists estimate there are as many as 40,000 asteroids contained within this main asteroid belt, with a combined mass less than the Moon. Confirming the identity and calculating the orbit of the asteroids contained within this belt is part of the space mission of NASA’s Wide-Field Infrared Survey Explorer (WISE).

The IASC plans and campaigns are expected to drive the human journey to the beginning of space and time forward
The IASC plans and campaigns are expected to drive the human journey to the beginning of space and time forward

The International Astronomical Search Campaign (IASC) is an educational outreach program created to allow high school and college students around the country to participate in identifying and calculating the orbit of every rocky body within the main asteroid belt. Originally created and developed by Patrick Miller of Hardin-Simmons University in the state of Texas, this program has helped tens of thousands of students in 250 schools and 25 countries on five continents learn more about astronomy.

Students can help determine the identify and orbit of asteroids in the main asteroid belt
Students can help determine the identity and orbit of asteroids in the main asteroid belt

Students participating in the program download images taken of an asteroid within the main asteroid belt in the last few hours by telescopes (24 and 32 inches) located in the Astronomical Institute in Illinois. Students must determine the identity and calculate the three-dimensional orbit of an asteroid using Astrometrica, a software package users need to download directly from the IASC website, within a three-day window.

The telescopes take three images of an asteroid at six-minute intervals,  which means it would have moved around five pixels in relation to distant background stars in each image. Astrometrica highlights objects in each image fitting these criteria by putting a red circle around them.

In order to determine an object is an asteroid, students must sort through objects that have moved in the images, and ones that are static. They do this by taking a look at the fit of the point spread function, the signal-to-noise ratio, and any change in the size of an object in the images. If an object has moved in a relatively straight line, stayed about the same size, has a signal-to-noise ratio greater than five, and is approximately round in shape, then it’s probably an asteroid.

Join the human journey to the beginning of space and time today!

A typical International Astronomical Search Campaign lasts about 45 days, during which new asteroids are often discovered, identified, and their orbits determined. This is your chance to become an astronomy leader of tomorrow, by participating in the International Astronomical Search Campaign, and WISE’s mission to identify and calculate the orbit of every rocky body in the main asteroid belt.

You can find more information and news on the space mission of NASA’s WISE spacecraft here.

You can find more on the current campaigns of the International Astronomical Search Campaign here.

Schools desiring to take part in the International Astronomical Search Campaign contact the IASC Director, Dr. J. Patrick Miller by email at:
iascsearch@hsutx.edu.

Read about Rosetta preparing to make history

Read about the first earth size world discovered orbiting within the life zone of a star

Read about 715 new planets discovered by the Kepler Mission

WISE Shows us Infrared Views of Time and Space

The Sculptor Galaxy heats up

 

 

WISE uses four infrared detectors to view the Sculptor Galaxy

Wise takes us to the Sculptor Galaxy NGC 253 

Astronomy News – In the next leg of the human “Journey to the Beginning of Space and Time” we travel 11.4 million light years, give or take a few hundred thousand, to the Sculptor Galaxy NGC 253 (the Silver Coin Galaxy) to view an infrared mosaic of images taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Part of the Sculptor group of galaxies (South Polar Group), the 7.6 magnitude Silver Coin Galaxy has infant stars in duty cocoons heating up the galaxies core and broadcasting infrared light into the universe and is the brightest member of the Sculptor group of galaxies. Young emerging stars in the infrared images shown here are concentrated in the galaxies core and along the spiral arms. The green areas are tiny dust or soot particles left after the formation of these emerging stars that have absorbed the ultraviolet light from these young stars, which makes these particles glow with infrared light the four infrared detectors on WISE can detect. The blue image on the top was taken in the short wavelengths, about 3.4 and 4.6 microns, this photo has stars of all ages scattered all over the Sculptor Galaxy. 
 
NGC 253 is considered a starburst galaxy, and an intermediary type of spiral galaxy, with stars forming and exploding at unusually high rates in an intense star-forming period. First recorded by Caroline Herschel, the sister of astronomer William Herschel, on September 23, 1783, the Sculptor Galaxy can best be seen in the Sculptor constellation in the southern night sky in late September by stargazers using a time-machine-to-the-stars. Stargazers with good eyes and a dark sky can even view NGC 253 during this time, just be prepared to spend a little time in the search for the Silver Coin Galaxy.
 

Wise continues to go forth into the unknown

Check out my newest astronomy blog at http://astronomytonight.yolasite.com/.
This is why they call NGC 253 the Silver Coin Galaxy

Learn why astronomy binoculars are a popular choice with amateur astronomers

Read about the Anasazi Indians

Read about astronomers viewing a supernova they think might have given birth to a black hole